organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis[(2-hy­droxy­phen­yl)(phen­yl)methyl­­idene]propane-1,2-di­amine

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, 2050, South Africa
*Correspondence e-mail: dave.billing@wits.ac.za

(Received 31 March 2010; accepted 26 April 2010; online 8 May 2010)

In the the title compound, C29H26N2O2, two strong intra­molecular O—H⋯N hydrogen bonds involving the hydr­oxy and imine groups generate S(6) ring motifs. The dihedral angles between the pairs of terminal benzene rings are 89.8 (2) and 87.8 (2)°.

Related literature

For related compounds and further synthetic details, see: Schilf et al. (2007[Schilf, W., Kamienski, B., Szady-Chełmieniecka, A., Grech, E., Makal, A. & Wozniak, K. (2007). J. Mol. Struct. 94-101, 844-845.]). For intra­molecular hydrogen bonds in this type of compound, see: Fernández-G et al. (2001[Fernández-G, J. M., del Rio-Portilla, F., Quiroz-Garcia, B., Toscano, R. A. & Salcedo, R. (2001). J. Mol. Struct. 561, 197-207.]); Kabak (2003[Kabak, M. (2003). J. Mol. Struct. 655, 135-139.]); Wojciechowski et al. (2001[Wojciechowski, G., Ratajczak-Sitarz, M., Katrusiak, A., Schilf, W., Przybylski, P. & Brzezinski, B. (2001). J. Mol. Struct. 650, 191-199.]); Dey et al. (2001); Koşar et al. (2004[Koşar, B., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2004). Acta Cryst. C60, o458-o460.]); Lu et al. (2008[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1693.]); Qiu & Zhao (2008[Qiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.]); Montazerozohori et al. (2009[Montazerozohori, M., Habibi, M. H., Hojjati, A., Mokhtari, R., Yamane, Y. & Suzuki, T. (2009). Acta Cryst. E65, o1662-o1663.]); Corden et al. (1996[Corden, J. P., Errington, W., Moore, P., Phillips, P. R. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 3199-3202.]); Black et al. (2010[Black, R. S., Billing, D. G., Bartyzel, A. & Cukrowska, E. (2010). Acta Cryst. E66, o1002-o1003.]); Dey et al. (2001[Dey, D. K., Dey, S. P., Elmali, A. & Elerman, Y. (2001). J. Mol. Struct. 562, 177-184.]).

[Scheme 1]

Experimental

Crystal data
  • C29H26N2O2

  • Mr = 434.52

  • Monoclinic, C 2

  • a = 18.1766 (8) Å

  • b = 7.9808 (4) Å

  • c = 16.0347 (8) Å

  • β = 92.703 (2)°

  • V = 2323.47 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.62 × 0.38 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (XPREP; Bruker, 1999[Bruker (1999). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 1.000

  • 22291 measured reflections

  • 3001 independent reflections

  • 2724 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.05

  • 3001 reflections

  • 301 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected torsion angles (°)

C1—C6—C7—C8 89.8 (2)
C17—C22—C23—C24 87.8 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.84 2.573 (2) 147
O2—H2A⋯N2 0.82 1.83 2.553 (2) 147

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The molecular structure of the title compound form two strong intermolecular hydrogen bonds O—H···N involving the hydroxyl and the imine groups, forming S(6) ring motifs which are common to this type of compound (Schilf et al., 2007) and (Fernández-G et al., 2001), and also seen in the work completed by (Kabak et al., 2003), (Wojciechowski et al., 2001), (Dey et al., 2001), (Koşar, et al., 2004), (Lu, et al., 2008) (Qiu & Zhao, 2008), (Montazerozohori et al., 2009), (Corden et al., 1996) and (Black et al., 2010). This causes the dihedral angles between the adjacent phenyl rings and phenyl containing plains to be (C1—C6—C7—C8) 89.8 (2)° and (C17—C22—C23—C24) 87.8 (2)° respectively. These dihedral angles are comparable to (Corden et al., 1996) and (Black et al., 2010). The stereogenic centre on the methyl substituted carbon C15 allows the system to pack in the noncentrosymmetric space group C2. The remaining weak interactions in the crystals form unexceptional σ-π interactions.

Related literature top

For related compounds and further synthetic details, see: Schilf et al. (2007). For intramolecular hydrogen bonds in this type of compound, see: Fernández-G et al. (2001); Kabak (2003); Wojciechowski et al. (2001); Dey et al. (2001); Koşar et al. (2004); Lu et al. (2008); Qiu & Zhao (2008); Montazerozohori et al. (2009); Corden et al. (1996); Black et al. (2010); Dey et al. (2001).

Experimental top

A mixture of 0.01 mol (2.00 g) of 2-hydroxybenzophenone and 0.005 mole (0.42 ml) of 1,2-propanediamine in 40 ml of methanol was refluxed for 7 h. The excess of solvent (ca. 30 ml) was then evaporated. After cooling to 277 K, a yellow solid was produced. The polycrystalline product was collected by filtration, washed with methanol and dried a yield 54% was obtained. Recrystalization from an ethanol solution yielded yellow blocks of (I). Elemental analysis: C% 79.67 H% 5.99 N% 6.03.

Refinement top

The absolute structure of (I) is indeterminate based on the present refinement. All H atoms were refined using a riding model, with a C—H distance of 0.96, for Ar—H a distance of 0.93 Å and for O—H a distance of 0.82 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The highest residual peak was 0.742 Å from atom C6 with a ρ = 0.20 e Å-3.

Structure description top

The molecular structure of the title compound form two strong intermolecular hydrogen bonds O—H···N involving the hydroxyl and the imine groups, forming S(6) ring motifs which are common to this type of compound (Schilf et al., 2007) and (Fernández-G et al., 2001), and also seen in the work completed by (Kabak et al., 2003), (Wojciechowski et al., 2001), (Dey et al., 2001), (Koşar, et al., 2004), (Lu, et al., 2008) (Qiu & Zhao, 2008), (Montazerozohori et al., 2009), (Corden et al., 1996) and (Black et al., 2010). This causes the dihedral angles between the adjacent phenyl rings and phenyl containing plains to be (C1—C6—C7—C8) 89.8 (2)° and (C17—C22—C23—C24) 87.8 (2)° respectively. These dihedral angles are comparable to (Corden et al., 1996) and (Black et al., 2010). The stereogenic centre on the methyl substituted carbon C15 allows the system to pack in the noncentrosymmetric space group C2. The remaining weak interactions in the crystals form unexceptional σ-π interactions.

For related compounds and further synthetic details, see: Schilf et al. (2007). For intramolecular hydrogen bonds in this type of compound, see: Fernández-G et al. (2001); Kabak (2003); Wojciechowski et al. (2001); Dey et al. (2001); Koşar et al. (2004); Lu et al. (2008); Qiu & Zhao (2008); Montazerozohori et al. (2009); Corden et al. (1996); Black et al. (2010); Dey et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) drawn at the 30% probability displacement ellipsoids. Hydrogens bonds are shown as dashed lines.
N,N'-Bis[(2-hydroxyphenyl)(phenyl)methylidene]propane-1,2-diamine top
Crystal data top
C29H26N2O2F(000) = 920
Mr = 434.52Dx = 1.242 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 9931 reflections
a = 18.1766 (8) Åθ = 2.2–28.3°
b = 7.9808 (4) ŵ = 0.08 mm1
c = 16.0347 (8) ÅT = 296 K
β = 92.703 (2)°Block, yellow
V = 2323.47 (19) Å30.62 × 0.38 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3001 independent reflections
Radiation source: sealed tube2724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 28°, θmin = 1.3°
Absorption correction: integration
(XPREP; Bruker, 1999)
h = 2324
Tmin = 0.918, Tmax = 1.000k = 1010
22291 measured reflectionsl = 2120
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.6417P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.20 e Å3
3001 reflectionsΔρmin = 0.18 e Å3
301 parameters
Crystal data top
C29H26N2O2V = 2323.47 (19) Å3
Mr = 434.52Z = 4
Monoclinic, C2Mo Kα radiation
a = 18.1766 (8) ŵ = 0.08 mm1
b = 7.9808 (4) ÅT = 296 K
c = 16.0347 (8) Å0.62 × 0.38 × 0.24 mm
β = 92.703 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3001 independent reflections
Absorption correction: integration
(XPREP; Bruker, 1999)
2724 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 1.000Rint = 0.026
22291 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.087H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
3001 reflectionsΔρmin = 0.18 e Å3
301 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17117 (10)0.8773 (3)0.19104 (12)0.0380 (4)
H10.15760.85610.24530.046*
C20.23795 (11)0.9528 (3)0.17780 (14)0.0452 (5)
H20.26990.97920.22290.054*
C30.25725 (11)0.9890 (3)0.09795 (15)0.0500 (5)
H30.3021.04110.08910.06*
C40.21054 (12)0.9484 (3)0.03135 (14)0.0536 (5)
H40.22370.9740.02250.064*
C50.14368 (11)0.8693 (3)0.04351 (12)0.0432 (5)
H50.11240.84120.00190.052*
C60.12418 (9)0.8328 (2)0.12419 (11)0.0318 (4)
C70.05455 (9)0.7387 (2)0.14143 (10)0.0308 (4)
C80.01204 (10)0.8365 (2)0.15614 (11)0.0317 (4)
C90.01477 (11)1.0091 (2)0.14096 (13)0.0398 (4)
H90.02671.06240.12190.048*
C100.07704 (12)1.1025 (3)0.15342 (13)0.0478 (5)
H100.07771.21670.1420.057*
C110.13872 (12)1.0242 (3)0.18322 (14)0.0487 (5)
H110.18081.08670.19240.058*
C120.13812 (11)0.8549 (3)0.19929 (13)0.0445 (5)
H120.17960.80420.21990.053*
C130.07625 (10)0.7587 (3)0.18505 (12)0.0372 (4)
C140.09851 (12)0.3771 (3)0.04854 (12)0.0445 (5)
H14A0.05480.31140.05450.067*
H14B0.1390.30440.03740.067*
H14C0.09070.45440.00310.067*
C150.11599 (10)0.4740 (2)0.12901 (11)0.0330 (4)
H150.15920.54530.12210.04*
C160.13115 (11)0.3541 (2)0.20186 (11)0.0364 (4)
H16A0.08690.29090.21240.044*
H16B0.16950.27550.18820.044*
C170.00368 (11)0.3145 (3)0.35288 (13)0.0447 (5)
H170.02150.42050.33890.054*
C180.05238 (12)0.1829 (4)0.36563 (14)0.0602 (7)
H180.10290.20120.36040.072*
C190.02579 (16)0.0266 (4)0.38587 (16)0.0640 (7)
H190.05850.06070.39440.077*
C200.04851 (16)0.0019 (3)0.39361 (17)0.0639 (7)
H200.0660.10850.40710.077*
C210.09762 (13)0.1270 (3)0.38147 (14)0.0477 (5)
H210.1480.10730.38690.057*
C220.07149 (10)0.2860 (2)0.36114 (11)0.0331 (4)
C230.12560 (9)0.4238 (2)0.34679 (11)0.0307 (3)
C240.14855 (9)0.5331 (2)0.41770 (11)0.0304 (3)
C250.11331 (10)0.5252 (2)0.49331 (12)0.0368 (4)
H250.07490.44950.49880.044*
C260.13414 (11)0.6270 (3)0.56007 (13)0.0437 (5)
H260.11020.61950.60990.052*
C270.19109 (12)0.7405 (3)0.55188 (14)0.0477 (5)
H270.20490.81050.59630.057*
C280.22735 (11)0.7505 (3)0.47865 (13)0.0461 (5)
H280.26580.82640.47410.055*
C290.20693 (9)0.6482 (2)0.41146 (11)0.0355 (4)
N10.05252 (8)0.57835 (19)0.14636 (9)0.0338 (3)
N20.15442 (8)0.44924 (19)0.27629 (9)0.0348 (3)
O10.07848 (8)0.59298 (19)0.20016 (11)0.0509 (4)
H1A0.04080.54890.18440.076*
O20.24508 (8)0.6613 (2)0.34177 (8)0.0487 (4)
H2A0.22640.60060.30530.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0384 (10)0.0346 (9)0.0407 (9)0.0049 (8)0.0003 (8)0.0001 (8)
C20.0365 (10)0.0390 (10)0.0591 (12)0.0070 (8)0.0073 (8)0.0052 (9)
C30.0296 (10)0.0468 (12)0.0742 (14)0.0096 (9)0.0104 (9)0.0005 (11)
C40.0464 (11)0.0669 (14)0.0487 (11)0.0111 (11)0.0144 (9)0.0084 (11)
C50.0386 (10)0.0536 (12)0.0374 (9)0.0087 (9)0.0009 (8)0.0026 (9)
C60.0301 (9)0.0270 (8)0.0383 (9)0.0033 (7)0.0021 (7)0.0017 (7)
C70.0299 (8)0.0341 (9)0.0280 (8)0.0069 (7)0.0017 (6)0.0013 (6)
C80.0303 (9)0.0335 (9)0.0311 (8)0.0046 (7)0.0011 (6)0.0007 (7)
C90.0379 (10)0.0355 (10)0.0462 (10)0.0049 (8)0.0031 (8)0.0008 (8)
C100.0544 (12)0.0365 (10)0.0526 (12)0.0058 (9)0.0034 (10)0.0034 (9)
C110.0418 (11)0.0531 (13)0.0513 (12)0.0102 (10)0.0028 (9)0.0072 (10)
C120.0310 (10)0.0535 (13)0.0494 (11)0.0034 (9)0.0057 (8)0.0002 (9)
C130.0315 (9)0.0409 (10)0.0389 (9)0.0042 (8)0.0020 (7)0.0016 (8)
C140.0513 (12)0.0435 (10)0.0391 (9)0.0056 (10)0.0053 (8)0.0027 (9)
C150.0318 (9)0.0306 (9)0.0372 (9)0.0056 (7)0.0066 (7)0.0007 (7)
C160.0406 (10)0.0294 (8)0.0391 (9)0.0029 (7)0.0018 (7)0.0018 (7)
C170.0341 (9)0.0512 (12)0.0492 (11)0.0046 (9)0.0052 (8)0.0058 (9)
C180.0379 (11)0.089 (2)0.0546 (13)0.0233 (12)0.0085 (9)0.0164 (13)
C190.0761 (18)0.0632 (16)0.0534 (13)0.0401 (15)0.0107 (12)0.0014 (12)
C200.0856 (19)0.0415 (12)0.0645 (15)0.0188 (13)0.0017 (13)0.0086 (11)
C210.0495 (12)0.0368 (10)0.0564 (12)0.0059 (9)0.0017 (9)0.0050 (9)
C220.0328 (9)0.0340 (9)0.0326 (8)0.0063 (7)0.0012 (7)0.0034 (7)
C230.0263 (8)0.0258 (8)0.0396 (9)0.0011 (6)0.0013 (6)0.0008 (7)
C240.0260 (8)0.0266 (8)0.0382 (8)0.0013 (6)0.0028 (6)0.0002 (7)
C250.0309 (9)0.0336 (9)0.0461 (10)0.0024 (8)0.0034 (7)0.0017 (8)
C260.0419 (10)0.0466 (11)0.0429 (10)0.0020 (9)0.0067 (8)0.0078 (8)
C270.0472 (11)0.0480 (12)0.0473 (11)0.0063 (10)0.0032 (9)0.0140 (9)
C280.0404 (10)0.0452 (11)0.0520 (11)0.0149 (9)0.0066 (8)0.0033 (9)
C290.0307 (9)0.0357 (9)0.0398 (9)0.0026 (8)0.0029 (7)0.0036 (8)
N10.0307 (7)0.0322 (8)0.0385 (8)0.0061 (6)0.0031 (6)0.0001 (6)
N20.0345 (7)0.0323 (7)0.0376 (7)0.0043 (6)0.0003 (6)0.0011 (6)
O10.0343 (7)0.0413 (8)0.0778 (11)0.0062 (6)0.0092 (7)0.0116 (8)
O20.0440 (8)0.0613 (10)0.0410 (7)0.0221 (7)0.0020 (6)0.0007 (7)
Geometric parameters (Å, º) top
C1—C21.380 (3)C15—H150.98
C1—C61.385 (3)C16—N21.460 (2)
C1—H10.93C16—H16A0.97
C2—C31.374 (3)C16—H16B0.97
C2—H20.93C17—C221.385 (3)
C3—C41.371 (3)C17—C181.395 (3)
C3—H30.93C17—H170.93
C4—C51.391 (3)C18—C191.372 (4)
C4—H40.93C18—H180.93
C5—C61.388 (3)C19—C201.369 (4)
C5—H50.93C19—H190.93
C6—C71.508 (2)C20—C211.382 (3)
C7—N11.283 (2)C20—H200.93
C7—C81.469 (3)C21—C221.389 (3)
C8—C91.399 (3)C21—H210.93
C8—C131.419 (2)C22—C231.500 (2)
C9—C101.378 (3)C23—N21.284 (2)
C9—H90.93C23—C241.477 (2)
C10—C111.388 (3)C24—C251.399 (2)
C10—H100.93C24—C291.411 (2)
C11—C121.376 (3)C25—C261.383 (3)
C11—H110.93C25—H250.93
C12—C131.389 (3)C26—C271.386 (3)
C12—H120.93C26—H260.93
C13—O11.346 (3)C27—C281.376 (3)
C14—C151.525 (3)C27—H270.93
C14—H14A0.96C28—C291.388 (3)
C14—H14B0.96C28—H280.93
C14—H14C0.96C29—O21.347 (2)
C15—N11.460 (2)O1—H1A0.82
C15—C161.525 (3)O2—H2A0.82
C2—C1—C6120.49 (18)C16—C15—H15109.5
C2—C1—H1119.8N2—C16—C15109.55 (15)
C6—C1—H1119.8N2—C16—H16A109.8
C3—C2—C1120.01 (18)C15—C16—H16A109.8
C3—C2—H2120N2—C16—H16B109.8
C1—C2—H2120C15—C16—H16B109.8
C4—C3—C2120.00 (18)H16A—C16—H16B108.2
C4—C3—H3120C22—C17—C18119.5 (2)
C2—C3—H3120C22—C17—H17120.2
C3—C4—C5120.72 (19)C18—C17—H17120.2
C3—C4—H4119.6C19—C18—C17120.0 (2)
C5—C4—H4119.6C19—C18—H18120
C6—C5—C4119.26 (18)C17—C18—H18120
C6—C5—H5120.4C20—C19—C18120.5 (2)
C4—C5—H5120.4C20—C19—H19119.7
C1—C6—C5119.48 (17)C18—C19—H19119.7
C1—C6—C7118.56 (16)C19—C20—C21120.3 (2)
C5—C6—C7121.90 (16)C19—C20—H20119.9
N1—C7—C8119.60 (16)C21—C20—H20119.9
N1—C7—C6122.34 (17)C20—C21—C22119.8 (2)
C8—C7—C6118.02 (15)C20—C21—H21120.1
C9—C8—C13117.66 (17)C22—C21—H21120.1
C9—C8—C7121.20 (17)C17—C22—C21119.81 (18)
C13—C8—C7121.13 (15)C17—C22—C23121.07 (18)
C10—C9—C8122.01 (19)C21—C22—C23119.12 (16)
C10—C9—H9119N2—C23—C24118.18 (15)
C8—C9—H9119N2—C23—C22123.25 (16)
C9—C10—C11119.3 (2)C24—C23—C22118.55 (15)
C9—C10—H10120.4C25—C24—C29117.87 (16)
C11—C10—H10120.4C25—C24—C23121.07 (15)
C12—C11—C10120.5 (2)C29—C24—C23121.06 (15)
C12—C11—H11119.8C26—C25—C24121.64 (18)
C10—C11—H11119.8C26—C25—H25119.2
C11—C12—C13120.7 (2)C24—C25—H25119.2
C11—C12—H12119.6C25—C26—C27119.29 (19)
C13—C12—H12119.6C25—C26—H26120.4
O1—C13—C12118.80 (18)C27—C26—H26120.4
O1—C13—C8121.39 (17)C28—C27—C26120.58 (19)
C12—C13—C8119.81 (18)C28—C27—H27119.7
C15—C14—H14A109.5C26—C27—H27119.7
C15—C14—H14B109.5C27—C28—C29120.45 (19)
H14A—C14—H14B109.5C27—C28—H28119.8
C15—C14—H14C109.5C29—C28—H28119.8
H14A—C14—H14C109.5O2—C29—C28117.95 (17)
H14B—C14—H14C109.5O2—C29—C24121.87 (16)
N1—C15—C14108.39 (15)C28—C29—C24120.17 (17)
N1—C15—C16109.14 (14)C7—N1—C15122.13 (16)
C14—C15—C16110.66 (15)C23—N2—C16121.53 (16)
N1—C15—H15109.5C13—O1—H1A109.5
C14—C15—H15109.5C29—O2—H2A109.5
C6—C1—C2—C32.0 (3)C19—C20—C21—C220.1 (4)
C1—C2—C3—C40.7 (3)C18—C17—C22—C210.4 (3)
C2—C3—C4—C50.5 (4)C18—C17—C22—C23179.17 (18)
C3—C4—C5—C60.5 (4)C20—C21—C22—C170.2 (3)
C2—C1—C6—C51.9 (3)C20—C21—C22—C23179.00 (19)
C2—C1—C6—C7175.34 (18)C17—C22—C23—N293.9 (2)
C4—C5—C6—C10.7 (3)C21—C22—C23—N284.9 (2)
C4—C5—C6—C7176.5 (2)C17—C22—C23—C2487.8 (2)
C1—C6—C7—N187.8 (2)C21—C22—C23—C2493.4 (2)
C5—C6—C7—N189.5 (2)N2—C23—C24—C25172.54 (17)
C1—C6—C7—C889.8 (2)C22—C23—C24—C259.1 (2)
C5—C6—C7—C892.9 (2)N2—C23—C24—C297.8 (2)
N1—C7—C8—C9171.73 (18)C22—C23—C24—C29170.61 (16)
C6—C7—C8—C910.6 (2)C29—C24—C25—C260.5 (3)
N1—C7—C8—C137.3 (3)C23—C24—C25—C26179.84 (18)
C6—C7—C8—C13170.35 (16)C24—C25—C26—C270.3 (3)
C13—C8—C9—C100.1 (3)C25—C26—C27—C280.9 (3)
C7—C8—C9—C10179.19 (17)C26—C27—C28—C290.7 (3)
C8—C9—C10—C111.1 (3)C27—C28—C29—O2178.9 (2)
C9—C10—C11—C120.7 (3)C27—C28—C29—C240.2 (3)
C10—C11—C12—C130.8 (3)C25—C24—C29—O2178.35 (17)
C11—C12—C13—O1178.8 (2)C23—C24—C29—O21.4 (3)
C11—C12—C13—C82.0 (3)C25—C24—C29—C280.7 (3)
C9—C8—C13—O1179.18 (19)C23—C24—C29—C28179.59 (17)
C7—C8—C13—O10.1 (3)C8—C7—N1—C15177.40 (14)
C9—C8—C13—C121.7 (3)C6—C7—N1—C155.0 (3)
C7—C8—C13—C12179.27 (17)C14—C15—N1—C7111.3 (2)
N1—C15—C16—N266.08 (18)C16—C15—N1—C7128.14 (18)
C14—C15—C16—N2174.74 (15)C24—C23—N2—C16175.93 (15)
C22—C17—C18—C190.2 (3)C22—C23—N2—C165.8 (3)
C17—C18—C19—C200.1 (4)C15—C16—N2—C23131.47 (17)
C18—C19—C20—C210.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.842.573 (2)147
O2—H2A···N20.821.832.553 (2)147

Experimental details

Crystal data
Chemical formulaC29H26N2O2
Mr434.52
Crystal system, space groupMonoclinic, C2
Temperature (K)296
a, b, c (Å)18.1766 (8), 7.9808 (4), 16.0347 (8)
β (°) 92.703 (2)
V3)2323.47 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.62 × 0.38 × 0.24
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionIntegration
(XPREP; Bruker, 1999)
Tmin, Tmax0.918, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
22291, 3001, 2724
Rint0.026
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.05
No. of reflections3001
No. of parameters301
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: APEX2 (Bruker, 2005), SAINT-NT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected torsion angles (º) top
C1—C6—C7—C889.8 (2)C17—C22—C23—C2487.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.842.573 (2)147
O2—H2A···N20.821.832.553 (2)147
 

Footnotes

On leave from: Faculty of Chemistry, Department of General and Coordination Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland.

Acknowledgements

The University of the Witwatersrand and the National Research Foundation (GUN 2069064) are thanked for providing the infrastructure and for the award of a research grant required to carry out this work.

References

First citationBlack, R. S., Billing, D. G., Bartyzel, A. & Cukrowska, E. (2010). Acta Cryst. E66, o1002–o1003.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1999). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorden, J. P., Errington, W., Moore, P., Phillips, P. R. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 3199–3202.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDey, D. K., Dey, S. P., Elmali, A. & Elerman, Y. (2001). J. Mol. Struct. 562, 177–184.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFernández-G, J. M., del Rio-Portilla, F., Quiroz-Garcia, B., Toscano, R. A. & Salcedo, R. (2001). J. Mol. Struct. 561, 197–207.  Google Scholar
First citationKabak, M. (2003). J. Mol. Struct. 655, 135–139.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoşar, B., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2004). Acta Cryst. C60, o458–o460.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMontazerozohori, M., Habibi, M. H., Hojjati, A., Mokhtari, R., Yamane, Y. & Suzuki, T. (2009). Acta Cryst. E65, o1662–o1663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchilf, W., Kamienski, B., Szady-Chełmieniecka, A., Grech, E., Makal, A. & Wozniak, K. (2007). J. Mol. Struct. 94–101, 844–845.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojciechowski, G., Ratajczak-Sitarz, M., Katrusiak, A., Schilf, W., Przybylski, P. & Brzezinski, B. (2001). J. Mol. Struct. 650, 191–199.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds