organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­methyl-3,5-bis­[(phenylcarbono­thioyl)sulfanylmethyl]benzyl benzenecarbodi­thioate

aDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: damo@iitm.ac.in

(Received 21 April 2010; accepted 30 April 2010; online 19 May 2010)

In the title compound C33H30S6, the three pendant methyl­ene benzodithio­ate groups lie to one side of the central benzene ring in a cis-cis-cis `tripod' arrangement. The dihedral angles between the central benzene ring and the three pendant rings are 72.54 (4), 89.68 (4) and 86.74 (4)°. In the crystal structure, one of the benzene rings is disordered over two orientations in a 0.559 (13):0.441 (13) ratio.

Related literature

For applications of the title compound, see: Stenzel-Rosenbaum et al. (2001[Stenzel-Rosenbaum, M., Davis, T. P., Chen, V. & Fane, A. G. (2001). J. Polym. Sci. A, 39, 2777-2783.]); Chong et al. (1999[Chong, Y. K., Le, T. P. T., Moad, G., Rizzardo, E. & Thang, S. H. (1999). Macromolecules, 32, 2071-2074.]); Takolpuckdee et al. (2005[Takolpuckdee, P., Mars, C. A., Perrier, S. & Archibald, S. J. (2005). Macromolecules, 38, 1057-1060.]). For a related structure, see: Li et al. (2002[Li, J.-R., Yan, Z., Du, M., Xie, Y.-B., Zhang, R.-H. & Bu, X.-H. (2002). Acta Cryst. E58, o243-o244.]).

[Scheme 1]

Experimental

Crystal data
  • C33H30S6

  • Mr = 618.93

  • Monoclinic, P 21 /n

  • a = 9.5698 (3) Å

  • b = 21.7668 (10) Å

  • c = 15.3823 (8) Å

  • β = 94.819 (2)°

  • V = 3192.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 298 K

  • 0.40 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.841, Tmax = 0.915

  • 23638 measured reflections

  • 7773 independent reflections

  • 3544 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.188

  • S = 1.01

  • 7773 reflections

  • 363 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound C33H30S6 is a tri-functional dithioester derivative, which is used as a chain transfer agent (CTA) (Chong et al. 1999) in reversible addition fragmentation chain transfer (RAFT) polymerization. Being a tri-functional unit it can form the core of star polymer (Stenzel et al. 2001) when used as a CTA. Most of the reported mono functional CTAs are liquid and hence, very few single crystal XRD reports are available (Takolpuckdee et al. 2005). In the case of the multi-functional CTAs, depending upon the core it would be either solid or liquid. Since most of the synthesized multi-functional CTAs are characterized by other techniques, their single crystal XRD reports are not available. Here we report the title compound which is one such multi functional CTA, crystallised from hexane.

The title compound C33 H30 S6 adopts a cis,cis,cis- conformation where the three pendant arms (methylene benzodithioate) protrude on one side of the mean plane of the central benzene ring. Similar structures have been reported (Li et al., 2002) where the three pendant arms (phenylthio groups) adopt cis,trans, trans- conformation. The replacement of phenylthio groups by benzodithioate groups flips the conformation from cis,trans, trans (`soft-shelled crawling turtle') to cis,cis,cis- conformation ('tripod stand').

The dihedral angle between the central benzene ring and the three methylene benzodithioate groups are 72.54 (4)°, 89.68 (4)° and 86.74 (4)°. The torsion angle of the three methylene benzodithioate group C2—C10—S1—C11, C4—C18—S3–C19 and C6—C26—S5—C27 are 147.1 (3),-174.8 (3) and -179.3 (3)°, respectively.

Related literature top

For applications of the title compound, see: Stenzel-Rosenbaum et al. (2001); Chong et al. (1999); Takolpuckdee et al. (2005). For a related structure, see: Li et al. (2002).

Experimental top

Phenyl magnesium bromide was prepared in-situ by adding bromobenzene (5 mmol) to activated Mg (5.5 mmol) in dry THF and the solution was refluxed for 1 h. To this reaction mixture carbon disulfide (5.5 mmol) was added over 10 min at 273 K. The mixture was allowed to warm to room temperature. Then 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1 mmol) was added over 15 min. The reaction mixture was then placed in a constant temperature bath stirred at 323 K for 3 h and concentrated under reduced pressure. The resulting crude product was dissolved in ether, rinsed thrice with water, followed by brine solution and dried over anhydrous magnesium sulfate. The crude product was purified by column chromatography using 10% ethyl acetate in hexane as the eluent to obtain the pure title compound as a bright red solid. Recrystallization of the compound from hexane gave red blocks of (I).

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl and methylene H atoms at Uiso(H) = 1.2Ueq(C) and methyl H atoms at Uiso(H) = 1.5Ueq(C). C29 and C30 of one methylene benzodithiote arm is disordered over two sites in a ratio of 44° and 56°.

Structure description top

The title compound C33H30S6 is a tri-functional dithioester derivative, which is used as a chain transfer agent (CTA) (Chong et al. 1999) in reversible addition fragmentation chain transfer (RAFT) polymerization. Being a tri-functional unit it can form the core of star polymer (Stenzel et al. 2001) when used as a CTA. Most of the reported mono functional CTAs are liquid and hence, very few single crystal XRD reports are available (Takolpuckdee et al. 2005). In the case of the multi-functional CTAs, depending upon the core it would be either solid or liquid. Since most of the synthesized multi-functional CTAs are characterized by other techniques, their single crystal XRD reports are not available. Here we report the title compound which is one such multi functional CTA, crystallised from hexane.

The title compound C33 H30 S6 adopts a cis,cis,cis- conformation where the three pendant arms (methylene benzodithioate) protrude on one side of the mean plane of the central benzene ring. Similar structures have been reported (Li et al., 2002) where the three pendant arms (phenylthio groups) adopt cis,trans, trans- conformation. The replacement of phenylthio groups by benzodithioate groups flips the conformation from cis,trans, trans (`soft-shelled crawling turtle') to cis,cis,cis- conformation ('tripod stand').

The dihedral angle between the central benzene ring and the three methylene benzodithioate groups are 72.54 (4)°, 89.68 (4)° and 86.74 (4)°. The torsion angle of the three methylene benzodithioate group C2—C10—S1—C11, C4—C18—S3–C19 and C6—C26—S5—C27 are 147.1 (3),-174.8 (3) and -179.3 (3)°, respectively.

For applications of the title compound, see: Stenzel-Rosenbaum et al. (2001); Chong et al. (1999); Takolpuckdee et al. (2005). For a related structure, see: Li et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atoms represented as 30% probability ellipsoids.
2,4,6-Trimethyl-3,5-bis[(phenylcarbonothioyl)sulfanylmethyl]benzyl benzenecarbodithioate top
Crystal data top
C33H30S6F(000) = 1296
Mr = 618.93Dx = 1.288 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4990 reflections
a = 9.5698 (3) Åθ = 2.7–22.8°
b = 21.7668 (10) ŵ = 0.45 mm1
c = 15.3823 (8) ÅT = 298 K
β = 94.819 (2)°Block, red
V = 3192.9 (2) Å30.40 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7773 independent reflections
Radiation source: fine-focus sealed tube3544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
phi and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 912
Tmin = 0.841, Tmax = 0.915k = 2929
23638 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0749P)2 + 1.3743P]
where P = (Fo2 + 2Fc2)/3
7773 reflections(Δ/σ)max < 0.001
363 parametersΔρmax = 0.68 e Å3
1 restraintΔρmin = 0.43 e Å3
Crystal data top
C33H30S6V = 3192.9 (2) Å3
Mr = 618.93Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5698 (3) ŵ = 0.45 mm1
b = 21.7668 (10) ÅT = 298 K
c = 15.3823 (8) Å0.40 × 0.22 × 0.20 mm
β = 94.819 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
7773 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3544 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.915Rint = 0.035
23638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.188H-atom parameters constrained
S = 1.01Δρmax = 0.68 e Å3
7773 reflectionsΔρmin = 0.43 e Å3
363 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1544 (3)0.05751 (14)0.5508 (3)0.0658 (9)
C20.0778 (3)0.07500 (14)0.4741 (2)0.0612 (9)
C30.0514 (3)0.10408 (14)0.4769 (2)0.0623 (9)
C40.1075 (3)0.11213 (14)0.5571 (3)0.0684 (10)
C50.0318 (4)0.09496 (16)0.6348 (3)0.0717 (10)
C60.0991 (4)0.06642 (15)0.6311 (3)0.0712 (10)
C70.2994 (4)0.02961 (17)0.5468 (3)0.0886 (12)
H7A0.29050.01170.52510.133*
H7B0.34730.02920.60420.133*
H7C0.35190.05370.50860.133*
C80.1286 (4)0.12723 (19)0.3935 (3)0.0865 (12)
H8A0.06200.14090.35430.130*
H8B0.18830.16080.40650.130*
H8C0.18440.09470.36660.130*
C90.0902 (5)0.1067 (2)0.7219 (3)0.1069 (15)
H9A0.15120.14180.71710.160*
H9B0.01440.11440.76540.160*
H9C0.14190.07140.73820.160*
C100.1363 (4)0.06230 (16)0.3885 (3)0.0755 (10)
H10A0.06020.05490.34400.091*
H10B0.19460.02580.39350.091*
C110.3706 (3)0.09594 (16)0.3015 (2)0.0672 (9)
C120.4644 (3)0.14406 (16)0.2717 (3)0.0691 (10)
C130.5167 (5)0.1390 (2)0.1906 (3)0.0962 (13)
H130.49620.10440.15650.115*
C140.5993 (5)0.1852 (3)0.1602 (4)0.1174 (18)
H140.63180.18210.10510.141*
C150.6332 (5)0.2353 (2)0.2109 (5)0.1130 (18)
H150.68870.26630.19020.136*
C160.5863 (4)0.2402 (2)0.2916 (4)0.0965 (13)
H160.61210.27390.32640.116*
C170.5010 (4)0.19564 (18)0.3221 (3)0.0792 (11)
H170.46760.20000.37680.095*
C180.2524 (4)0.13992 (16)0.5593 (3)0.0835 (12)
H18A0.29910.12250.60710.100*
H18B0.30840.13090.50520.100*
C190.4041 (3)0.24648 (15)0.5844 (2)0.0612 (8)
C200.4158 (4)0.31403 (16)0.5938 (2)0.0637 (9)
C210.3297 (5)0.35393 (19)0.5555 (4)0.1077 (16)
H210.25960.33910.52280.129*
C220.3475 (6)0.4169 (2)0.5657 (4)0.131 (2)
H220.28770.44380.54000.158*
C230.4486 (6)0.4397 (2)0.6115 (4)0.1091 (15)
H230.45980.48190.61680.131*
C240.5334 (5)0.4008 (2)0.6498 (3)0.0922 (13)
H240.60290.41640.68250.111*
C250.5189 (4)0.33840 (18)0.6414 (2)0.0745 (10)
H250.57910.31220.66810.089*
C260.1786 (5)0.04527 (17)0.7143 (3)0.0897 (12)
H26A0.22690.00700.70460.108*
H26B0.11460.03860.75910.108*
C270.3891 (4)0.07623 (15)0.8423 (2)0.0657 (9)
C280.5103 (4)0.11464 (17)0.8736 (2)0.0734 (10)
C290.541 (2)0.1707 (9)0.8418 (17)0.106 (4)0.444 (13)
H290.47510.18840.80140.127*0.444 (13)
C300.659 (2)0.2029 (9)0.8639 (16)0.126 (5)0.444 (13)
H300.67870.23880.83440.152*0.444 (13)
C29A0.4891 (16)0.1805 (7)0.8748 (12)0.106 (4)0.559 (13)
H29A0.40360.19810.85560.127*0.559 (13)
C30A0.6036 (18)0.2161 (8)0.9062 (11)0.126 (5)0.559 (13)
H30A0.59500.25820.91440.152*0.559 (13)
C310.7455 (8)0.1828 (4)0.9268 (4)0.150 (3)
H310.80590.20890.95960.180*
C320.7429 (6)0.1233 (3)0.9417 (3)0.1197 (18)
H320.82070.10430.97040.144*
C330.6275 (5)0.0890 (2)0.9155 (3)0.0947 (13)
H330.62880.04700.92640.114*
S10.23941 (10)0.12712 (4)0.35723 (8)0.0838 (3)
S20.39012 (14)0.02285 (5)0.28250 (9)0.1074 (4)
S30.23485 (10)0.22221 (5)0.57331 (10)0.0997 (4)
S40.53785 (10)0.19992 (5)0.58348 (8)0.0873 (4)
S50.30387 (13)0.10484 (5)0.74795 (8)0.0999 (4)
S60.34802 (13)0.01222 (5)0.88751 (8)0.0956 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0529 (19)0.0435 (17)0.102 (3)0.0026 (15)0.012 (2)0.0022 (18)
C20.0537 (19)0.0422 (16)0.089 (3)0.0039 (14)0.0129 (18)0.0020 (16)
C30.0524 (18)0.0427 (16)0.092 (3)0.0024 (14)0.0092 (18)0.0004 (17)
C40.056 (2)0.0477 (18)0.104 (3)0.0036 (15)0.018 (2)0.0068 (19)
C50.072 (2)0.056 (2)0.089 (3)0.0163 (18)0.021 (2)0.0066 (19)
C60.068 (2)0.0529 (19)0.091 (3)0.0124 (17)0.002 (2)0.0078 (19)
C70.063 (2)0.063 (2)0.138 (4)0.0059 (18)0.002 (2)0.006 (2)
C80.074 (2)0.076 (2)0.108 (3)0.010 (2)0.004 (2)0.003 (2)
C90.116 (4)0.102 (3)0.108 (4)0.026 (3)0.037 (3)0.016 (3)
C100.073 (2)0.0525 (19)0.104 (3)0.0045 (17)0.026 (2)0.0056 (19)
C110.062 (2)0.060 (2)0.081 (3)0.0077 (17)0.0129 (18)0.0047 (18)
C120.0562 (19)0.063 (2)0.090 (3)0.0115 (17)0.0190 (19)0.0035 (19)
C130.100 (3)0.086 (3)0.108 (3)0.009 (2)0.042 (3)0.002 (3)
C140.114 (4)0.114 (4)0.134 (5)0.018 (3)0.071 (3)0.025 (4)
C150.082 (3)0.087 (3)0.175 (6)0.005 (3)0.047 (3)0.028 (4)
C160.072 (3)0.081 (3)0.140 (4)0.009 (2)0.024 (3)0.002 (3)
C170.065 (2)0.078 (3)0.096 (3)0.001 (2)0.015 (2)0.000 (2)
C180.059 (2)0.059 (2)0.136 (4)0.0014 (17)0.028 (2)0.018 (2)
C190.0589 (19)0.064 (2)0.063 (2)0.0018 (16)0.0155 (15)0.0032 (16)
C200.066 (2)0.062 (2)0.065 (2)0.0060 (17)0.0104 (17)0.0004 (17)
C210.118 (4)0.069 (3)0.145 (4)0.009 (2)0.064 (3)0.011 (3)
C220.161 (5)0.070 (3)0.173 (6)0.017 (3)0.072 (4)0.000 (3)
C230.141 (4)0.069 (3)0.117 (4)0.016 (3)0.015 (3)0.016 (3)
C240.103 (3)0.089 (3)0.085 (3)0.034 (3)0.009 (2)0.011 (2)
C250.076 (2)0.080 (3)0.068 (2)0.019 (2)0.0104 (18)0.0026 (19)
C260.100 (3)0.060 (2)0.107 (3)0.026 (2)0.006 (2)0.014 (2)
C270.083 (2)0.0506 (18)0.066 (2)0.0023 (17)0.0209 (18)0.0040 (16)
C280.091 (3)0.061 (2)0.067 (2)0.008 (2)0.001 (2)0.0029 (18)
C290.087 (9)0.062 (5)0.164 (14)0.009 (6)0.016 (7)0.005 (7)
C300.138 (12)0.085 (7)0.151 (14)0.043 (7)0.015 (8)0.009 (7)
C29A0.087 (9)0.062 (5)0.164 (14)0.009 (6)0.016 (7)0.005 (7)
C30A0.138 (12)0.085 (7)0.151 (14)0.043 (7)0.015 (8)0.009 (7)
C310.156 (6)0.179 (7)0.108 (5)0.087 (6)0.029 (4)0.010 (4)
C320.106 (4)0.160 (6)0.087 (4)0.018 (4)0.020 (3)0.005 (4)
C330.106 (3)0.094 (3)0.081 (3)0.002 (3)0.011 (3)0.002 (2)
S10.0767 (6)0.0507 (5)0.1303 (9)0.0011 (4)0.0448 (6)0.0054 (5)
S20.1203 (9)0.0640 (6)0.1464 (11)0.0082 (6)0.0606 (8)0.0146 (7)
S30.0552 (6)0.0626 (6)0.1851 (13)0.0040 (4)0.0333 (6)0.0255 (7)
S40.0607 (6)0.0743 (6)0.1307 (10)0.0039 (5)0.0304 (6)0.0019 (6)
S50.1170 (9)0.0645 (6)0.1114 (9)0.0320 (6)0.0304 (7)0.0302 (6)
S60.1257 (9)0.0739 (7)0.0882 (8)0.0192 (6)0.0141 (7)0.0241 (6)
Geometric parameters (Å, º) top
C1—C21.389 (5)C18—H18A0.9700
C1—C61.398 (5)C18—H18B0.9700
C1—C71.520 (5)C19—C201.483 (5)
C2—C31.393 (4)C19—S41.632 (3)
C2—C101.499 (5)C19—S31.726 (3)
C3—C41.398 (5)C20—C211.364 (5)
C3—C81.512 (5)C20—C251.383 (5)
C4—C51.396 (5)C21—C221.392 (6)
C4—C181.516 (5)C21—H210.9300
C5—C61.403 (5)C22—C231.339 (7)
C5—C91.515 (5)C22—H220.9300
C6—C261.504 (5)C23—C241.342 (6)
C7—H7A0.9600C23—H230.9300
C7—H7B0.9600C24—C251.373 (6)
C7—H7C0.9600C24—H240.9300
C8—H8A0.9600C25—H250.9300
C8—H8B0.9600C26—S51.812 (4)
C8—H8C0.9600C26—H26A0.9700
C9—H9A0.9600C26—H26B0.9700
C9—H9B0.9600C27—C281.477 (5)
C9—H9C0.9600C27—S61.620 (3)
C10—S11.810 (3)C27—S51.721 (4)
C10—H10A0.9700C28—C291.36 (2)
C10—H10B0.9700C28—C331.365 (5)
C11—C121.478 (5)C28—C29A1.447 (16)
C11—S21.631 (3)C29—C301.35 (3)
C11—S11.718 (3)C29—H290.9300
C12—C131.386 (5)C30—C311.29 (2)
C12—C171.392 (5)C30—H300.9300
C13—C141.385 (6)C29A—C30A1.39 (2)
C13—H130.9300C29A—H29A0.9300
C14—C151.364 (7)C30A—C311.55 (2)
C14—H140.9300C30A—H30A0.9300
C15—C161.359 (7)C31—C321.316 (8)
C15—H150.9300C31—H310.9300
C16—C171.376 (5)C32—C331.365 (7)
C16—H160.9300C32—H320.9300
C17—H170.9300C33—H330.9300
C18—S31.810 (4)
C2—C1—C6120.0 (3)C4—C18—H18B109.9
C2—C1—C7119.6 (4)S3—C18—H18B109.9
C6—C1—C7120.4 (4)H18A—C18—H18B108.3
C1—C2—C3120.3 (3)C20—C19—S4123.4 (2)
C1—C2—C10119.1 (3)C20—C19—S3113.1 (2)
C3—C2—C10120.6 (3)S4—C19—S3123.4 (2)
C2—C3—C4119.5 (3)C21—C20—C25117.9 (3)
C2—C3—C8119.8 (3)C21—C20—C19122.4 (3)
C4—C3—C8120.7 (3)C25—C20—C19119.7 (3)
C5—C4—C3120.8 (3)C20—C21—C22119.6 (4)
C5—C4—C18119.9 (4)C20—C21—H21120.2
C3—C4—C18119.3 (4)C22—C21—H21120.2
C4—C5—C6119.0 (3)C23—C22—C21121.6 (5)
C4—C5—C9120.5 (4)C23—C22—H22119.2
C6—C5—C9120.5 (4)C21—C22—H22119.2
C1—C6—C5120.2 (3)C22—C23—C24119.2 (5)
C1—C6—C26120.5 (4)C22—C23—H23120.4
C5—C6—C26119.3 (4)C24—C23—H23120.4
C1—C7—H7A109.5C23—C24—C25120.8 (4)
C1—C7—H7B109.5C23—C24—H24119.6
H7A—C7—H7B109.5C25—C24—H24119.6
C1—C7—H7C109.5C24—C25—C20120.8 (4)
H7A—C7—H7C109.5C24—C25—H25119.6
H7B—C7—H7C109.5C20—C25—H25119.6
C3—C8—H8A109.5C6—C26—S5107.4 (2)
C3—C8—H8B109.5C6—C26—H26A110.2
H8A—C8—H8B109.5S5—C26—H26A110.2
C3—C8—H8C109.5C6—C26—H26B110.2
H8A—C8—H8C109.5S5—C26—H26B110.2
H8B—C8—H8C109.5H26A—C26—H26B108.5
C5—C9—H9A109.5C28—C27—S6124.0 (3)
C5—C9—H9B109.5C28—C27—S5112.0 (2)
H9A—C9—H9B109.5S6—C27—S5123.9 (2)
C5—C9—H9C109.5C29—C28—C33110.1 (9)
H9A—C9—H9C109.5C29—C28—C29A31.6 (8)
H9B—C9—H9C109.5C33—C28—C29A120.6 (7)
C2—C10—S1110.0 (2)C29—C28—C27125.4 (10)
C2—C10—H10A109.7C33—C28—C27120.9 (4)
S1—C10—H10A109.7C29A—C28—C27117.2 (7)
C2—C10—H10B109.7C30—C29—C28125 (2)
S1—C10—H10B109.7C30—C29—H29117.4
H10A—C10—H10B108.2C28—C29—H29117.4
C12—C11—S2123.6 (3)C31—C30—C29118.7 (19)
C12—C11—S1111.3 (2)C31—C30—H30120.6
S2—C11—S1125.1 (2)C29—C30—H30120.6
C13—C12—C17118.1 (4)C30A—C29A—C28116.6 (13)
C13—C12—C11119.9 (4)C30A—C29A—H29A121.7
C17—C12—C11122.0 (3)C28—C29A—H29A121.7
C14—C13—C12120.4 (5)C29A—C30A—C31117.4 (12)
C14—C13—H13119.8C29A—C30A—H30A121.3
C12—C13—H13119.8C31—C30A—H30A121.3
C15—C14—C13120.2 (5)C30—C31—C32116.3 (10)
C15—C14—H14119.9C30—C31—C30A36.5 (9)
C13—C14—H14119.9C32—C31—C30A117.8 (7)
C16—C15—C14120.3 (5)C30—C31—H31121.8
C16—C15—H15119.9C32—C31—H31121.8
C14—C15—H15119.9C30A—C31—H31108.6
C15—C16—C17120.5 (5)C31—C32—C33120.9 (6)
C15—C16—H16119.7C31—C32—H32119.6
C17—C16—H16119.7C33—C32—H32119.6
C16—C17—C12120.5 (4)C32—C33—C28121.9 (5)
C16—C17—H17119.8C32—C33—H33119.1
C12—C17—H17119.8C28—C33—H33119.1
C4—C18—S3108.7 (2)C11—S1—C10105.19 (17)
C4—C18—H18A109.9C19—S3—C18103.65 (16)
S3—C18—H18A109.9C27—S5—C26103.75 (18)
C6—C1—C2—C33.0 (5)C25—C20—C21—C220.3 (7)
C7—C1—C2—C3176.0 (3)C19—C20—C21—C22179.0 (4)
C6—C1—C2—C10177.1 (3)C20—C21—C22—C230.8 (9)
C7—C1—C2—C103.8 (4)C21—C22—C23—C241.1 (9)
C1—C2—C3—C44.0 (5)C22—C23—C24—C250.9 (8)
C10—C2—C3—C4176.2 (3)C23—C24—C25—C200.5 (7)
C1—C2—C3—C8175.3 (3)C21—C20—C25—C240.1 (6)
C10—C2—C3—C84.5 (5)C19—C20—C25—C24178.9 (3)
C2—C3—C4—C54.1 (5)C1—C6—C26—S583.7 (4)
C8—C3—C4—C5175.2 (3)C5—C6—C26—S596.6 (4)
C2—C3—C4—C18175.9 (3)S6—C27—C28—C29174.4 (10)
C8—C3—C4—C184.8 (5)S5—C27—C28—C299.7 (11)
C3—C4—C5—C63.3 (5)S6—C27—C28—C3329.1 (5)
C18—C4—C5—C6176.7 (3)S5—C27—C28—C33146.9 (3)
C3—C4—C5—C9177.0 (3)S6—C27—C28—C29A138.4 (8)
C18—C4—C5—C93.0 (5)S5—C27—C28—C29A45.7 (9)
C2—C1—C6—C52.2 (5)C33—C28—C29—C3014 (2)
C7—C1—C6—C5176.8 (3)C29A—C28—C29—C30102 (4)
C2—C1—C6—C26177.5 (3)C27—C28—C29—C30172.5 (13)
C7—C1—C6—C263.5 (5)C28—C29—C30—C318 (3)
C4—C5—C6—C12.4 (5)C29—C28—C29A—C30A67 (3)
C9—C5—C6—C1177.9 (3)C33—C28—C29A—C30A11.2 (16)
C4—C5—C6—C26177.3 (3)C27—C28—C29A—C30A178.8 (9)
C9—C5—C6—C262.4 (5)C28—C29A—C30A—C316.7 (18)
C1—C2—C10—S190.9 (3)C29—C30—C31—C3226 (2)
C3—C2—C10—S189.0 (3)C29—C30—C31—C30A76 (2)
S2—C11—C12—C1337.9 (5)C29A—C30A—C31—C3075 (2)
S1—C11—C12—C13141.6 (3)C29A—C30A—C31—C3222.0 (16)
S2—C11—C12—C17143.2 (3)C30—C31—C32—C3322.3 (15)
S1—C11—C12—C1737.3 (4)C30A—C31—C32—C3318.9 (12)
C17—C12—C13—C142.0 (6)C31—C32—C33—C280.5 (9)
C11—C12—C13—C14176.9 (4)C29—C28—C33—C3217.4 (12)
C12—C13—C14—C151.9 (7)C29A—C28—C33—C3215.8 (10)
C13—C14—C15—C160.1 (8)C27—C28—C33—C32177.2 (4)
C14—C15—C16—C171.8 (7)C12—C11—S1—C10179.9 (3)
C15—C16—C17—C121.7 (6)S2—C11—S1—C100.6 (3)
C13—C12—C17—C160.2 (6)C2—C10—S1—C11147.4 (3)
C11—C12—C17—C16178.6 (3)C20—C19—S3—C18178.0 (3)
C5—C4—C18—S387.6 (4)S4—C19—S3—C181.4 (3)
C3—C4—C18—S392.3 (4)C4—C18—S3—C19174.8 (3)
S4—C19—C20—C21148.1 (4)C28—C27—S5—C26171.9 (3)
S3—C19—C20—C2131.2 (5)S6—C27—S5—C264.0 (3)
S4—C19—C20—C2530.6 (5)C6—C26—S5—C27179.7 (3)
S3—C19—C20—C25150.0 (3)

Experimental details

Crystal data
Chemical formulaC33H30S6
Mr618.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.5698 (3), 21.7668 (10), 15.3823 (8)
β (°) 94.819 (2)
V3)3192.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.40 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.841, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
23638, 7773, 3544
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.188, 1.01
No. of reflections7773
No. of parameters363
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.43

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChong, Y. K., Le, T. P. T., Moad, G., Rizzardo, E. & Thang, S. H. (1999). Macromolecules, 32, 2071–2074.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, J.-R., Yan, Z., Du, M., Xie, Y.-B., Zhang, R.-H. & Bu, X.-H. (2002). Acta Cryst. E58, o243–o244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStenzel-Rosenbaum, M., Davis, T. P., Chen, V. & Fane, A. G. (2001). J. Polym. Sci. A, 39, 2777–2783.  Web of Science CrossRef CAS Google Scholar
First citationTakolpuckdee, P., Mars, C. A., Perrier, S. & Archibald, S. J. (2005). Macromolecules, 38, 1057–1060.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds