organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(di­phenyl­methyl­ene­amino)phen­yl]methanone

aDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico, bLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, AP 1067, 72001 Puebla, Pue., Mexico, and cDepartamento de Ingeniería Química, Universidad Politécnica de Tlaxcala, Calle 21, no. 611, Col. La Loma Xicohténcatl, Tlaxcala, Tlax., Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 23 April 2010; accepted 4 May 2010; online 12 May 2010)

The title mol­ecule, C39H28N2O, is a well known dendron used in the synthesis of phenyl­azomethine dendrimers. The central benzophenone core is twisted, as expected, due to hindrance between H atoms: the dihedral angle between core benzene rings is 54.49 (5)°, identical to that of the stable polymorph of benzophenone (56°). For the same reason, phenyl groups substituting imine C atoms make a large dihedral angle, although similar for each imine: 71.83 (6) and 67.64 (5)°. The six aromatic rings in the mol­ecule thus seem to be quite randomly oriented, and such an arrangement is not favorable for efficient stacking inter­actions in the crystal. The same behaviour is observed in the vast majority of diphenyl­imino-containing organics. The low triclinic crystal symmetry may be a consequence of these features.

Related literature

For the use of the title mol­ecule in the synthesis of dendritic systems, see: Higuchi et al. (2001[Higuchi, M., Shiki, S., Ariga, K. & Yamamoto, K. (2001). J. Am. Chem. Soc. 123, 4414-4420.]); Takanashi et al. (2004[Takanashi, K., Chiba, H., Higuchi, M. & Yamamoto, K. (2004). Org. Lett. 6, 1709-1712.]); Yamamoto & Higuchi (2004[Yamamoto, K. & Higuchi, M. (2004). Pure Appl. Chem. 76, 1399-1408.]). For the structure of benzophenone, see: Fleischer et al. (1968[Fleischer, E. B., Sung, N. & Hawkinson, S. (1968). J. Phys. Chem. 72, 4311-4312.]); Kutzke et al. (2000[Kutzke, H., Klapper, H., Hammond, R. B. & Roberts, K. J. (2000). Acta Cryst. B56, 486-496.]). For related structures including the diphenyl­imino fragment, see: Appel et al. (1985[Appel, R., Knoch, F. & Zimmermann, R. (1985). Chem. Ber. 118, 814-824.]); Buhmann et al. (1993[Buhmann, M., Würthwein, E.-U. & Möller, M. H. (1993). Chem. Ber. 126, 957-967.]). For geometrical analysis using the Cambridge Structural Database, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • C39H28N2O

  • Mr = 540.63

  • Triclinic, [P \overline 1]

  • a = 11.1723 (10) Å

  • b = 11.3487 (13) Å

  • c = 13.2331 (15) Å

  • α = 103.121 (9)°

  • β = 105.170 (8)°

  • γ = 108.746 (8)°

  • V = 1441.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.55 × 0.28 × 0.24 mm

Data collection
  • Bruker P4 diffractometer

  • 6892 measured reflections

  • 5865 independent reflections

  • 4471 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.03

  • 5865 reflections

  • 380 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 .

Supporting information


Comment top

The title benzophenone derivative has been widely employed as a dendron in the synthesis of phenylazomethine dendrimers (DPAs), mostly in the group of Yamamoto at the Keio University (Higuchi et al., 2001; Takanashi et al., 2004; Yamamoto & Higuchi, 2004). This group and others reported on the preparation of a vast array of supramolecular entities with interesting properties. We became interested in preparing this dendron by using microwave heating, given that it is becoming an important method in laboratories worldwide: it is an environment-friendly technique for the efficient syntheses of organic molecules. The main advantages of microwave-assisted organic synthesis are shorter reaction times, minimum waste and generally higher yields, operational simplicity as well as reduction of thermal degradative byproducts along with cleaner work-up. As expected, better yields were obtained and we realized that, surprisingly, the crystal structure had not been reported so far.

The molecule (Fig. 1) crystallizes in the low symmetry space group P1. The imine bond lengths, 1.2813 (18) and 1.2784 (19) Å, are as expected, however, N atoms significantly deviate from trigonality. Large CN—C angles are observed, 127.61 (12) and 123.09 (13)°, probably because of the steric repulsion between the central benzophenone benzene rings and the diphenylmethylene groups. The central benzophenone displays a twisted conformation, the dihedral angle between benzene rings being 54.49 (5)°. This value is indeed close to that reported for benzophenone, 56° (orthorhombic phase, Fleischer et al., 1968) or 64° (metastable monoclinic phase, Kutzke et al., 2000). This conformation avoids any intramolecular H···H contacts. In the same way, diphenyl groups bonded to imine C atoms are twisted, by 71.83 (6)° (diphenyl group at C9) and 67.64 (5)° (diphenyl group at C29). These angles are common for diphenylimino-containing organics (range of angles retrieved from the CSD : 57 to 90°; CSD, version 5.31 with all updates; Bruno et al., 2002).

As a whole, the six rings in the molecule seem to be randomly oriented. This chaotic arrangement is consistent with the low crystal symmetry, and does not favor π···π or C—H···π interactions in the crystal structure. For example, the shortest intermolecular separation between centroids of two rings is 4.45 Å. The calculated packing index is indeed low for this polyphenyl molecule, 0.672. A search in the CSD for organic molecules containing the Ph2CN fragment shows that more densely packed crystals in this class of compounds are scarce. For 151 hits, only two structures present symmetry-related diphenylimino groups with phenyl rings separated by less than 3.9 Å (Appel et al., 1985; Buhmann et al., 1993).

Related literature top

For the use of the title molecule in the synthesis of dendritic systems, see: Higuchi et al. (2001); Takanashi et al. (2004); Yamamoto & Higuchi (2004). For the structure of benzophenone, see: Fleischer et al. (1968); Kutzke et al. (2000). For related structures including the diphenylimino fragment, see: Appel et al. (1985); Buhmann et al. (1993). For geometrical analysis using the Cambridge Structural Database, see: Bruno et al. (2002).

Experimental top

A modified procedure for improved synthesis of the title compound was used. The Higuchi's route (Higuchi et al., 2001; see compound 'dendron G2' in this paper) consists of the condensation between benzophenone and 4,4'-diaminobenzophenone in presence of DABCO (1,4-diazabicyclo[2.2.2]octane) and TiCl4, in chlorobenzene. In the original synthesis, the mixture was heated at 398 K for 24 h to afford dendron G2 in 48% yield. In place of thermal activation, we performed a microwave-assisted synthesis in a monomode MIC-1 oven (Tekno-lab, S.A.) with maximum power output of 600 W. Irradiation was applied for 20 min., affording the title compound with an enhanced yield of 65% after silica gel column chromatography (ethyl acetate:hexane = 1:5). Single crystals were obtained by slow evaporation of the eluate at 298 K.

Refinement top

All H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 Å. Isotropic displacement parameters were calculated as Uiso(H) = 1.2Ueq(carrier C atom).

Structure description top

The title benzophenone derivative has been widely employed as a dendron in the synthesis of phenylazomethine dendrimers (DPAs), mostly in the group of Yamamoto at the Keio University (Higuchi et al., 2001; Takanashi et al., 2004; Yamamoto & Higuchi, 2004). This group and others reported on the preparation of a vast array of supramolecular entities with interesting properties. We became interested in preparing this dendron by using microwave heating, given that it is becoming an important method in laboratories worldwide: it is an environment-friendly technique for the efficient syntheses of organic molecules. The main advantages of microwave-assisted organic synthesis are shorter reaction times, minimum waste and generally higher yields, operational simplicity as well as reduction of thermal degradative byproducts along with cleaner work-up. As expected, better yields were obtained and we realized that, surprisingly, the crystal structure had not been reported so far.

The molecule (Fig. 1) crystallizes in the low symmetry space group P1. The imine bond lengths, 1.2813 (18) and 1.2784 (19) Å, are as expected, however, N atoms significantly deviate from trigonality. Large CN—C angles are observed, 127.61 (12) and 123.09 (13)°, probably because of the steric repulsion between the central benzophenone benzene rings and the diphenylmethylene groups. The central benzophenone displays a twisted conformation, the dihedral angle between benzene rings being 54.49 (5)°. This value is indeed close to that reported for benzophenone, 56° (orthorhombic phase, Fleischer et al., 1968) or 64° (metastable monoclinic phase, Kutzke et al., 2000). This conformation avoids any intramolecular H···H contacts. In the same way, diphenyl groups bonded to imine C atoms are twisted, by 71.83 (6)° (diphenyl group at C9) and 67.64 (5)° (diphenyl group at C29). These angles are common for diphenylimino-containing organics (range of angles retrieved from the CSD : 57 to 90°; CSD, version 5.31 with all updates; Bruno et al., 2002).

As a whole, the six rings in the molecule seem to be randomly oriented. This chaotic arrangement is consistent with the low crystal symmetry, and does not favor π···π or C—H···π interactions in the crystal structure. For example, the shortest intermolecular separation between centroids of two rings is 4.45 Å. The calculated packing index is indeed low for this polyphenyl molecule, 0.672. A search in the CSD for organic molecules containing the Ph2CN fragment shows that more densely packed crystals in this class of compounds are scarce. For 151 hits, only two structures present symmetry-related diphenylimino groups with phenyl rings separated by less than 3.9 Å (Appel et al., 1985; Buhmann et al., 1993).

For the use of the title molecule in the synthesis of dendritic systems, see: Higuchi et al. (2001); Takanashi et al. (2004); Yamamoto & Higuchi (2004). For the structure of benzophenone, see: Fleischer et al. (1968); Kutzke et al. (2000). For related structures including the diphenylimino fragment, see: Appel et al. (1985); Buhmann et al. (1993). For geometrical analysis using the Cambridge Structural Database, see: Bruno et al. (2002).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with 50% probability level displacement ellipsoids for non-H atoms.
Bis[4-(diphenylmethyleneamino)phenyl]methanone top
Crystal data top
C39H28N2OZ = 2
Mr = 540.63F(000) = 568
Triclinic, P1Dx = 1.245 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1723 (10) ÅCell parameters from 82 reflections
b = 11.3487 (13) Åθ = 4.6–12.5°
c = 13.2331 (15) ŵ = 0.08 mm1
α = 103.121 (9)°T = 296 K
β = 105.170 (8)°Prism, yellow
γ = 108.746 (8)°0.55 × 0.28 × 0.24 mm
V = 1441.9 (3) Å3
Data collection top
Bruker P4
diffractometer
Rint = 0.018
Radiation source: fine-focus sealed tubeθmax = 26.4°, θmin = 2.0°
Graphite monochromatorh = 132
2θ/ω scansk = 1313
6892 measured reflectionsl = 1616
5865 independent reflections3 standard reflections every 97 reflections
4471 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.275P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5865 reflectionsΔρmax = 0.19 e Å3
380 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0198 (18)
Primary atom site location: structure-invariant direct methods
Crystal data top
C39H28N2Oγ = 108.746 (8)°
Mr = 540.63V = 1441.9 (3) Å3
Triclinic, P1Z = 2
a = 11.1723 (10) ÅMo Kα radiation
b = 11.3487 (13) ŵ = 0.08 mm1
c = 13.2331 (15) ÅT = 296 K
α = 103.121 (9)°0.55 × 0.28 × 0.24 mm
β = 105.170 (8)°
Data collection top
Bruker P4
diffractometer
Rint = 0.018
6892 measured reflections3 standard reflections every 97 reflections
5865 independent reflections intensity decay: 1%
4471 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
5865 reflectionsΔρmin = 0.14 e Å3
380 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81457 (15)0.23158 (15)0.66331 (12)0.0425 (3)
O10.92972 (12)0.26828 (14)0.66240 (11)0.0658 (4)
C20.70743 (14)0.24601 (14)0.57791 (12)0.0383 (3)
C30.72166 (15)0.24315 (15)0.47594 (12)0.0425 (3)
H3A0.79020.22240.45990.051*
C40.63532 (15)0.27069 (15)0.39873 (12)0.0407 (3)
H4A0.64590.26730.33090.049*
C50.53212 (14)0.30355 (13)0.42020 (11)0.0373 (3)
C60.51690 (15)0.30587 (15)0.52197 (12)0.0424 (3)
H6A0.44860.32700.53810.051*
C70.60322 (15)0.27683 (15)0.59917 (12)0.0416 (3)
H7A0.59140.27790.66630.050*
N80.46589 (12)0.34758 (12)0.33981 (10)0.0419 (3)
C90.34487 (14)0.34189 (13)0.31471 (11)0.0374 (3)
C100.30371 (14)0.40362 (14)0.23057 (12)0.0395 (3)
C110.39664 (17)0.46820 (17)0.18792 (13)0.0505 (4)
H11A0.48340.46960.20980.061*
C120.3613 (2)0.5302 (2)0.11344 (15)0.0614 (5)
H12A0.42450.57320.08580.074*
C130.23276 (19)0.52870 (18)0.07989 (14)0.0585 (4)
H13A0.20940.57120.03040.070*
C140.14043 (18)0.46438 (19)0.11986 (15)0.0614 (5)
H14A0.05340.46220.09680.074*
C150.17516 (16)0.40203 (17)0.19474 (14)0.0536 (4)
H15A0.11090.35850.22120.064*
C160.24182 (14)0.27839 (14)0.36114 (11)0.0372 (3)
C170.20701 (16)0.35573 (16)0.43619 (13)0.0473 (4)
H17A0.24580.44740.45640.057*
C180.11442 (17)0.29636 (18)0.48108 (13)0.0529 (4)
H18A0.09250.34850.53210.064*
C190.05504 (17)0.16072 (18)0.45026 (14)0.0547 (4)
H19A0.00650.12140.48080.066*
C200.08672 (18)0.08337 (17)0.37436 (16)0.0575 (4)
H20A0.04540.00830.35270.069*
C210.18011 (16)0.14185 (15)0.33012 (14)0.0477 (4)
H21A0.20150.08900.27920.057*
C220.78337 (15)0.17280 (14)0.74811 (12)0.0404 (3)
C230.89013 (16)0.20074 (16)0.84510 (13)0.0475 (4)
H23A0.97650.26090.85780.057*
C240.87042 (17)0.14101 (16)0.92269 (13)0.0513 (4)
H24A0.94280.16210.98750.062*
C250.74229 (16)0.04910 (14)0.90414 (12)0.0436 (3)
C260.63567 (16)0.02012 (16)0.80788 (13)0.0465 (4)
H26A0.55000.04200.79440.056*
C270.65529 (16)0.08267 (15)0.73147 (12)0.0448 (3)
H27A0.58200.06420.66830.054*
N280.72437 (15)0.02708 (13)0.97419 (11)0.0495 (3)
C290.73136 (14)0.02098 (14)1.07383 (12)0.0391 (3)
C300.72464 (14)0.06736 (14)1.14219 (12)0.0409 (3)
C310.7430 (2)0.18335 (17)1.10693 (15)0.0584 (4)
H31A0.75760.20601.04050.070*
C320.7397 (2)0.2648 (2)1.17030 (18)0.0717 (6)
H32A0.75270.34191.14650.086*
C330.7174 (2)0.23299 (19)1.26838 (16)0.0657 (5)
H33A0.71560.28831.31070.079*
C340.69800 (19)0.11972 (19)1.30364 (15)0.0598 (5)
H34A0.68230.09851.36970.072*
C350.70164 (16)0.03645 (16)1.24098 (13)0.0487 (4)
H35A0.68860.04041.26540.058*
C360.74461 (14)0.15897 (14)1.12429 (12)0.0386 (3)
C370.85587 (15)0.24739 (15)1.21870 (13)0.0452 (3)
H37A0.91950.21891.25340.054*
C380.8732 (2)0.37737 (17)1.26174 (15)0.0577 (4)
H38A0.94990.43671.32320.069*
C390.7766 (2)0.41837 (19)1.21333 (17)0.0657 (5)
H39A0.78790.50561.24230.079*
C400.6634 (2)0.3310 (2)1.12217 (16)0.0655 (5)
H40A0.59730.35881.09110.079*
C410.64726 (18)0.20148 (18)1.07617 (14)0.0513 (4)
H41A0.57160.14341.01340.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0422 (8)0.0497 (9)0.0425 (8)0.0226 (7)0.0182 (6)0.0192 (7)
O10.0458 (7)0.1042 (10)0.0667 (8)0.0347 (7)0.0264 (6)0.0504 (8)
C20.0402 (7)0.0395 (7)0.0392 (7)0.0174 (6)0.0164 (6)0.0164 (6)
C30.0430 (8)0.0527 (9)0.0414 (8)0.0253 (7)0.0209 (7)0.0179 (7)
C40.0414 (8)0.0510 (8)0.0347 (7)0.0192 (7)0.0181 (6)0.0177 (6)
C50.0350 (7)0.0376 (7)0.0397 (7)0.0130 (6)0.0138 (6)0.0161 (6)
C60.0424 (8)0.0517 (8)0.0437 (8)0.0243 (7)0.0220 (7)0.0200 (7)
C70.0468 (8)0.0499 (8)0.0364 (7)0.0229 (7)0.0201 (6)0.0186 (6)
N80.0394 (7)0.0496 (7)0.0434 (7)0.0193 (6)0.0172 (5)0.0232 (6)
C90.0381 (7)0.0367 (7)0.0374 (7)0.0149 (6)0.0144 (6)0.0123 (6)
C100.0392 (8)0.0399 (8)0.0383 (7)0.0154 (6)0.0130 (6)0.0137 (6)
C110.0499 (9)0.0678 (11)0.0520 (9)0.0316 (8)0.0268 (8)0.0320 (8)
C120.0657 (11)0.0802 (13)0.0621 (11)0.0352 (10)0.0355 (9)0.0438 (10)
C130.0653 (11)0.0697 (11)0.0510 (9)0.0329 (9)0.0185 (8)0.0343 (9)
C140.0475 (9)0.0747 (12)0.0651 (11)0.0275 (9)0.0112 (8)0.0360 (10)
C150.0381 (8)0.0637 (10)0.0615 (10)0.0174 (8)0.0157 (7)0.0329 (9)
C160.0337 (7)0.0412 (7)0.0382 (7)0.0161 (6)0.0121 (6)0.0160 (6)
C170.0423 (8)0.0450 (8)0.0481 (8)0.0151 (7)0.0154 (7)0.0089 (7)
C180.0487 (9)0.0704 (11)0.0422 (8)0.0269 (8)0.0210 (7)0.0142 (8)
C190.0466 (9)0.0738 (12)0.0572 (10)0.0240 (8)0.0268 (8)0.0376 (9)
C200.0563 (10)0.0488 (9)0.0772 (12)0.0199 (8)0.0311 (9)0.0328 (9)
C210.0514 (9)0.0426 (8)0.0591 (9)0.0223 (7)0.0282 (8)0.0205 (7)
C220.0453 (8)0.0446 (8)0.0380 (7)0.0234 (7)0.0167 (6)0.0168 (6)
C230.0447 (8)0.0502 (9)0.0439 (8)0.0159 (7)0.0120 (7)0.0189 (7)
C240.0524 (9)0.0550 (9)0.0376 (8)0.0181 (8)0.0059 (7)0.0176 (7)
C250.0571 (9)0.0407 (8)0.0372 (7)0.0219 (7)0.0195 (7)0.0147 (6)
C260.0461 (8)0.0487 (9)0.0441 (8)0.0167 (7)0.0170 (7)0.0176 (7)
C270.0437 (8)0.0519 (9)0.0389 (7)0.0208 (7)0.0119 (6)0.0173 (7)
N280.0639 (9)0.0438 (7)0.0414 (7)0.0212 (6)0.0180 (6)0.0181 (6)
C290.0350 (7)0.0417 (8)0.0405 (8)0.0147 (6)0.0114 (6)0.0180 (6)
C300.0374 (7)0.0428 (8)0.0423 (8)0.0152 (6)0.0111 (6)0.0194 (6)
C310.0796 (12)0.0550 (10)0.0570 (10)0.0361 (9)0.0311 (9)0.0284 (8)
C320.0982 (16)0.0598 (11)0.0783 (13)0.0440 (11)0.0347 (12)0.0407 (10)
C330.0734 (12)0.0606 (11)0.0667 (12)0.0231 (10)0.0186 (10)0.0418 (10)
C340.0614 (11)0.0696 (12)0.0512 (9)0.0185 (9)0.0243 (8)0.0328 (9)
C350.0497 (9)0.0516 (9)0.0509 (9)0.0203 (7)0.0217 (7)0.0246 (7)
C360.0397 (7)0.0448 (8)0.0427 (7)0.0204 (6)0.0213 (6)0.0230 (6)
C370.0415 (8)0.0470 (8)0.0523 (9)0.0195 (7)0.0203 (7)0.0201 (7)
C380.0665 (11)0.0458 (9)0.0624 (10)0.0193 (8)0.0317 (9)0.0165 (8)
C390.1079 (16)0.0549 (10)0.0672 (12)0.0482 (11)0.0528 (12)0.0327 (9)
C400.0996 (15)0.0870 (14)0.0656 (12)0.0726 (13)0.0506 (12)0.0506 (11)
C410.0556 (10)0.0696 (11)0.0486 (9)0.0373 (9)0.0239 (8)0.0322 (8)
Geometric parameters (Å, º) top
C1—O11.2225 (18)C21—H21A0.9300
C1—C221.490 (2)C22—C271.391 (2)
C1—C21.496 (2)C22—C231.393 (2)
C2—C71.395 (2)C23—C241.379 (2)
C2—C31.394 (2)C23—H23A0.9300
C3—C41.377 (2)C24—C251.392 (2)
C3—H3A0.9300C24—H24A0.9300
C4—C51.396 (2)C25—C261.383 (2)
C4—H4A0.9300C25—N281.4130 (19)
C5—C61.3964 (19)C26—C271.384 (2)
C5—N81.4127 (18)C26—H26A0.9300
C6—C71.387 (2)C27—H27A0.9300
C6—H6A0.9300N28—C291.2784 (19)
C7—H7A0.9300C29—C301.4926 (19)
N8—C91.2813 (18)C29—C361.498 (2)
C9—C101.4950 (19)C30—C351.387 (2)
C9—C161.5033 (19)C30—C311.392 (2)
C10—C151.382 (2)C31—C321.380 (2)
C10—C111.393 (2)C31—H31A0.9300
C11—C121.383 (2)C32—C331.375 (3)
C11—H11A0.9300C32—H32A0.9300
C12—C131.381 (3)C33—C341.370 (3)
C12—H12A0.9300C33—H33A0.9300
C13—C141.361 (2)C34—C351.390 (2)
C13—H13A0.9300C34—H34A0.9300
C14—C151.388 (2)C35—H35A0.9300
C14—H14A0.9300C36—C371.389 (2)
C15—H15A0.9300C36—C411.391 (2)
C16—C211.386 (2)C37—C381.384 (2)
C16—C171.391 (2)C37—H37A0.9300
C17—C181.390 (2)C38—C391.373 (3)
C17—H17A0.9300C38—H38A0.9300
C18—C191.376 (2)C39—C401.375 (3)
C18—H18A0.9300C39—H39A0.9300
C19—C201.375 (2)C40—C411.389 (3)
C19—H19A0.9300C40—H40A0.9300
C20—C211.387 (2)C41—H41A0.9300
C20—H20A0.9300
O1—C1—C22119.75 (13)C20—C21—H21A119.7
O1—C1—C2118.82 (13)C27—C22—C23118.10 (13)
C22—C1—C2121.43 (13)C27—C22—C1123.37 (13)
C7—C2—C3118.23 (13)C23—C22—C1118.30 (14)
C7—C2—C1123.51 (13)C24—C23—C22121.35 (15)
C3—C2—C1117.86 (13)C24—C23—H23A119.3
C4—C3—C2120.68 (13)C22—C23—H23A119.3
C4—C3—H3A119.7C23—C24—C25120.03 (14)
C2—C3—H3A119.7C23—C24—H24A120.0
C3—C4—C5121.35 (13)C25—C24—H24A120.0
C3—C4—H4A119.3C26—C25—C24119.11 (14)
C5—C4—H4A119.3C26—C25—N28119.71 (14)
C4—C5—C6118.22 (13)C24—C25—N28120.61 (14)
C4—C5—N8114.03 (12)C25—C26—C27120.64 (15)
C6—C5—N8127.22 (13)C25—C26—H26A119.7
C7—C6—C5120.31 (13)C27—C26—H26A119.7
C7—C6—H6A119.8C26—C27—C22120.73 (14)
C5—C6—H6A119.8C26—C27—H27A119.6
C6—C7—C2121.20 (13)C22—C27—H27A119.6
C6—C7—H7A119.4C29—N28—C25123.09 (13)
C2—C7—H7A119.4N28—C29—C30117.26 (13)
C9—N8—C5127.61 (12)N28—C29—C36123.77 (13)
N8—C9—C10116.13 (13)C30—C29—C36118.97 (12)
N8—C9—C16126.07 (13)C35—C30—C31118.81 (14)
C10—C9—C16117.80 (12)C35—C30—C29121.70 (14)
C15—C10—C11117.84 (14)C31—C30—C29119.49 (14)
C15—C10—C9121.89 (13)C32—C31—C30120.19 (17)
C11—C10—C9120.25 (13)C32—C31—H31A119.9
C12—C11—C10120.72 (15)C30—C31—H31A119.9
C12—C11—H11A119.6C33—C32—C31120.56 (18)
C10—C11—H11A119.6C33—C32—H32A119.7
C13—C12—C11120.39 (16)C31—C32—H32A119.7
C13—C12—H12A119.8C34—C33—C32119.89 (16)
C11—C12—H12A119.8C34—C33—H33A120.1
C14—C13—C12119.44 (15)C32—C33—H33A120.1
C14—C13—H13A120.3C33—C34—C35120.21 (17)
C12—C13—H13A120.3C33—C34—H34A119.9
C13—C14—C15120.52 (16)C35—C34—H34A119.9
C13—C14—H14A119.7C30—C35—C34120.34 (16)
C15—C14—H14A119.7C30—C35—H35A119.8
C10—C15—C14121.07 (15)C34—C35—H35A119.8
C10—C15—H15A119.5C37—C36—C41118.92 (14)
C14—C15—H15A119.5C37—C36—C29120.45 (13)
C21—C16—C17118.85 (14)C41—C36—C29120.62 (14)
C21—C16—C9120.62 (13)C38—C37—C36120.79 (15)
C17—C16—C9120.53 (13)C38—C37—H37A119.6
C16—C17—C18120.17 (15)C36—C37—H37A119.6
C16—C17—H17A119.9C39—C38—C37119.74 (18)
C18—C17—H17A119.9C39—C38—H38A120.1
C19—C18—C17120.25 (15)C37—C38—H38A120.1
C19—C18—H18A119.9C38—C39—C40120.28 (17)
C17—C18—H18A119.9C38—C39—H39A119.9
C20—C19—C18119.98 (15)C40—C39—H39A119.9
C20—C19—H19A120.0C39—C40—C41120.41 (17)
C18—C19—H19A120.0C39—C40—H40A119.8
C19—C20—C21120.12 (16)C41—C40—H40A119.8
C19—C20—H20A119.9C40—C41—C36119.79 (17)
C21—C20—H20A119.9C40—C41—H41A120.1
C16—C21—C20120.60 (15)C36—C41—H41A120.1
C16—C21—H21A119.7
O1—C1—C2—C7144.52 (16)O1—C1—C22—C27152.96 (16)
C22—C1—C2—C736.0 (2)C2—C1—C22—C2726.6 (2)
O1—C1—C2—C328.0 (2)O1—C1—C22—C2321.4 (2)
C22—C1—C2—C3151.51 (14)C2—C1—C22—C23159.09 (14)
C7—C2—C3—C40.3 (2)C27—C22—C23—C240.2 (2)
C1—C2—C3—C4172.64 (14)C1—C22—C23—C24174.49 (14)
C2—C3—C4—C50.7 (2)C22—C23—C24—C251.0 (3)
C3—C4—C5—C61.0 (2)C23—C24—C25—C260.7 (2)
C3—C4—C5—N8171.19 (13)C23—C24—C25—N28170.63 (14)
C4—C5—C6—C70.4 (2)C24—C25—C26—C270.8 (2)
N8—C5—C6—C7170.67 (14)N28—C25—C26—C27172.23 (14)
C5—C6—C7—C20.6 (2)C25—C26—C27—C222.0 (2)
C3—C2—C7—C60.9 (2)C23—C22—C27—C261.7 (2)
C1—C2—C7—C6171.58 (14)C1—C22—C27—C26172.67 (14)
C4—C5—N8—C9154.35 (15)C26—C25—N28—C29115.96 (18)
C6—C5—N8—C934.3 (2)C24—C25—N28—C2972.8 (2)
C5—N8—C9—C10176.47 (13)C25—N28—C29—C30173.82 (14)
C5—N8—C9—C164.1 (2)C25—N28—C29—C366.7 (2)
N8—C9—C10—C15178.78 (15)N28—C29—C30—C35165.71 (15)
C16—C9—C10—C150.7 (2)C36—C29—C30—C3513.8 (2)
N8—C9—C10—C113.0 (2)N28—C29—C30—C3114.9 (2)
C16—C9—C10—C11177.57 (14)C36—C29—C30—C31165.62 (15)
C15—C10—C11—C121.0 (2)C35—C30—C31—C320.7 (3)
C9—C10—C11—C12177.38 (15)C29—C30—C31—C32178.75 (17)
C10—C11—C12—C130.2 (3)C30—C31—C32—C330.4 (3)
C11—C12—C13—C140.7 (3)C31—C32—C33—C340.2 (3)
C12—C13—C14—C150.7 (3)C32—C33—C34—C350.4 (3)
C11—C10—C15—C140.9 (3)C31—C30—C35—C340.4 (2)
C9—C10—C15—C14177.43 (16)C29—C30—C35—C34179.01 (15)
C13—C14—C15—C100.0 (3)C33—C34—C35—C300.1 (3)
N8—C9—C16—C2172.1 (2)N28—C29—C36—C37120.14 (17)
C10—C9—C16—C21107.31 (16)C30—C29—C36—C3760.38 (18)
N8—C9—C16—C17107.75 (18)N28—C29—C36—C4158.6 (2)
C10—C9—C16—C1772.83 (18)C30—C29—C36—C41120.93 (15)
C21—C16—C17—C181.6 (2)C41—C36—C37—C382.8 (2)
C9—C16—C17—C18178.23 (14)C29—C36—C37—C38175.92 (14)
C16—C17—C18—C191.0 (2)C36—C37—C38—C392.6 (2)
C17—C18—C19—C200.3 (3)C37—C38—C39—C400.3 (3)
C18—C19—C20—C211.0 (3)C38—C39—C40—C411.8 (3)
C17—C16—C21—C200.9 (2)C39—C40—C41—C361.6 (3)
C9—C16—C21—C20178.93 (15)C37—C36—C41—C400.7 (2)
C19—C20—C21—C160.4 (3)C29—C36—C41—C40178.01 (14)

Experimental details

Crystal data
Chemical formulaC39H28N2O
Mr540.63
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.1723 (10), 11.3487 (13), 13.2331 (15)
α, β, γ (°)103.121 (9), 105.170 (8), 108.746 (8)
V3)1441.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.55 × 0.28 × 0.24
Data collection
DiffractometerBruker P4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6892, 5865, 4471
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.03
No. of reflections5865
No. of parameters380
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

 

Acknowledgements

Partial support from VIEP-UAP (GUPJ-NAT08-G) is acknowledged.

References

First citationAppel, R., Knoch, F. & Zimmermann, R. (1985). Chem. Ber. 118, 814–824.  CrossRef CAS Web of Science Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBuhmann, M., Würthwein, E.-U. & Möller, M. H. (1993). Chem. Ber. 126, 957–967.  CrossRef Web of Science Google Scholar
First citationFleischer, E. B., Sung, N. & Hawkinson, S. (1968). J. Phys. Chem. 72, 4311–4312.  CSD CrossRef CAS Web of Science Google Scholar
First citationHiguchi, M., Shiki, S., Ariga, K. & Yamamoto, K. (2001). J. Am. Chem. Soc. 123, 4414–4420.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKutzke, H., Klapper, H., Hammond, R. B. & Roberts, K. J. (2000). Acta Cryst. B56, 486–496.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTakanashi, K., Chiba, H., Higuchi, M. & Yamamoto, K. (2004). Org. Lett. 6, 1709–1712.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYamamoto, K. & Higuchi, M. (2004). Pure Appl. Chem. 76, 1399–1408.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds