metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ2-1,2-bis­­(di­phenyl­phosphan­yl)-1,2-di­ethylhydrazine]-μ4-nitrato-μ2-nitrato-silver(I)]

aProject AuTEK, Mintek, Private Bag X3015, Randburg 2125, South Africa, and bMolecular Science Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa
*Correspondence e-mail: erikk@mintek.co.za

(Received 30 April 2010; accepted 21 May 2010; online 26 May 2010)

The title compound, [Ag2(NO3)2(C28H30N2P2)]n, crystallizes in polymeric α-helices. Three O atoms from three different nitrate ions in equatorial positions and two Ag atoms at axial positions set up a trigonal bipyramid. These units are linked by the phosphine ligands into endless helical chains that run along the c axis. The crystal used for the data collection was a racemic twin.

Related literature

For related structures, see: Reddy et al. (1994[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 355-1357.], 1995[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483-5488.]); Hu (2000[Hu, S.-Z. (2000). Jiegou Huaxue, 19, 153-157.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(NO3)2(C28H30N2P2)]

  • Mr = 796.24

  • Orthorhombic, P n a 21

  • a = 16.332 (1) Å

  • b = 20.6486 (13) Å

  • c = 9.0164 (5) Å

  • V = 3040.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 173 K

  • 0.22 × 0.08 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: analytical (SADABS; Bruker, 1999[Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.788, Tmax = 0.907

  • 13103 measured reflections

  • 8801 independent reflections

  • 6217 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.161

  • S = 1.01

  • 8801 reflections

  • 380 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.73 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3898 Friedel pairs

  • Flack parameter: 0.53 (4)

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The centre of a polymeric α-helix produced by the title compound is filled by nitrate counter ions. Three oxygen atoms from three different nitrate ions occupy the equatorial positions of a trigonal bipyramid and two silver atoms are situated at the axial positions. This complex arrangement connects each silver atom of one complex to a silver atom in a neighbouring complex. The resulting α-helices (Figure 2) are packed parallel to each other and run down the c-axis of the crystal.

Polymerisation in silver nitrate complexes analogous to the title compound is commonly encountered. For example, the case of (NO3)Ag(dppe)Ag(NO3) that forms long chains with P—Ag—P units as the connecting entity (Hu, 2000). These long chains are also periodically connected by short chains of Ag—O—Ag bonds, giving rise to sheets of connected complexes. The Ag—P bond distances of 2.334 (2) Å and 2.349 (2) Å in the title compound are considerably shorter than those of (NO3)Ag(dppe)Ag(NO3) (2.41 Å and 2.42 Å). The trigonal bipyramidal structure of the title compound consists of four long Ag—O bonds in the range of 2.5 Å and two short Ag—O bonds in the range of 2.3 Å. Two longer bonds are to the same NO3-, while two sets of a short and long bond are connected to the other two nitrates, respectively. This compares to Ag—O bond lengths between 2.68 Å and 2.17 Å in (NO3)Ag(dppe)Ag(NO3). The title compound exhibits Ag—O—Ag angles in the range of 93° to 99° and O—Ag—O angles in the range of 66° to 75°.

Related literature top

For related structures, see: Reddy et al. (1994, 1995); Hu (2000).

Experimental top

Silver nitrate (100 mg, 0.59 mmol) was suspended in THF or dissolved in the minimum amount of acetonitrile. To the stirred suspension were added 0.5 equivalents of bis(diphenylphosphino)-1,2-diethylhydrazine (132 mg, 0.29 mmol) in dichloromethane (DCM) (5 ml). The suspension turned light brown. The solvent was removed in vacuo to afford the product as a solid (65% yield).

The title compound crystallised from a mixture of acetonitrile, ethylacetate and hexane after being left at -20 °C for two weeks.

Refinement top

The crystal studied was a racemic twin, the refined ratio of twin components being 0.53 (4) : 0.47 (4). The H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 (Ar—H) or 0.96 (CH3) Å, and with Ueq = 1.2 (Ar—H) or 1.5 (CH3) Ueq(C).

Structure description top

The centre of a polymeric α-helix produced by the title compound is filled by nitrate counter ions. Three oxygen atoms from three different nitrate ions occupy the equatorial positions of a trigonal bipyramid and two silver atoms are situated at the axial positions. This complex arrangement connects each silver atom of one complex to a silver atom in a neighbouring complex. The resulting α-helices (Figure 2) are packed parallel to each other and run down the c-axis of the crystal.

Polymerisation in silver nitrate complexes analogous to the title compound is commonly encountered. For example, the case of (NO3)Ag(dppe)Ag(NO3) that forms long chains with P—Ag—P units as the connecting entity (Hu, 2000). These long chains are also periodically connected by short chains of Ag—O—Ag bonds, giving rise to sheets of connected complexes. The Ag—P bond distances of 2.334 (2) Å and 2.349 (2) Å in the title compound are considerably shorter than those of (NO3)Ag(dppe)Ag(NO3) (2.41 Å and 2.42 Å). The trigonal bipyramidal structure of the title compound consists of four long Ag—O bonds in the range of 2.5 Å and two short Ag—O bonds in the range of 2.3 Å. Two longer bonds are to the same NO3-, while two sets of a short and long bond are connected to the other two nitrates, respectively. This compares to Ag—O bond lengths between 2.68 Å and 2.17 Å in (NO3)Ag(dppe)Ag(NO3). The title compound exhibits Ag—O—Ag angles in the range of 93° to 99° and O—Ag—O angles in the range of 66° to 75°.

For related structures, see: Reddy et al. (1994, 1995); Hu (2000).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of I drawn with displacement ellipsoids at the 50 % probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. : Mercury representation of I showing the polymeric helix. Hydrogen atoms have been omitted for clarity.
Poly[[µ-1,2-bis(diphenylphosphanyl)-1,2-diethylhydrazine]-µ4-nitrato- µ2-disilver(I)] top
Crystal data top
[Ag2(NO3)2(C28H30N2P2)]F(000) = 1592
Mr = 796.24Dx = 1.739 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3919 reflections
a = 16.332 (1) Åθ = 2.3–26.5°
b = 20.6486 (13) ŵ = 1.44 mm1
c = 9.0164 (5) ÅT = 173 K
V = 3040.6 (3) Å3Needle, colourless
Z = 40.22 × 0.08 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
8801 independent reflections
Radiation source: fine-focus sealed tube6217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
phi and ω scansθmax = 30.5°, θmin = 1.6°
Absorption correction: analytical
(SADABS; Bruker, 1999)
h = 2023
Tmin = 0.788, Tmax = 0.907k = 1029
13103 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0891P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.006
8801 reflectionsΔρmax = 0.58 e Å3
380 parametersΔρmin = 0.73 e Å3
1 restraintAbsolute structure: Flack (1983), 3898 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.53 (4)
Crystal data top
[Ag2(NO3)2(C28H30N2P2)]V = 3040.6 (3) Å3
Mr = 796.24Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.332 (1) ŵ = 1.44 mm1
b = 20.6486 (13) ÅT = 173 K
c = 9.0164 (5) Å0.22 × 0.08 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
8801 independent reflections
Absorption correction: analytical
(SADABS; Bruker, 1999)
6217 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.907Rint = 0.051
13103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.161Δρmax = 0.58 e Å3
S = 1.01Δρmin = 0.73 e Å3
8801 reflectionsAbsolute structure: Flack (1983), 3898 Friedel pairs
380 parametersAbsolute structure parameter: 0.53 (4)
1 restraint
Special details top

Experimental. Intensity data were collected on a Bruker SMART1K CCD area detector diffractometer with graphite monochromated Mo Kα radiation (40 kV, 40 mA). The collection method involved ω-scans of width 0.3°. Data reduction was carried out using the program SAINT+ (Bruker, 1999) and face indexed absorption corrections were made using the program SAINT+ SADABS.

1H NMR: (d-DMSO, 300 MHz) δH7.79 (bs, Arom), 7.64 (bs, Arom), 7.54 (bs, Arom), 3.19 (m, CH2CH3), 0.57 (t, 3J(1H-1H) = 6.6 Hz, CH2CH3).13C NMR: (CDCl3, 100.6 MHz) δC 135.8 (s,Arom), 134.0 (Arom), 131.2 (m, Arom), 128.2 (s, Arom), ethyl signals could not be observed. 31P NMR: (d-DMSO, 121 MHz) δP 77.14 (d, 1J (107/109Ag-31P)= 782.9 Hz). MS: 733 (5 %, M - NO3), 563 (7 %, Ligand + Ag). EA: Calc: (Ag2P2N4O6C28H30) C 42.24% H 3.80% N 7.04%. Found: C 41.48% H 3.95% N 6.77%. MP: 182 – 183 °C.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1939 (6)0.2253 (5)0.8345 (9)0.044 (2)
H1A0.15950.26350.83250.053*
H1B0.24860.23940.86130.053*
C20.1976 (7)0.1994 (4)0.6833 (12)0.057 (3)
H2A0.21860.23200.61750.086*
H2B0.14370.18700.65200.086*
H2C0.23300.16230.68130.086*
C30.2810 (5)0.1667 (3)1.1170 (9)0.0296 (16)
H3A0.30980.20011.06210.036*
H3B0.32030.13341.14300.036*
C40.2457 (6)0.1971 (4)1.2633 (9)0.042 (2)
H4A0.28970.21471.32130.063*
H4B0.21800.16421.31950.063*
H4C0.20780.23091.23870.063*
C110.0019 (4)0.1970 (3)0.8645 (8)0.0258 (14)
C120.0291 (4)0.1410 (3)0.7955 (10)0.0324 (16)
H120.01980.10070.83870.039*
C130.0742 (5)0.1446 (4)0.6624 (11)0.043 (2)
H130.08990.10690.61400.051*
C140.0947 (7)0.2036 (5)0.6040 (12)0.055 (3)
H140.12650.20660.51870.066*
C150.0663 (8)0.2597 (4)0.6771 (14)0.073 (4)
H150.07940.30030.63940.087*
C160.0200 (6)0.2550 (4)0.8018 (11)0.050 (2)
H160.00220.29300.84690.061*
C210.0544 (4)0.2647 (3)1.1204 (7)0.0232 (14)
C220.1097 (5)0.3142 (4)1.1123 (9)0.0343 (17)
H220.15790.30891.05860.041*
C230.0939 (5)0.3735 (4)1.1854 (11)0.0387 (18)
H230.13000.40801.17490.046*
C240.0265 (5)0.3800 (4)1.2701 (9)0.0364 (18)
H240.01690.41901.31880.044*
C250.0285 (5)0.3300 (4)1.2860 (10)0.0372 (17)
H250.07410.33451.34690.045*
C260.0146 (4)0.2725 (4)1.2090 (9)0.0339 (18)
H260.05210.23871.21700.041*
C310.2553 (4)0.0102 (3)1.0819 (8)0.0197 (13)
C320.2246 (5)0.0190 (4)1.2244 (9)0.0330 (17)
H320.19680.05691.24860.040*
C330.2358 (5)0.0291 (4)1.3306 (8)0.0369 (18)
H330.21760.02231.42710.044*
C340.2745 (5)0.0883 (4)1.2934 (11)0.0424 (19)
H340.27990.12121.36320.051*
C350.3038 (5)0.0959 (4)1.1521 (11)0.040 (2)
H350.33170.13371.12820.048*
C360.2933 (5)0.0499 (4)1.0457 (9)0.0317 (16)
H360.31090.05770.94930.038*
C410.3281 (4)0.0657 (3)0.8277 (7)0.0225 (14)
C420.3247 (4)0.0570 (3)0.6732 (9)0.0300 (14)
H420.27410.05440.62610.036*
C430.3958 (5)0.0522 (4)0.5907 (9)0.0341 (17)
H430.39320.04450.48910.041*
C440.4710 (5)0.0589 (4)0.6604 (12)0.0411 (19)
H440.51860.05850.60370.049*
C450.4768 (4)0.0661 (3)0.8130 (10)0.0331 (16)
H450.52760.06790.85950.040*
C460.4062 (5)0.0705 (3)0.8933 (9)0.0301 (15)
H460.40980.07700.99510.036*
N10.1635 (4)0.1824 (3)0.9553 (6)0.0232 (12)
N20.2181 (3)0.1384 (3)1.0214 (6)0.0222 (11)
N30.0603 (4)0.0379 (3)1.4801 (6)0.0229 (12)
N40.1688 (4)0.1152 (3)0.6966 (9)0.0337 (15)
O10.0241 (3)0.0220 (2)1.3584 (5)0.0275 (11)
O20.0429 (3)0.0039 (3)1.5915 (5)0.0341 (12)
O30.1085 (4)0.0816 (3)1.4847 (6)0.0413 (15)
O40.1100 (3)0.1018 (3)0.7843 (6)0.0352 (12)
O50.2198 (3)0.0715 (3)0.6727 (8)0.0440 (13)
O60.1766 (4)0.1688 (3)0.6396 (12)0.077 (3)
P10.06706 (11)0.18681 (8)1.02502 (19)0.0209 (3)
P20.23174 (10)0.06614 (8)0.93328 (19)0.0200 (3)
Ag10.03083 (3)0.09899 (3)1.17410 (7)0.03480 (15)
Ag20.12155 (3)0.02110 (3)0.80136 (7)0.03238 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.044 (5)0.057 (5)0.032 (5)0.005 (4)0.013 (4)0.017 (4)
C20.101 (8)0.033 (4)0.039 (5)0.004 (5)0.012 (6)0.003 (4)
C30.030 (4)0.019 (3)0.040 (4)0.002 (3)0.007 (3)0.009 (3)
C40.048 (5)0.047 (5)0.031 (4)0.004 (4)0.006 (3)0.009 (4)
C110.029 (3)0.019 (3)0.029 (3)0.006 (3)0.001 (3)0.001 (3)
C120.044 (4)0.018 (3)0.035 (4)0.005 (3)0.013 (4)0.000 (3)
C130.040 (4)0.052 (5)0.037 (4)0.004 (4)0.015 (4)0.014 (4)
C140.078 (7)0.044 (5)0.042 (5)0.004 (5)0.032 (5)0.007 (4)
C150.127 (10)0.026 (4)0.065 (6)0.006 (5)0.053 (8)0.016 (5)
C160.078 (6)0.027 (4)0.047 (5)0.002 (4)0.024 (6)0.007 (4)
C210.023 (3)0.028 (3)0.019 (3)0.007 (3)0.001 (2)0.003 (3)
C220.038 (4)0.032 (4)0.033 (4)0.009 (3)0.012 (3)0.001 (3)
C230.045 (4)0.026 (4)0.045 (5)0.010 (3)0.005 (4)0.008 (4)
C240.037 (4)0.031 (4)0.041 (5)0.003 (3)0.000 (3)0.012 (3)
C250.037 (4)0.032 (4)0.042 (5)0.004 (3)0.007 (4)0.005 (4)
C260.027 (4)0.034 (4)0.041 (5)0.006 (3)0.009 (3)0.002 (3)
C310.021 (3)0.009 (3)0.030 (3)0.002 (2)0.003 (3)0.002 (2)
C320.035 (4)0.031 (4)0.032 (4)0.007 (3)0.009 (3)0.004 (3)
C330.049 (5)0.038 (4)0.024 (4)0.003 (3)0.004 (3)0.009 (3)
C340.047 (5)0.042 (4)0.038 (4)0.012 (4)0.014 (4)0.004 (4)
C350.046 (4)0.020 (3)0.054 (6)0.009 (3)0.005 (4)0.008 (3)
C360.040 (4)0.024 (3)0.031 (4)0.007 (3)0.002 (3)0.003 (3)
C410.023 (3)0.016 (3)0.029 (4)0.001 (2)0.000 (3)0.001 (2)
C420.037 (4)0.022 (3)0.031 (3)0.005 (3)0.004 (4)0.005 (3)
C430.041 (4)0.034 (4)0.027 (4)0.005 (3)0.010 (3)0.004 (3)
C440.038 (4)0.033 (4)0.052 (5)0.002 (3)0.019 (4)0.005 (4)
C450.025 (3)0.025 (3)0.049 (5)0.001 (3)0.000 (4)0.000 (4)
C460.030 (4)0.027 (3)0.034 (4)0.003 (3)0.001 (3)0.002 (3)
N10.027 (3)0.016 (3)0.026 (3)0.004 (2)0.007 (2)0.007 (2)
N20.025 (3)0.017 (3)0.025 (3)0.004 (2)0.004 (2)0.002 (2)
N30.026 (3)0.022 (3)0.021 (3)0.003 (2)0.001 (2)0.004 (2)
N40.027 (3)0.024 (3)0.050 (4)0.001 (2)0.001 (3)0.002 (3)
O10.035 (3)0.032 (3)0.015 (2)0.002 (2)0.0068 (19)0.002 (2)
O20.041 (3)0.044 (3)0.017 (2)0.014 (3)0.005 (2)0.011 (2)
O30.050 (4)0.042 (3)0.032 (3)0.030 (3)0.002 (2)0.003 (2)
O40.028 (3)0.040 (3)0.038 (3)0.000 (2)0.004 (2)0.001 (3)
O50.042 (3)0.037 (3)0.053 (3)0.007 (2)0.008 (3)0.016 (3)
O60.052 (4)0.039 (4)0.140 (9)0.000 (3)0.005 (5)0.036 (5)
P10.0242 (8)0.0176 (7)0.0208 (8)0.0003 (6)0.0012 (7)0.0031 (6)
P20.0233 (8)0.0177 (7)0.0189 (7)0.0008 (6)0.0012 (7)0.0023 (6)
Ag10.0332 (3)0.0326 (3)0.0385 (3)0.0076 (2)0.0000 (3)0.0181 (3)
Ag20.0332 (3)0.0337 (3)0.0302 (3)0.0068 (2)0.0103 (3)0.0043 (3)
Geometric parameters (Å, º) top
C1—C21.466 (13)C32—H320.9300
C1—N11.489 (9)C33—C341.416 (11)
C1—H1A0.9700C33—H330.9300
C1—H1B0.9700C34—C351.370 (14)
C2—H2A0.9600C34—H340.9300
C2—H2B0.9600C35—C361.361 (11)
C2—H2C0.9600C35—H350.9300
C3—N21.464 (9)C36—H360.9300
C3—C41.570 (11)C41—C421.406 (10)
C3—H3A0.9700C41—C461.409 (10)
C3—H3B0.9700C41—P21.839 (7)
C4—H4A0.9600C42—C431.383 (10)
C4—H4B0.9600C42—H420.9300
C4—H4C0.9600C43—C441.387 (12)
C11—C161.373 (11)C43—H430.9300
C11—C121.408 (10)C44—C451.387 (13)
C11—P11.808 (8)C44—H440.9300
C12—C131.410 (12)C45—C461.364 (11)
C12—H120.9300C45—H450.9300
C13—C141.367 (13)C46—H460.9300
C13—H130.9300N1—N21.406 (8)
C14—C151.412 (14)N1—P11.698 (6)
C14—H140.9300N2—P21.704 (6)
C15—C161.359 (14)N3—O31.197 (7)
C15—H150.9300N3—O21.258 (7)
C16—H160.9300N3—O11.288 (8)
C21—C221.365 (10)N4—O61.227 (9)
C21—C261.391 (10)N4—O51.247 (8)
C21—P11.836 (7)N4—O41.275 (9)
C22—C231.414 (11)O1—Ag12.302 (5)
C22—H220.9300O1—Ag2i2.592 (5)
C23—C241.347 (12)O2—Ag2ii2.314 (5)
C23—H230.9300O2—Ag1i2.553 (5)
C24—C251.376 (11)O4—Ag1iii2.506 (5)
C24—H240.9300O4—Ag22.549 (5)
C25—C261.394 (11)P1—Ag12.3335 (18)
C25—H250.9300P2—Ag22.3492 (18)
C26—H260.9300Ag1—O4i2.506 (5)
C31—C321.392 (10)Ag1—O2iii2.553 (5)
C31—C361.426 (9)Ag2—O2iv2.314 (5)
C31—P21.810 (7)Ag2—O1iii2.592 (5)
C32—C331.392 (10)
C2—C1—N1118.5 (8)C33—C34—H34120.8
C2—C1—H1A107.7C36—C35—C34122.1 (8)
N1—C1—H1A107.7C36—C35—H35118.9
C2—C1—H1B107.7C34—C35—H35118.9
N1—C1—H1B107.7C35—C36—C31120.1 (8)
H1A—C1—H1B107.1C35—C36—H36119.9
C1—C2—H2A109.5C31—C36—H36119.9
C1—C2—H2B109.5C42—C41—C46117.4 (6)
H2A—C2—H2B109.5C42—C41—P2118.6 (5)
C1—C2—H2C109.5C46—C41—P2123.9 (5)
H2A—C2—H2C109.5C43—C42—C41120.6 (7)
H2B—C2—H2C109.5C43—C42—H42119.7
N2—C3—C4113.4 (6)C41—C42—H42119.7
N2—C3—H3A108.9C42—C43—C44119.5 (7)
C4—C3—H3A108.9C42—C43—H43120.2
N2—C3—H3B108.9C44—C43—H43120.2
C4—C3—H3B108.9C43—C44—C45121.4 (7)
H3A—C3—H3B107.7C43—C44—H44119.3
C3—C4—H4A109.5C45—C44—H44119.3
C3—C4—H4B109.5C46—C45—C44118.4 (7)
H4A—C4—H4B109.5C46—C45—H45120.8
C3—C4—H4C109.5C44—C45—H45120.8
H4A—C4—H4C109.5C45—C46—C41122.5 (7)
H4B—C4—H4C109.5C45—C46—H46118.7
C16—C11—C12116.2 (7)C41—C46—H46118.7
C16—C11—P1125.8 (6)N2—N1—C1118.9 (6)
C12—C11—P1118.1 (5)N2—N1—P1117.7 (4)
C11—C12—C13121.3 (7)C1—N1—P1123.3 (5)
C11—C12—H12119.3N1—N2—C3115.9 (5)
C13—C12—H12119.3N1—N2—P2116.8 (4)
C14—C13—C12120.2 (8)C3—N2—P2122.2 (4)
C14—C13—H13119.9O3—N3—O2122.8 (6)
C12—C13—H13119.9O3—N3—O1121.5 (6)
C13—C14—C15118.1 (8)O2—N3—O1115.7 (6)
C13—C14—H14121.0O6—N4—O5120.8 (7)
C15—C14—H14121.0O6—N4—O4122.3 (7)
C16—C15—C14120.7 (8)O5—N4—O4116.9 (6)
C16—C15—H15119.6N3—O1—Ag1114.6 (4)
C14—C15—H15119.6N3—O1—Ag2i132.6 (4)
C15—C16—C11123.2 (8)Ag1—O1—Ag2i97.89 (17)
C15—C16—H16118.4N3—O2—Ag2ii116.2 (4)
C11—C16—H16118.4N3—O2—Ag1i143.5 (4)
C22—C21—C26118.8 (7)Ag2ii—O2—Ag1i98.69 (18)
C22—C21—P1123.8 (5)N4—O4—Ag1iii116.8 (5)
C26—C21—P1117.4 (6)N4—O4—Ag2101.4 (4)
C21—C22—C23120.1 (7)Ag1iii—O4—Ag293.95 (17)
C21—C22—H22120.0N1—P1—C11104.8 (3)
C23—C22—H22120.0N1—P1—C21108.9 (3)
C24—C23—C22120.1 (7)C11—P1—C21102.0 (3)
C24—C23—H23120.0N1—P1—Ag1114.0 (2)
C22—C23—H23120.0C11—P1—Ag1113.7 (2)
C23—C24—C25121.1 (7)C21—P1—Ag1112.5 (2)
C23—C24—H24119.4N2—P2—C31103.9 (3)
C25—C24—H24119.4N2—P2—C41111.0 (3)
C24—C25—C26118.8 (7)C31—P2—C41101.4 (3)
C24—C25—H25120.6N2—P2—Ag2118.8 (2)
C26—C25—H25120.6C31—P2—Ag2106.6 (2)
C21—C26—C25121.0 (7)C41—P2—Ag2113.0 (2)
C21—C26—H26119.5O1—Ag1—P1164.66 (13)
C25—C26—H26119.5O1—Ag1—O4i71.71 (19)
C32—C31—C36118.8 (7)P1—Ag1—O4i116.31 (14)
C32—C31—P2121.6 (5)O1—Ag1—O2iii67.27 (17)
C36—C31—P2118.6 (5)P1—Ag1—O2iii126.75 (13)
C31—C32—C33119.7 (7)O4i—Ag1—O2iii72.66 (17)
C31—C32—H32120.2O2iv—Ag2—P2154.16 (13)
C33—C32—H32120.2O2iv—Ag2—O475.92 (19)
C32—C33—C34120.8 (8)P2—Ag2—O4118.77 (12)
C32—C33—H33119.6O2iv—Ag2—O1iii66.42 (17)
C34—C33—H33119.6P2—Ag2—O1iii137.62 (12)
C35—C34—C33118.4 (8)O4—Ag2—O1iii66.56 (16)
C35—C34—H34120.8
C16—C11—C12—C135.3 (12)C12—C11—P1—N190.4 (6)
P1—C11—C12—C13174.2 (7)C16—C11—P1—C2124.5 (9)
C11—C12—C13—C145.7 (14)C12—C11—P1—C21156.0 (6)
C12—C13—C14—C152.9 (17)C16—C11—P1—Ag1145.8 (8)
C13—C14—C15—C160 (2)C12—C11—P1—Ag134.7 (7)
C14—C15—C16—C110 (2)C22—C21—P1—N110.2 (7)
C12—C11—C16—C152.4 (16)C26—C21—P1—N1167.9 (6)
P1—C11—C16—C15177.0 (10)C22—C21—P1—C11100.2 (7)
C26—C21—C22—C234.0 (12)C26—C21—P1—C1181.7 (6)
P1—C21—C22—C23177.9 (7)C22—C21—P1—Ag1137.6 (6)
C21—C22—C23—C243.8 (14)C26—C21—P1—Ag140.5 (6)
C22—C23—C24—C250.8 (14)N1—N2—P2—C31150.4 (5)
C23—C24—C25—C261.8 (13)C3—N2—P2—C3156.0 (6)
C22—C21—C26—C251.3 (12)N1—N2—P2—C41101.4 (5)
P1—C21—C26—C25179.6 (6)C3—N2—P2—C4152.2 (7)
C24—C25—C26—C211.6 (13)N1—N2—P2—Ag232.2 (5)
C36—C31—C32—C333.8 (11)C3—N2—P2—Ag2174.2 (5)
P2—C31—C32—C33172.1 (6)C32—C31—P2—N229.7 (7)
C31—C32—C33—C343.1 (12)C36—C31—P2—N2162.0 (5)
C32—C33—C34—C352.7 (13)C32—C31—P2—C41144.9 (6)
C33—C34—C35—C363.2 (13)C36—C31—P2—C4146.8 (6)
C34—C35—C36—C314.0 (13)C32—C31—P2—Ag296.6 (6)
C32—C31—C36—C354.2 (11)C36—C31—P2—Ag271.7 (6)
P2—C31—C36—C35172.8 (6)C42—C41—P2—N2118.9 (5)
C46—C41—C42—C431.3 (10)C46—C41—P2—N264.1 (6)
P2—C41—C42—C43175.9 (5)C42—C41—P2—C31131.1 (5)
C41—C42—C43—C442.9 (11)C46—C41—P2—C3145.8 (6)
C42—C43—C44—C454.3 (12)C42—C41—P2—Ag217.4 (6)
C43—C44—C45—C464.0 (12)C46—C41—P2—Ag2159.5 (5)
C44—C45—C46—C412.4 (11)N3—O1—Ag1—P120.1 (9)
C42—C41—C46—C451.0 (10)Ag2i—O1—Ag1—P1164.7 (4)
P2—C41—C46—C45175.9 (6)N3—O1—Ag1—O4i103.9 (5)
C2—C1—N1—N282.7 (10)Ag2i—O1—Ag1—O4i40.72 (17)
C2—C1—N1—P1101.0 (9)N3—O1—Ag1—O2iii177.7 (5)
C1—N1—N2—C371.4 (8)Ag2i—O1—Ag1—O2iii37.63 (16)
P1—N1—N2—C3105.2 (6)N1—P1—Ag1—O160.8 (6)
C1—N1—N2—P283.9 (7)C11—P1—Ag1—O1179.2 (6)
P1—N1—N2—P299.5 (5)C21—P1—Ag1—O163.9 (6)
C4—C3—N2—N168.1 (8)N1—P1—Ag1—O4i179.4 (3)
C4—C3—N2—P2138.0 (6)C11—P1—Ag1—O4i60.6 (3)
O3—N3—O1—Ag116.4 (8)C21—P1—Ag1—O4i54.7 (3)
O2—N3—O1—Ag1165.2 (5)N1—P1—Ag1—O2iii93.2 (3)
O3—N3—O1—Ag2i145.2 (5)C11—P1—Ag1—O2iii26.8 (3)
O2—N3—O1—Ag2i36.3 (9)C21—P1—Ag1—O2iii142.1 (3)
O3—N3—O2—Ag2ii7.7 (9)N2—P2—Ag2—O2iv91.3 (4)
O1—N3—O2—Ag2ii170.8 (4)C31—P2—Ag2—O2iv151.9 (4)
O3—N3—O2—Ag1i169.2 (6)C41—P2—Ag2—O2iv41.4 (4)
O1—N3—O2—Ag1i9.2 (11)N2—P2—Ag2—O4148.9 (3)
O6—N4—O4—Ag1iii67.3 (9)C31—P2—Ag2—O432.1 (3)
O5—N4—O4—Ag1iii114.0 (6)C41—P2—Ag2—O478.4 (3)
O6—N4—O4—Ag2167.7 (8)N2—P2—Ag2—O1iii63.0 (3)
O5—N4—O4—Ag213.6 (7)C31—P2—Ag2—O1iii53.8 (3)
N2—N1—P1—C11141.4 (5)C41—P2—Ag2—O1iii164.3 (3)
C1—N1—P1—C1142.3 (7)N4—O4—Ag2—O2iv85.6 (4)
N2—N1—P1—C21110.1 (5)Ag1iii—O4—Ag2—O2iv32.81 (18)
C1—N1—P1—C2166.2 (7)N4—O4—Ag2—P271.5 (4)
N2—N1—P1—Ag116.4 (5)Ag1iii—O4—Ag2—P2170.14 (9)
C1—N1—P1—Ag1167.2 (6)N4—O4—Ag2—O1iii155.6 (5)
C16—C11—P1—N189.0 (8)Ag1iii—O4—Ag2—O1iii37.26 (16)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1; (iii) x, y, z1/2; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ag2(NO3)2(C28H30N2P2)]
Mr796.24
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)16.332 (1), 20.6486 (13), 9.0164 (5)
V3)3040.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.22 × 0.08 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionAnalytical
(SADABS; Bruker, 1999)
Tmin, Tmax0.788, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
13103, 8801, 6217
Rint0.051
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.161, 1.01
No. of reflections8801
No. of parameters380
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.73
Absolute structureFlack (1983), 3898 Friedel pairs
Absolute structure parameter0.53 (4)

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors would like to thank Project AuTEK (Mintek and Harmony) and the University of the Witwatersrand for financial support.

References

First citationBruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHu, S.-Z. (2000). Jiegou Huaxue, 19, 153-157.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 355–1357.  Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483–5488.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds