organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Reinvestigation of 4-methyl­anilinium di­hydrogen phosphite

aInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic, bLaboratoire d'Ingénierie des Matériaux Organométalliques et Moléculaires, Département de Chimie, Faculté des Sciences, Université Sidi Mohamed Ben Abdellah, BP 1796 (Atlas), 30000 Fès, Morocco, and cDepartment of Chemistry, Faculty of Sciences, University Mohammed 1st, PO Box 717, 60000 Oujda, Morocco
*Correspondence e-mail: fejfarov@fzu.cz

(Received 6 May 2010; accepted 12 May 2010; online 19 May 2010)

The crystal structure of the title compound, C7H10N+·H2PO3, has been reported previously by Sabounchei & Naghipour [Asian J. Chem. (2003)[Sabounchei, S. J. & Naghipour, A. (2003). Asian J. Chem. 15, 1677-1686.], 15, 1677–1686]. A new look at this compound has revealed doubling of the unit cell. The asymmetric unit consists of two 4-methyl­anilinium cations and two dihydrogen phosphite anions. The crystal structure is built upon alternating layers of organic cations and dihydrogen phosphite anions stacked along c. The organic layer is stabilized by C—H⋯π interactions. Weak aromatic ππ stacking interactions with centroid–centroid distances of 4.6147 (12), 4.6917 (12), 4.6932 (13) and 4.8366 (13) Å are also observed in the structure. The dihydrogen phosphite anions are linked by O—H⋯O hydrogen bonds into chains running parallel to the a-axis direction. These chains are connected to the cation layer by N—H⋯O hydrogen bonds.

Related literature

For the previously reported structure determination of the title compound, see: Sabounchei & Naghipour (2003[Sabounchei, S. J. & Naghipour, A. (2003). Asian J. Chem. 15, 1677-1686.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N+·H2PO3

  • Mr = 189.15

  • Triclinic, [P \overline 1]

  • a = 9.3053 (7) Å

  • b = 9.4087 (7) Å

  • c = 11.3432 (8) Å

  • α = 70.253 (7)°

  • β = 76.304 (6)°

  • γ = 82.771 (6)°

  • V = 906.99 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 120 K

  • 0.54 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction XCalibur 2 with area-detector Sapphire 2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.885, Tmax = 0.973

  • 11211 measured reflections

  • 3787 independent reflections

  • 1948 reflections with I > 3σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 0.94

  • 3787 reflections

  • 229 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1a⋯O6 0.87 1.90 2.760 (2) 167
N1—H1b⋯O2i 0.87 2.00 2.850 (2) 165
N1—H1c⋯O5ii 0.87 1.93 2.784 (2) 169
O1—H1o⋯O6 0.82 (2) 1.703 (19) 2.523 (2) 173 (3)
N2—H2a⋯O5i 0.87 2.03 2.875 (2) 165
N2—H2b⋯O2i 0.87 1.87 2.729 (2) 168
N2—H2c⋯O3 0.87 1.91 2.773 (2) 173
O4—H4o⋯O3iii 0.818 (18) 1.704 (17) 2.516 (2) 171 (2)
C3—H3⋯Cg2iii 0.96 2.87 3.502 (2) 125
C6—H6⋯Cg2 0.96 2.97 3.589 (2) 123
C10—H10⋯Cg1iv 0.96 2.93 3.655 (2) 133
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z; (iv) -x+1, -y, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2010[Petříček, V., Dušek, M. & Palatinus, L. (2010). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Related literature top

For the previously reported structure determination of the title compound, see: Sabounchei & Naghipour (2003).

Experimental top

Crystals of the title compound were obtained unintentionally in an attempt to prepare a Ni based hybrid organic-inorganic phosphite. In fact, reactants NiCl2 (0.078 g, 5 mmol), H3PO3 (0.0834 g, 1 mmol) and four drops of p-Toluidine were added to 10 ml of distilled water. The solution was heated for 3 hours at 330 K and the resulting greenish solution was left at room temperature. After two weeks, colourless irregular shaped crystals deposited. They were filtered off and washed with a solution of ethanol–water (4:1 v/v). The chemical composition of the reported compound was confirmed by microprobe analysis.

Refinement top

All the hydrogens were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practise hydrogens attached to C and N atoms were nevertheless kept in ideal positions during the refinement. The O—H distances were restrained to 0.82 Å with σ 0.01. The isotropic temperature parameters of hydrogen atoms were evaluated as 1.2*Ueq of the parent atom.

Structure description top

For the previously reported structure determination of the title compound, see: Sabounchei & Naghipour (2003).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2010); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2010).

Figures top
[Figure 1] Fig. 1. : The molecular structure of C7H10N+ H2PO3-. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. : Crystal packing of title coumpound viewed along the b axis. Hydrogen bonds are displayed as dashed lines. Color code: Grey balls (C), blue balls (N), red balls (O), pink balls (P), black balls (H).
4-methylanilinium dihydrogen phosphite top
Crystal data top
C7H10N+·H2PO3Z = 4
Mr = 189.15F(000) = 400
Triclinic, P1Dx = 1.385 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.3053 (7) ÅCell parameters from 1617 reflections
b = 9.4087 (7) Åθ = 3.0–26.5°
c = 11.3432 (8) ŵ = 0.27 mm1
α = 70.253 (7)°T = 120 K
β = 76.304 (6)°Prism, colorless
γ = 82.771 (6)°0.54 × 0.20 × 0.10 mm
V = 906.99 (12) Å3
Data collection top
Oxford Diffraction XCalibur 2 with area-detector Sapphire 2
diffractometer
3787 independent reflections
Radiation source: X-ray tube1948 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 8.3438 pixels mm-1θmax = 26.6°, θmin = 3°
Rotation method data acquisition using ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1111
Tmin = 0.885, Tmax = 0.973l = 1414
11211 measured reflections
Refinement top
Refinement on F284 constraints
R[F > 3σ(F)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.085Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 0.94(Δ/σ)max = 0.006
3787 reflectionsΔρmax = 0.18 e Å3
229 parametersΔρmin = 0.21 e Å3
2 restraints
Crystal data top
C7H10N+·H2PO3γ = 82.771 (6)°
Mr = 189.15V = 906.99 (12) Å3
Triclinic, P1Z = 4
a = 9.3053 (7) ÅMo Kα radiation
b = 9.4087 (7) ŵ = 0.27 mm1
c = 11.3432 (8) ÅT = 120 K
α = 70.253 (7)°0.54 × 0.20 × 0.10 mm
β = 76.304 (6)°
Data collection top
Oxford Diffraction XCalibur 2 with area-detector Sapphire 2
diffractometer
3787 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1948 reflections with I > 3σ(I)
Tmin = 0.885, Tmax = 0.973Rint = 0.036
11211 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0312 restraints
wR(F) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.18 e Å3
3787 reflectionsΔρmin = 0.21 e Å3
229 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction (2008). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger then the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.44268 (6)0.24716 (7)0.46676 (6)0.0165 (2)
P20.94726 (6)0.25421 (7)0.47260 (6)0.0167 (2)
O10.54591 (17)0.17576 (19)0.56371 (16)0.0298 (7)
O20.51328 (15)0.37070 (16)0.35039 (13)0.0195 (6)
O30.29515 (15)0.29375 (16)0.53675 (13)0.0195 (6)
O41.03762 (17)0.2061 (2)0.58040 (15)0.0308 (7)
O51.01622 (15)0.37753 (16)0.35577 (13)0.0184 (6)
O60.78923 (15)0.28969 (16)0.53163 (13)0.0190 (6)
N10.74334 (19)0.44279 (19)0.70739 (16)0.0171 (7)
N20.25053 (18)0.4549 (2)0.70792 (16)0.0168 (7)
C10.7462 (2)0.3513 (2)0.8403 (2)0.0159 (9)
C20.8748 (2)0.2693 (2)0.8666 (2)0.0194 (8)
C30.8833 (2)0.1901 (2)0.9927 (2)0.0203 (9)
C40.7635 (3)0.1912 (3)1.0925 (2)0.0194 (9)
C50.6343 (2)0.2725 (2)1.0629 (2)0.0206 (9)
C60.6246 (2)0.3533 (2)0.93645 (19)0.0179 (8)
C70.7744 (3)0.1095 (3)1.2295 (2)0.0330 (11)
C80.2503 (2)0.3567 (2)0.8389 (2)0.0144 (9)
C90.3142 (2)0.2119 (2)0.86021 (19)0.0173 (8)
C100.3151 (2)0.1208 (2)0.98476 (19)0.0187 (8)
C110.2530 (2)0.1712 (3)1.0889 (2)0.0193 (9)
C120.1901 (2)0.3180 (2)1.0644 (2)0.0193 (8)
C130.1881 (2)0.4110 (2)0.94022 (19)0.0190 (8)
C140.2534 (3)0.0697 (3)1.2231 (2)0.0309 (10)
H1o0.6230 (17)0.219 (3)0.549 (2)0.0358*
H4o1.1189 (15)0.242 (3)0.560 (2)0.037*
H1a0.7508150.3836020.6613680.0205*
H1b0.6603890.4968180.7048160.0205*
H1c0.8170880.5022280.6771380.0205*
H2a0.1637630.5008640.703990.0202*
H2b0.3171610.521580.6851080.0202*
H2c0.2707860.4008310.6566440.0202*
H20.9578850.2670150.7983430.0233*
H30.9731620.1337011.0111830.0244*
H50.5500380.2730931.1306280.0247*
H60.5347890.4091640.9169690.0215*
H7a0.8647170.0478131.2317630.0396*
H7b0.7738410.1818981.272310.0396*
H7c0.6915390.0467061.2717370.0396*
H90.357340.1750380.7896840.0207*
H100.35970.0203170.9997630.0225*
H120.1473490.3554241.1346950.0232*
H130.1441880.5118530.9245730.0228*
H14a0.2408840.1299491.2787160.0371*
H14b0.1736470.0025591.2512930.0371*
H14c0.3458920.0118131.2253660.0371*
H1p0.415 (2)0.132 (2)0.4315 (18)0.0198*
H2p0.940 (2)0.131 (2)0.4421 (18)0.02*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0147 (3)0.0167 (3)0.0165 (3)0.0020 (3)0.0049 (3)0.0019 (3)
P20.0155 (3)0.0169 (3)0.0157 (3)0.0013 (3)0.0045 (3)0.0017 (3)
O10.0185 (9)0.0311 (11)0.0295 (10)0.0094 (8)0.0128 (8)0.0118 (8)
O20.0173 (8)0.0213 (9)0.0168 (9)0.0009 (7)0.0046 (7)0.0014 (7)
O30.0157 (8)0.0246 (9)0.0170 (8)0.0036 (7)0.0025 (7)0.0048 (7)
O40.0165 (9)0.0450 (12)0.0203 (9)0.0103 (8)0.0072 (8)0.0086 (9)
O50.0173 (8)0.0204 (9)0.0144 (8)0.0019 (7)0.0037 (7)0.0011 (7)
O60.0148 (8)0.0219 (9)0.0178 (8)0.0034 (7)0.0043 (7)0.0017 (7)
N10.0156 (10)0.0174 (10)0.0163 (10)0.0015 (9)0.0038 (8)0.0024 (9)
N20.0153 (10)0.0174 (10)0.0154 (10)0.0007 (9)0.0033 (8)0.0021 (8)
C10.0195 (13)0.0138 (13)0.0145 (12)0.0040 (11)0.0057 (10)0.0019 (11)
C20.0164 (12)0.0218 (12)0.0198 (12)0.0034 (10)0.0022 (9)0.0064 (10)
C30.0198 (12)0.0158 (12)0.0269 (13)0.0013 (10)0.0118 (10)0.0048 (10)
C40.0260 (13)0.0152 (12)0.0193 (13)0.0042 (10)0.0097 (11)0.0039 (10)
C50.0223 (13)0.0227 (12)0.0160 (12)0.0044 (10)0.0001 (10)0.0065 (10)
C60.0164 (11)0.0169 (11)0.0214 (12)0.0007 (10)0.0071 (9)0.0051 (10)
C70.0473 (17)0.0282 (15)0.0243 (14)0.0008 (13)0.0142 (13)0.0059 (12)
C80.0131 (12)0.0159 (13)0.0130 (12)0.0035 (10)0.0042 (10)0.0011 (10)
C90.0175 (12)0.0193 (12)0.0166 (11)0.0014 (10)0.0047 (9)0.0067 (9)
C100.0181 (12)0.0131 (11)0.0243 (12)0.0006 (9)0.0084 (10)0.0028 (10)
C110.0185 (12)0.0208 (13)0.0174 (12)0.0078 (11)0.0059 (10)0.0005 (10)
C120.0217 (12)0.0230 (13)0.0149 (11)0.0057 (10)0.0029 (9)0.0074 (10)
C130.0190 (12)0.0132 (11)0.0245 (12)0.0019 (9)0.0050 (10)0.0050 (10)
C140.0360 (16)0.0311 (15)0.0209 (13)0.0043 (12)0.0088 (12)0.0006 (12)
Geometric parameters (Å, º) top
P1—O11.5563 (18)C3—H30.96
P1—O21.5066 (13)C4—C51.389 (3)
P1—O31.5082 (14)C4—C71.504 (3)
P1—H1p1.35 (2)C5—C61.397 (3)
P2—O41.5570 (19)C5—H50.96
P2—O51.5033 (13)C6—H60.96
P2—O61.5111 (14)C7—H7a0.96
P2—H2p1.33 (2)C7—H7b0.96
O1—H1o0.82 (2)C7—H7c0.96
O4—H4o0.817 (17)C8—C91.382 (3)
N1—C11.467 (3)C8—C131.387 (3)
N1—H1a0.87C9—C101.384 (3)
N1—H1b0.87C9—H90.96
N1—H1c0.87C10—C111.393 (3)
N2—C81.461 (3)C10—H100.96
N2—H2a0.87C11—C121.394 (3)
N2—H2b0.87C11—C141.500 (3)
N2—H2c0.87C12—C131.388 (3)
C1—C21.377 (3)C12—H120.96
C1—C61.377 (3)C13—H130.96
C2—C31.387 (3)C14—H14a0.96
C2—H20.96C14—H14b0.96
C3—C41.390 (3)C14—H14c0.96
O1—P1—O2112.94 (9)C5—C4—C7120.72 (19)
O1—P1—O3109.03 (9)C4—C5—C6121.28 (19)
O1—P1—H1p105.0 (8)C4—C5—H5119.3623
O2—P1—O3114.33 (8)C6—C5—H5119.3618
O2—P1—H1p109.7 (7)C1—C6—C5118.73 (19)
O3—P1—H1p105.2 (8)C1—C6—H6120.6345
O4—P2—O5113.03 (9)C5—C6—H6120.6348
O4—P2—O6107.47 (9)C4—C7—H7a109.4716
O4—P2—H2p106.5 (8)C4—C7—H7b109.4709
O5—P2—O6114.87 (8)C4—C7—H7c109.4717
O5—P2—H2p109.9 (7)H7a—C7—H7b109.4704
O6—P2—H2p104.4 (8)H7a—C7—H7c109.4711
P1—O1—H1o115.9 (15)H7b—C7—H7c109.4716
P2—O4—H4o114.8 (16)N2—C8—C9119.6 (2)
C1—N1—H1a109.4712N2—C8—C13119.48 (18)
C1—N1—H1b109.4716C9—C8—C13120.91 (19)
C1—N1—H1c109.4717C8—C9—C10119.0 (2)
H1a—N1—H1b109.4701C8—C9—H9120.5149
H1a—N1—H1c109.4712C10—C9—H9120.5151
H1b—N1—H1c109.4716C9—C10—C11121.74 (19)
C8—N2—H2a109.471C9—C10—H10119.1322
C8—N2—H2b109.4707C11—C10—H10119.1326
C8—N2—H2c109.4708C10—C11—C12118.00 (19)
H2a—N2—H2b109.4716C10—C11—C14120.8 (2)
H2a—N2—H2c109.4717C12—C11—C14121.2 (2)
H2b—N2—H2c109.4715C11—C12—C13121.1 (2)
N1—C1—C2118.50 (17)C11—C12—H12119.4449
N1—C1—C6120.20 (18)C13—C12—H12119.4445
C2—C1—C6121.24 (19)C8—C13—C12119.27 (19)
C1—C2—C3119.45 (19)C8—C13—H13120.366
C1—C2—H2120.2763C12—C13—H13120.3658
C3—C2—H2120.2765C11—C14—H14a109.4716
C2—C3—C4121.0 (2)C11—C14—H14b109.4705
C2—C3—H3119.5091C11—C14—H14c109.471
C4—C3—H3119.5082H14a—C14—H14b109.4714
C3—C4—C5118.3 (2)H14a—C14—H14c109.4717
C3—C4—C7121.0 (2)H14b—C14—H14c109.4711
N1—C1—C2—C3175.68 (18)N2—C8—C9—C10179.07 (18)
C6—C1—C2—C31.6 (3)C13—C8—C9—C100.2 (3)
N1—C1—C6—C5175.96 (18)N2—C8—C13—C12179.06 (18)
C2—C1—C6—C51.3 (3)C9—C8—C13—C120.2 (3)
C1—C2—C3—C40.7 (3)C8—C9—C10—C110.2 (3)
C2—C3—C4—C50.6 (4)C9—C10—C11—C120.5 (3)
C2—C3—C4—C7178.0 (2)C9—C10—C11—C14179.1 (2)
C3—C4—C5—C60.9 (4)C10—C11—C12—C130.5 (3)
C7—C4—C5—C6177.7 (2)C14—C11—C12—C13179.1 (2)
C4—C5—C6—C10.0 (3)C11—C12—C13—C80.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1a···O60.871.902.760 (2)167
N1—H1b···O2i0.872.002.850 (2)165
N1—H1c···O5ii0.871.932.784 (2)169
O1—H1o···O60.82 (2)1.703 (19)2.523 (2)173 (3)
N2—H2a···O5i0.872.032.875 (2)165
N2—H2b···O2i0.871.872.729 (2)168
N2—H2c···O30.871.912.773 (2)173
O4—H4o···O3iii0.818 (18)1.704 (17)2.516 (2)171 (2)
C3—H3···Cg2iii0.962.873.502 (2)125
C6—H6···Cg20.962.973.589 (2)123
C10—H10···Cg1iv0.962.933.655 (2)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC7H10N+·H2PO3
Mr189.15
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.3053 (7), 9.4087 (7), 11.3432 (8)
α, β, γ (°)70.253 (7), 76.304 (6), 82.771 (6)
V3)906.99 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.54 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction XCalibur 2 with area-detector Sapphire 2
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.885, 0.973
No. of measured, independent and
observed [I > 3σ(I)] reflections
11211, 3787, 1948
Rint0.036
(sin θ/λ)max1)0.630
Refinement
R[F > 3σ(F)], wR(F), S 0.031, 0.085, 0.94
No. of reflections3787
No. of parameters229
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2008), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2010), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1a···O60.871.902.760 (2)167
N1—H1b···O2i0.872.002.850 (2)165
N1—H1c···O5ii0.871.932.784 (2)169
O1—H1o···O60.82 (2)1.703 (19)2.523 (2)173 (3)
N2—H2a···O5i0.872.032.875 (2)165
N2—H2b···O2i0.871.872.729 (2)168
N2—H2c···O30.871.912.773 (2)173
O4—H4o···O3iii0.818 (18)1.704 (17)2.516 (2)171 (2)
C3—H3···Cg2iii0.962.873.502 (2)125
C6—H6···Cg20.962.973.589 (2)123
C10—H10···Cg1iv0.962.933.655 (2)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+2.
 

Acknowledgements

The authors acknowledge the institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Sciences (ASCR).

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2010). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationSabounchei, S. J. & Naghipour, A. (2003). Asian J. Chem. 15, 1677–1686.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds