organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino­phenyl­boronic acid monohydrate

aCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP 62209, Cuernavaca, Mexico
*Correspondence e-mail: hhopfl@uaem.mx

(Received 19 April 2010; accepted 28 April 2010; online 8 May 2010)

In the title compound, C6H8BNO2·H2O, the almost planar boronic acid mol­ecules (r.m.s. deviation = 0.044 Å) form inversion dimers, linked by pairs of O—H⋯O hydrogen bonds. The water mol­ecules link these dimers into [100] chains by way of O—H⋯O hydrogen bonds, and N—H⋯O links generate (100) sheets.

Related literature

For background to the synthesis, structures and applications of phenyl­boronic acid derivatives, see: Barba & Betanzos (2007[Barba, V. & Betanzos, I. (2007). J. Organomet. Chem. 692, 4903-4908.]); Barba et al. (2004[Barba, V., Höpfl, H., Farfán, N., Santillan, R., Beltrán, H. I. & Zamudio-Rivera, L. S. (2004). Chem. Commun. pp. 2834-2835.], 2006[Barba, V., Villamil, R., Luna, R., Godoy-Alcantar, C., Höpfl, H., Beltrán, H. I., Zamudio-Rivera, L. S., Santillan, R. & Farfán, N. (2006). Inorg. Chem. 45, 2553-2561.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]); Christinat et al. (2008[Christinat, N., Scopelliti, R. & Severin, K. (2008). Angew. Chem. Int. Ed. 47, 1848-1852.]); Dreos et al. (2002[Dreos, R., Nardin, G., Randaccio, L., Siega, P. & Tauzher, G. (2002). Eur. J. Inorg. Chem. pp. 2885-2890.]); Fujita et al. (2008[Fujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076-1091.]); Höpfl (2002[Höpfl, H. (2002). Struct. Bond. 103, 1-56.]); Hall (2005[Hall, D. G. (2005). Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Weinheim: Wiley-VCH.]); Lulinski et al. (2007[Lulinski, S., Madura, I., Serwatowski, J., Szatylowicz, H. & Zachara, J. (2007). New J. Chem. 31, 144-154.]); Miyaura & Suzuki (1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]); Severin (2009[Severin, K. (2009). Dalton Trans. pp. 5254-5264.]); Shinkai et al. (2001[Shinkai, S., Ikeda, M., Sugasaki, A. & Takeuchi, M. (2001). Acc. Chem. Res. 34, 494-503.]); Smith et al. (2008[Smith, A. E., Clapham, K. M., Batsanov, A. S., Bryce, M. R. & Tarbit, B. (2008). Eur. J. Org. Chem. pp. 1458-1463.]); Zhang et al. (2007[Zhang, Y., Li, M., Chandrasekaran, S., Gao, X., Fang, X., Lee, H.-W., Hardcastle, K., Yang, J. & Wang, B. (2007). Tetrahedron, 63, 3287-3292.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8BNO2·H2O

  • Mr = 154.96

  • Monoclinic, P 21 /c

  • a = 7.1211 (8) Å

  • b = 13.8548 (15) Å

  • c = 7.8475 (8) Å

  • β = 100.663 (2)°

  • V = 760.88 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.44 × 0.38 × 0.34 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.89, Tmax = 1.00

  • 7077 measured reflections

  • 1341 independent reflections

  • 1258 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.03

  • 1341 reflections

  • 124 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1′⋯O2i 0.84 (1) 1.92 (1) 2.7583 (13) 174 (2)
N1—H1A⋯O31ii 0.86 (1) 2.21 (1) 3.0661 (15) 177 (1)
N1—H1B⋯O1iii 0.86 (1) 2.43 (1) 3.1854 (15) 147 (1)
O2—H2′⋯O31 0.84 (1) 1.91 (1) 2.7159 (13) 161 (2)
O31—H31A⋯N1iv 0.84 (1) 2.07 (1) 2.9040 (15) 173 (2)
O31—H31B⋯O1v 0.84 (1) 2.05 (1) 2.8810 (13) 170 (2)
Symmetry codes: (i) -x+1, -y, -z; (ii) x+1, y, z+1; (iii) -x+2, -y, -z+1; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus-NT (Bruker, 2001[Bruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Substituted phenylboronic acid derivatives have been prepared mainly for applications in organic synthesis (Miyaura & Suzuki, 1995; Hall, 2005) and for molecular recognition of biochemically active molecules (Shinkai et al., 2001). More recently, such boronic acid derivatives have attracted attention also as building blocks for the self-assembly of macrocyclic and polymeric assemblies. For this purpose, the boronic acid is generally converted to an ester (boronate) via condensation with an aliphatic or aromatic diol, which is then assembled to a macromolecular structure via reaction of the additional functional group attached to the B-phenyl ring (Höpfl, 2002; Fujita et al., 2008; Severin, 2009). In this context, 3-aminophenylboronic acid has been employed for the generation of macrocycles and cages (Dreos et al., 2002; Barba et al., 2004 and 2006; Barba & Betanzos, 2007; Christinat et al., 2008).

We report herein on the molecular and crystal structure of 3-aminophenylboronic acid monohydrate (I).

The asymmetric unit of I contains one 3-aminophenylboronic acid and one water molecule (Figure 1). The boronic acid molecules are associated through the well-known -B(OH)2···(HO)2B-synthon (motif A) with the graph set R22(8) (Bernstein et al., 1995), in which each B(OH)2 group has syn-anti conformation (with respect to the H atoms), thus allowing for the formation of additional hydrogen bonds with the water molecules included in the crystal lattice. These (B)O—H···Ow hydrogen bonds give rise to a cyclic water-expanded motif B [graph set R66(12)] of the boronic acid homodimer, thus generating a 1D chain along axis a (Figure 2). The (OH)6 ring has chair-conformation and has been observed previously in the crystal structures of 3,5-dibromo-2-formylphenylboronic acid monohydrate (Lulinski et al., 2007), 5-quinolineboronic acid monohydrate (Zhang et al., 2007) and 2,6-dichloro-3-pyridylboronic acid hemihydrate (Smith et al., 2008). The 1D chains are interconnected through Ow—H···N, N—H···Ow and N—H···O(B) hydrogen bonds to give an overall 3D hydrogen bonded network (Table 1).

Related literature top

For background to the synthesis, structures and applications of phenylboronic acid derivatives, see: Barba & Betanzos (2007); Barba et al. (2004, 2006); Bernstein et al. (1995); Christinat et al. (2008); Dreos et al. (2002); Fujita et al. (2008); Höpfl (2002); Hall (2005); Lulinski et al. (2007); Miyaura & Suzuki (1995); Severin (2009); Shinkai et al. (2001); Smith et al. (2008); Zhang et al. (2007).

Experimental top

3-Aminophenylboronic acid monohydrate is a commercially available product that has been crystallized from a solvent mixture of benzene, methanol and water to generate colourless blocks of (I); M.p. 368 K.

Refinement top

H atoms were positioned geometrically and constrained using the riding-model approximation [C-Haryl = 0.93 Å, Uiso(Haryl)= 1.2 Ueq(C)]. Hydrogen atoms bonded to O (H1', H2', H31A and H31B) and N (H1A and H1B) were located in difference Fourier maps. The coordinates of the O—H and N—H hydrogen atoms were refined with distance restraints: O—H = 0.84±0.01 Å, N—H = 0.86 Å ±0.01 and [Uiso(H) = 1.5 Ueq(O,N)].

Structure description top

Substituted phenylboronic acid derivatives have been prepared mainly for applications in organic synthesis (Miyaura & Suzuki, 1995; Hall, 2005) and for molecular recognition of biochemically active molecules (Shinkai et al., 2001). More recently, such boronic acid derivatives have attracted attention also as building blocks for the self-assembly of macrocyclic and polymeric assemblies. For this purpose, the boronic acid is generally converted to an ester (boronate) via condensation with an aliphatic or aromatic diol, which is then assembled to a macromolecular structure via reaction of the additional functional group attached to the B-phenyl ring (Höpfl, 2002; Fujita et al., 2008; Severin, 2009). In this context, 3-aminophenylboronic acid has been employed for the generation of macrocycles and cages (Dreos et al., 2002; Barba et al., 2004 and 2006; Barba & Betanzos, 2007; Christinat et al., 2008).

We report herein on the molecular and crystal structure of 3-aminophenylboronic acid monohydrate (I).

The asymmetric unit of I contains one 3-aminophenylboronic acid and one water molecule (Figure 1). The boronic acid molecules are associated through the well-known -B(OH)2···(HO)2B-synthon (motif A) with the graph set R22(8) (Bernstein et al., 1995), in which each B(OH)2 group has syn-anti conformation (with respect to the H atoms), thus allowing for the formation of additional hydrogen bonds with the water molecules included in the crystal lattice. These (B)O—H···Ow hydrogen bonds give rise to a cyclic water-expanded motif B [graph set R66(12)] of the boronic acid homodimer, thus generating a 1D chain along axis a (Figure 2). The (OH)6 ring has chair-conformation and has been observed previously in the crystal structures of 3,5-dibromo-2-formylphenylboronic acid monohydrate (Lulinski et al., 2007), 5-quinolineboronic acid monohydrate (Zhang et al., 2007) and 2,6-dichloro-3-pyridylboronic acid hemihydrate (Smith et al., 2008). The 1D chains are interconnected through Ow—H···N, N—H···Ow and N—H···O(B) hydrogen bonds to give an overall 3D hydrogen bonded network (Table 1).

For background to the synthesis, structures and applications of phenylboronic acid derivatives, see: Barba & Betanzos (2007); Barba et al. (2004, 2006); Bernstein et al. (1995); Christinat et al. (2008); Dreos et al. (2002); Fujita et al. (2008); Höpfl (2002); Hall (2005); Lulinski et al. (2007); Miyaura & Suzuki (1995); Severin (2009); Shinkai et al. (2001); Smith et al. (2008); Zhang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT (Bruker, 2001); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. In the crystal structure of (I) homodimeric boronic acid motifs A and water-expanded motifs B are linked to 1D hydrogen-bonded chains.
3-Aminophenylboronic acid monohydrate top
Crystal data top
C6H8BNO2·H2OF(000) = 328
Mr = 154.96Dx = 1.353 Mg m3
Monoclinic, P21/cMelting point: 368 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.1211 (8) ÅCell parameters from 4929 reflections
b = 13.8548 (15) Åθ = 2.9–28.3°
c = 7.8475 (8) ŵ = 0.11 mm1
β = 100.663 (2)°T = 100 K
V = 760.88 (14) Å3Block, colourless
Z = 40.44 × 0.38 × 0.34 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1341 independent reflections
Radiation source: fine-focus sealed tube1258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 2.9°
phi and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1616
Tmin = 0.89, Tmax = 1.00l = 99
7077 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.3165P]
where P = (Fo2 + 2Fc2)/3
1341 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.29 e Å3
6 restraintsΔρmin = 0.17 e Å3
Crystal data top
C6H8BNO2·H2OV = 760.88 (14) Å3
Mr = 154.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1211 (8) ŵ = 0.11 mm1
b = 13.8548 (15) ÅT = 100 K
c = 7.8475 (8) Å0.44 × 0.38 × 0.34 mm
β = 100.663 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1341 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1258 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 1.00Rint = 0.022
7077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0326 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.29 e Å3
1341 reflectionsΔρmin = 0.17 e Å3
124 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.5617 (2)0.06346 (10)0.24383 (18)0.0160 (3)
N11.02034 (15)0.15487 (8)0.78329 (14)0.0186 (3)
H1A1.030 (2)0.1547 (11)0.8942 (3)0.022 (4)*
H1B1.0986 (18)0.1138 (9)0.753 (2)0.029 (4)*
O10.71516 (12)0.03223 (7)0.17614 (11)0.0180 (2)
H1'0.682 (3)0.0084 (12)0.0767 (10)0.038 (5)*
O20.38624 (12)0.05950 (6)0.13944 (11)0.0179 (2)
H2'0.2917 (15)0.0828 (12)0.175 (2)0.036 (5)*
C10.60035 (17)0.10356 (8)0.43486 (16)0.0151 (3)
C20.78720 (17)0.10598 (8)0.52950 (16)0.0158 (3)
H20.88810.08090.47860.019*
C30.82923 (17)0.14429 (8)0.69650 (16)0.0151 (3)
C40.68011 (18)0.17961 (9)0.77225 (16)0.0171 (3)
H40.70620.20510.88660.021*
C50.49436 (18)0.17741 (9)0.68042 (16)0.0181 (3)
H50.39350.20180.73220.022*
C60.45380 (17)0.13999 (9)0.51337 (16)0.0163 (3)
H60.32570.13910.45190.020*
O310.05437 (12)0.14588 (7)0.17821 (12)0.0199 (2)
H31A0.048 (3)0.2022 (5)0.217 (2)0.041 (5)*
H31B0.0485 (14)0.1179 (12)0.186 (2)0.040 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0179 (7)0.0120 (7)0.0181 (7)0.0012 (5)0.0037 (6)0.0013 (5)
N10.0161 (6)0.0235 (6)0.0156 (6)0.0018 (4)0.0016 (4)0.0009 (4)
O10.0155 (5)0.0228 (5)0.0152 (5)0.0002 (4)0.0017 (3)0.0049 (4)
O20.0143 (5)0.0221 (5)0.0172 (5)0.0019 (4)0.0026 (4)0.0047 (4)
C10.0174 (6)0.0110 (6)0.0171 (6)0.0019 (5)0.0034 (5)0.0016 (5)
C20.0167 (6)0.0137 (6)0.0179 (6)0.0010 (5)0.0058 (5)0.0014 (5)
C30.0164 (6)0.0126 (6)0.0158 (6)0.0008 (5)0.0019 (5)0.0030 (5)
C40.0206 (7)0.0153 (6)0.0156 (6)0.0012 (5)0.0038 (5)0.0013 (5)
C50.0177 (6)0.0159 (6)0.0219 (7)0.0011 (5)0.0072 (5)0.0007 (5)
C60.0135 (6)0.0157 (6)0.0190 (6)0.0015 (5)0.0013 (5)0.0004 (5)
O310.0154 (5)0.0228 (5)0.0219 (5)0.0007 (4)0.0045 (4)0.0031 (4)
Geometric parameters (Å, º) top
B1—O21.3623 (17)C2—C31.3941 (18)
B1—O11.3707 (17)C2—H20.9500
B1—C11.5745 (18)C3—C41.3980 (18)
N1—C31.4122 (16)C4—C51.3846 (18)
N1—H1A0.860 (3)C4—H40.9500
N1—H1B0.860 (13)C5—C61.3894 (18)
O1—H1'0.840 (10)C5—H50.9500
O2—H2'0.840 (13)C6—H60.9500
C1—C21.3991 (17)O31—H31A0.842 (9)
C1—C61.4005 (18)O31—H31B0.841 (12)
O2—B1—O1117.55 (11)C2—C3—C4119.02 (11)
O2—B1—C1124.48 (11)C2—C3—N1120.86 (11)
O1—B1—C1117.95 (11)C4—C3—N1119.91 (11)
C3—N1—H1A112.3 (11)C5—C4—C3119.91 (11)
C3—N1—H1B114.4 (11)C5—C4—H4120.0
H1A—N1—H1B109.9 (15)C3—C4—H4120.0
B1—O1—H1'112.2 (13)C4—C5—C6120.73 (11)
B1—O2—H2'119.1 (12)C4—C5—H5119.6
C2—C1—C6118.08 (11)C6—C5—H5119.6
C2—C1—B1119.71 (11)C5—C6—C1120.52 (11)
C6—C1—B1122.19 (11)C5—C6—H6119.7
C3—C2—C1121.72 (11)C1—C6—H6119.7
C3—C2—H2119.1H31A—O31—H31B107.4 (18)
C1—C2—H2119.1
O2—B1—C1—C2178.77 (11)C1—C2—C3—N1173.67 (11)
O1—B1—C1—C20.23 (17)C2—C3—C4—C50.90 (18)
O2—B1—C1—C60.64 (19)N1—C3—C4—C5173.96 (11)
O1—B1—C1—C6177.90 (11)C3—C4—C5—C60.28 (18)
C6—C1—C2—C30.73 (18)C4—C5—C6—C10.13 (18)
B1—C1—C2—C3177.47 (11)C2—C1—C6—C50.08 (18)
C1—C2—C3—C41.14 (18)B1—C1—C6—C5178.07 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.84 (1)1.92 (1)2.7583 (13)174 (2)
N1—H1A···O31ii0.86 (1)2.21 (1)3.0661 (15)177 (1)
N1—H1B···O1iii0.86 (1)2.43 (1)3.1854 (15)147 (1)
O2—H2···O310.84 (1)1.91 (1)2.7159 (13)161 (2)
O31—H31A···N1iv0.84 (1)2.07 (1)2.9040 (15)173 (2)
O31—H31B···O1v0.84 (1)2.05 (1)2.8810 (13)170 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x1, y+1/2, z1/2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H8BNO2·H2O
Mr154.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1211 (8), 13.8548 (15), 7.8475 (8)
β (°) 100.663 (2)
V3)760.88 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.44 × 0.38 × 0.34
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.89, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
7077, 1341, 1258
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.03
No. of reflections1341
No. of parameters124
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.17

Computer programs: SMART (Bruker, 2000), SAINT-Plus-NT (Bruker, 2001), SHELXTL-NT (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1'···O2i0.840 (10)1.922 (11)2.7583 (13)173.8 (15)
N1—H1A···O31ii0.860 (3)2.207 (3)3.0661 (15)177.0 (14)
N1—H1B···O1iii0.860 (13)2.427 (13)3.1854 (15)147.4 (13)
O2—H2'···O310.840 (13)1.907 (12)2.7159 (13)161.4 (15)
O31—H31A···N1iv0.842 (9)2.066 (8)2.9040 (15)173.4 (15)
O31—H31B···O1v0.841 (12)2.049 (13)2.8810 (13)170.0 (15)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x1, y+1/2, z1/2; (v) x1, y, z.
 

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CIAM-59213).

References

First citationBarba, V. & Betanzos, I. (2007). J. Organomet. Chem. 692, 4903–4908.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarba, V., Höpfl, H., Farfán, N., Santillan, R., Beltrán, H. I. & Zamudio-Rivera, L. S. (2004). Chem. Commun. pp. 2834–2835.  Web of Science CSD CrossRef Google Scholar
First citationBarba, V., Villamil, R., Luna, R., Godoy-Alcantar, C., Höpfl, H., Beltrán, H. I., Zamudio-Rivera, L. S., Santillan, R. & Farfán, N. (2006). Inorg. Chem. 45, 2553–2561.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristinat, N., Scopelliti, R. & Severin, K. (2008). Angew. Chem. Int. Ed. 47, 1848–1852.  Web of Science CSD CrossRef CAS Google Scholar
First citationDreos, R., Nardin, G., Randaccio, L., Siega, P. & Tauzher, G. (2002). Eur. J. Inorg. Chem. pp. 2885–2890.  CrossRef Google Scholar
First citationFujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076–1091.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHall, D. G. (2005). Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Weinheim: Wiley-VCH.  Google Scholar
First citationHöpfl, H. (2002). Struct. Bond. 103, 1–56.  Google Scholar
First citationLulinski, S., Madura, I., Serwatowski, J., Szatylowicz, H. & Zachara, J. (2007). New J. Chem. 31, 144–154.  CAS Google Scholar
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS Google Scholar
First citationSeverin, K. (2009). Dalton Trans. pp. 5254–5264.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinkai, S., Ikeda, M., Sugasaki, A. & Takeuchi, M. (2001). Acc. Chem. Res. 34, 494–503.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSmith, A. E., Clapham, K. M., Batsanov, A. S., Bryce, M. R. & Tarbit, B. (2008). Eur. J. Org. Chem. pp. 1458–1463.  Web of Science CSD CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationZhang, Y., Li, M., Chandrasekaran, S., Gao, X., Fang, X., Lee, H.-W., Hardcastle, K., Yang, J. & Wang, B. (2007). Tetrahedron, 63, 3287–3292.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds