organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl-6-(1H-pyrazol-1-yl)pyridazin-3-amine

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories complex, Lahore 54600, Pakistan, cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 25 April 2010; accepted 6 May 2010; online 12 May 2010)

The mol­ecule of title compound, C13H11N5, is essentially planar (r.m.s. deviation = 0.0440 Å) and an intra­molecular C—H⋯N hydrogen bond generates an S(6) motif. In the crystal, mol­ecules are connected into chains by inter­molecular N—H⋯N and C—H⋯N hydrogen bonds. In addition, ππ stacking inter­actions are observed between the pyrazole and pyridazine rings [inter­planar distance = 3.6859 (10) Å].

Related literature

For a related structure, see: Ather et al. (2009[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N5

  • Mr = 237.27

  • Orthorhombic, P b c a

  • a = 11.3533 (7) Å

  • b = 9.4214 (5) Å

  • c = 21.6603 (14) Å

  • V = 2316.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.988

  • 10085 measured reflections

  • 2754 independent reflections

  • 1571 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 0.99

  • 2754 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5i 0.86 2.22 3.071 (2) 173
C6—H6⋯N2 0.93 2.37 2.966 (3) 122
C8—H8⋯N3ii 0.93 2.60 3.265 (2) 129
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of our studies on pyrazolylpyridazine derivatives (Ather et al., 2009), the structure of title compound ( Fig. 1) is reported here.

The title compound contains pyrazole, pyridazine and benzene rings. The r. m. s. deviation of 0.044 Å shows that the molecule of title compound is essentially planar. There exist S(6) ring motif (Bernstein et al., 1995) due to C–H···N intramolecular H-bonding (Fig. 1). The molecules are stabilized in the form of infinite polymeric chains due to intermolecular H-bondings (Table 1) extending along the crystallographic b-axis (Fig. 2). The ππ interactions between the pyrazol and pyridazine ring are present at a distance of 3.6859 (10) Å.

Related literature top

For a related structure, see: Ather et al. (2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

3-Chloro-6-(1H-pyrazole-1-yl)pyridazine (1 g, 5.5 mmol) was dissolved in xylene (15 ml). Aniline (0.516 g, 5.5 mmol) was added to the solution and refluxed for 12 h. The reaction was monitored by TLC. After the completion, the reaction mixture was concentrated under vacuum. Distilled water (50 ml) was added to the resulting concentrated mixture, which give rise to precipitate. The filtered precipitate was dried and recrystallized from chloroform to obtain the title compound (I).

Structure description top

In continuation of our studies on pyrazolylpyridazine derivatives (Ather et al., 2009), the structure of title compound ( Fig. 1) is reported here.

The title compound contains pyrazole, pyridazine and benzene rings. The r. m. s. deviation of 0.044 Å shows that the molecule of title compound is essentially planar. There exist S(6) ring motif (Bernstein et al., 1995) due to C–H···N intramolecular H-bonding (Fig. 1). The molecules are stabilized in the form of infinite polymeric chains due to intermolecular H-bondings (Table 1) extending along the crystallographic b-axis (Fig. 2). The ππ interactions between the pyrazol and pyridazine ring are present at a distance of 3.6859 (10) Å.

For a related structure, see: Ather et al. (2009). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii. The dotted line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. Packing diagram of the title compound (PLATON: Spek, 2009) showing that infinite polymeric chains extend along the b-axis.
N-Phenyl-6-(1H-pyrazol-1-yl)pyridazin-3-amine top
Crystal data top
C13H11N5F(000) = 992
Mr = 237.27Dx = 1.360 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2920 reflections
a = 11.3533 (7) Åθ = 2.6–27.9°
b = 9.4214 (5) ŵ = 0.09 mm1
c = 21.6603 (14) ÅT = 296 K
V = 2316.9 (2) Å3Prismatic, pale brown
Z = 80.30 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2754 independent reflections
Radiation source: fine-focus sealed tube1571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 7.50 pixels mm-1θmax = 27.9°, θmin = 2.6°
ω scanh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 128
Tmin = 0.982, Tmax = 0.988l = 1728
10085 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.0495P]
where P = (Fo2 + 2Fc2)/3
2754 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C13H11N5V = 2316.9 (2) Å3
Mr = 237.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.3533 (7) ŵ = 0.09 mm1
b = 9.4214 (5) ÅT = 296 K
c = 21.6603 (14) Å0.30 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2754 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1571 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.045
10085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.99Δρmax = 0.13 e Å3
2754 reflectionsΔρmin = 0.15 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22072 (14)0.09114 (16)0.11333 (7)0.0450 (4)
C20.17051 (16)0.18861 (17)0.07303 (8)0.0588 (5)
H20.08920.20080.07290.071*
C30.23913 (19)0.2677 (2)0.03321 (9)0.0685 (5)
H30.20400.33270.00660.082*
C40.35859 (18)0.2505 (2)0.03286 (9)0.0676 (5)
H40.40520.30270.00590.081*
C50.40882 (17)0.1552 (2)0.07273 (9)0.0694 (5)
H50.49020.14400.07270.083*
C60.34133 (15)0.07516 (18)0.11315 (9)0.0579 (5)
H60.37720.01120.13990.069*
C70.15904 (13)0.08370 (16)0.19601 (7)0.0432 (4)
C80.05780 (14)0.14252 (16)0.22366 (8)0.0499 (4)
H80.01690.11390.21130.060*
C90.07086 (14)0.24049 (17)0.26820 (8)0.0499 (4)
H90.00660.28240.28760.060*
C100.18694 (13)0.27585 (16)0.28379 (7)0.0422 (4)
C110.31668 (15)0.42876 (18)0.34775 (9)0.0561 (5)
H110.38920.40550.33050.067*
C120.29780 (17)0.52176 (19)0.39459 (9)0.0608 (5)
H120.35370.57480.41590.073*
C130.17754 (17)0.52036 (18)0.40374 (8)0.0596 (5)
H130.13920.57500.43330.072*
N10.14245 (11)0.01684 (14)0.15110 (6)0.0493 (4)
H10.06980.03830.14500.059*
N20.26728 (11)0.12101 (13)0.21296 (6)0.0473 (4)
N30.27965 (11)0.22007 (14)0.25801 (6)0.0468 (3)
N40.21109 (11)0.37648 (13)0.33089 (6)0.0452 (3)
N50.12287 (12)0.43206 (15)0.36555 (7)0.0558 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0436 (9)0.0463 (9)0.0452 (9)0.0013 (7)0.0012 (8)0.0076 (8)
C20.0529 (10)0.0656 (11)0.0579 (11)0.0040 (9)0.0040 (9)0.0029 (10)
C30.0790 (14)0.0682 (12)0.0583 (12)0.0014 (11)0.0065 (11)0.0114 (10)
C40.0691 (14)0.0739 (13)0.0599 (12)0.0118 (11)0.0068 (10)0.0065 (10)
C50.0490 (11)0.0843 (13)0.0748 (13)0.0052 (10)0.0041 (10)0.0132 (12)
C60.0465 (10)0.0645 (11)0.0627 (12)0.0005 (9)0.0009 (9)0.0095 (9)
C70.0336 (8)0.0461 (9)0.0499 (9)0.0005 (7)0.0016 (7)0.0067 (8)
C80.0290 (8)0.0585 (10)0.0621 (11)0.0005 (7)0.0047 (8)0.0022 (9)
C90.0313 (8)0.0592 (10)0.0593 (11)0.0049 (7)0.0002 (8)0.0038 (9)
C100.0340 (8)0.0457 (9)0.0468 (9)0.0011 (7)0.0031 (7)0.0051 (8)
C110.0400 (9)0.0635 (11)0.0648 (12)0.0036 (8)0.0072 (8)0.0002 (10)
C120.0606 (12)0.0602 (11)0.0617 (12)0.0044 (9)0.0155 (10)0.0052 (10)
C130.0632 (12)0.0617 (11)0.0540 (11)0.0092 (9)0.0080 (10)0.0076 (9)
N10.0329 (7)0.0563 (8)0.0585 (9)0.0031 (6)0.0016 (6)0.0046 (7)
N20.0337 (7)0.0552 (8)0.0531 (8)0.0003 (6)0.0012 (6)0.0023 (7)
N30.0308 (7)0.0557 (8)0.0539 (8)0.0006 (6)0.0015 (6)0.0007 (7)
N40.0347 (7)0.0517 (8)0.0491 (8)0.0031 (6)0.0038 (6)0.0038 (7)
N50.0435 (8)0.0649 (9)0.0589 (10)0.0100 (7)0.0008 (7)0.0042 (8)
Geometric parameters (Å, º) top
C1—C61.378 (2)C8—H80.9300
C1—C21.389 (2)C9—C101.401 (2)
C1—N11.3961 (19)C9—H90.9300
C2—C31.381 (2)C10—N31.3022 (19)
C2—H20.9300C10—N41.4194 (19)
C3—C41.366 (3)C11—N41.3465 (19)
C3—H30.9300C11—C121.358 (2)
C4—C51.370 (2)C11—H110.9300
C4—H40.9300C12—C131.380 (3)
C5—C61.387 (2)C12—H120.9300
C5—H50.9300C13—N51.327 (2)
C6—H60.9300C13—H130.9300
C7—N21.3300 (18)N1—H10.8600
C7—N11.371 (2)N2—N31.3574 (17)
C7—C81.410 (2)N4—N51.3570 (17)
C8—C91.343 (2)
C6—C1—C2118.58 (16)C8—C9—C10116.13 (15)
C6—C1—N1125.41 (15)C8—C9—H9121.9
C2—C1—N1116.01 (15)C10—C9—H9121.9
C3—C2—C1121.18 (18)N3—C10—C9124.14 (15)
C3—C2—H2119.4N3—C10—N4114.93 (13)
C1—C2—H2119.4C9—C10—N4120.92 (14)
C4—C3—C2119.97 (18)N4—C11—C12107.35 (16)
C4—C3—H3120.0N4—C11—H11126.3
C2—C3—H3120.0C12—C11—H11126.3
C3—C4—C5119.20 (18)C11—C12—C13104.92 (16)
C3—C4—H4120.4C11—C12—H12127.5
C5—C4—H4120.4C13—C12—H12127.5
C4—C5—C6121.63 (18)N5—C13—C12112.29 (16)
C4—C5—H5119.2N5—C13—H13123.9
C6—C5—H5119.2C12—C13—H13123.9
C1—C6—C5119.44 (17)C7—N1—C1132.45 (13)
C1—C6—H6120.3C7—N1—H1113.8
C5—C6—H6120.3C1—N1—H1113.8
N2—C7—N1120.37 (14)C7—N2—N3118.41 (13)
N2—C7—C8122.16 (15)C10—N3—N2120.13 (13)
N1—C7—C8117.46 (14)C11—N4—N5111.46 (14)
C9—C8—C7119.03 (15)C11—N4—C10127.68 (14)
C9—C8—H8120.5N5—N4—C10120.86 (13)
C7—C8—H8120.5C13—N5—N4103.98 (14)
C6—C1—C2—C30.4 (2)C6—C1—N1—C71.0 (3)
N1—C1—C2—C3179.63 (15)C2—C1—N1—C7178.96 (16)
C1—C2—C3—C40.2 (3)N1—C7—N2—N3179.41 (13)
C2—C3—C4—C50.6 (3)C8—C7—N2—N30.6 (2)
C3—C4—C5—C60.5 (3)C9—C10—N3—N20.0 (2)
C2—C1—C6—C50.5 (3)N4—C10—N3—N2179.08 (12)
N1—C1—C6—C5179.48 (15)C7—N2—N3—C100.3 (2)
C4—C5—C6—C10.1 (3)C12—C11—N4—N50.26 (19)
N2—C7—C8—C90.6 (2)C12—C11—N4—C10179.96 (14)
N1—C7—C8—C9179.46 (14)N3—C10—N4—C116.3 (2)
C7—C8—C9—C100.3 (2)C9—C10—N4—C11174.63 (16)
C8—C9—C10—N30.0 (2)N3—C10—N4—N5173.47 (13)
C8—C9—C10—N4179.01 (13)C9—C10—N4—N55.6 (2)
N4—C11—C12—C130.03 (19)C12—C13—N5—N40.37 (19)
C11—C12—C13—N50.2 (2)C11—N4—N5—C130.39 (18)
N2—C7—N1—C14.1 (3)C10—N4—N5—C13179.82 (14)
C8—C7—N1—C1177.09 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N5i0.862.223.071 (2)173
C6—H6···N20.932.372.966 (3)122
C8—H8···N3ii0.932.603.265 (2)129
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H11N5
Mr237.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.3533 (7), 9.4214 (5), 21.6603 (14)
V3)2316.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10085, 2754, 1571
Rint0.045
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 0.99
No. of reflections2754
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N5i0.862.223.071 (2)173
C6—H6···N20.932.372.966 (3)122
C8—H8···N3ii0.932.603.265 (2)129
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha. The authors also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

References

First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds