organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-(2-Meth­oxy­phen­yl)imino­meth­yl]-N,N-di­methyl­aniline

aKey Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
*Correspondence e-mail: bamboo19830406@163.com

(Received 26 April 2010; accepted 11 May 2010; online 15 May 2010)

In the title compound, C16H18N2O, the dihedral angle between the benzene rings is 38.5 (2)°. The crystal packing is stabilized by weak C—H⋯N and C—H⋯O inter­actions and aromatic ππ stacking [centroid–centroid separations = 3.620 (5) and 3.546 (4) Å].

Related literature

For general background to Schiff bases, see: Atwood & Harvey (2001[Atwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37-52.]). For a related structure, see: Liu et al. (2009[Liu, X.-Y., Fan, Y.-H., Bi, C.-F., Wang, Q. & Gao, Y. (2009). Acta Cryst. E65, o2170.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N2O

  • Mr = 254.32

  • Orthorhombic, P n a 21

  • a = 15.182 (8) Å

  • b = 11.756 (6) Å

  • c = 7.809 (4) Å

  • V = 1393.8 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.60 × 0.58 × 0.49 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.963

  • 6900 measured reflections

  • 2335 independent reflections

  • 1554 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.01

  • 2335 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8C⋯N1i 0.96 2.67 3.620 (5) 170
C4—H4⋯O1i 0.93 2.64 3.546 (4) 166
Symmetry code: (i) [-x, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base ligands are among the most fundamental chelating systems in coordination chemistry (e.g. Atwood & Harvey, 2001). Herein, we present the synthesis and structure of a new schiff base ligand, 4-{(E)-[(2-methoxyphenyl)imino]methyl}-N,N-dimethylaniline.

The crystal structure of the title compound is given in Fig. 1. The bond lengths and angles (Table 1) in the title compound are found to have normal values (Liu et al., 2009). This compound has a non-planar molecular structure, the dihedral angle between the two benzene rings is 38.54 °. In the crystal, the adjacent molecules are stabilized by non-classical C—H···N and C—H···O hydrogen bonding, with the distance of 3.620 (5) and 3.546 (4) Å (Table 2), respectively. Molecules are linked into chain along the c axis by the above weak interactions (Fig. 2).

Related literature top

For general background to Schiff bases, see: Atwood & Harvey (2001). For a related structure, see: Liu et al. (2009).

Experimental top

4-(dimethylamino) benzaldehyde (10 mmol, 1.492 g) was added with stirring to anhydrous ethanol (30 ml) and an anhydrous ethanol solution (10 ml) of 2-methoxybenzenamine (10 mmol, 1.232 g) was slowly added. The reaction mixture was stirred at 353 K for 4 h, a yellow solid then separated out. The precipitate formed was filtered off, washed several times with anhydrous ethanol and dried under vacuum. Yellow blocks of (I) were obtained from anhydrous ethanol solution after 10 days by slow evaporation at room temperature.

Refinement top

The absolute structure of (I) is indeterminate based on the present refinement. All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å (methyl), 0.93 Å (methenyl), 0.93 Å (aromatic), and Uiso(H) =1.2Ueq(C).

Structure description top

Schiff base ligands are among the most fundamental chelating systems in coordination chemistry (e.g. Atwood & Harvey, 2001). Herein, we present the synthesis and structure of a new schiff base ligand, 4-{(E)-[(2-methoxyphenyl)imino]methyl}-N,N-dimethylaniline.

The crystal structure of the title compound is given in Fig. 1. The bond lengths and angles (Table 1) in the title compound are found to have normal values (Liu et al., 2009). This compound has a non-planar molecular structure, the dihedral angle between the two benzene rings is 38.54 °. In the crystal, the adjacent molecules are stabilized by non-classical C—H···N and C—H···O hydrogen bonding, with the distance of 3.620 (5) and 3.546 (4) Å (Table 2), respectively. Molecules are linked into chain along the c axis by the above weak interactions (Fig. 2).

For general background to Schiff bases, see: Atwood & Harvey (2001). For a related structure, see: Liu et al. (2009).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the crystal structure of (I) showing chain to the c linked via C—H···N and C—H···O contacts.
4-[(E)-(2-Methoxyphenyl)iminomethyl]-N,N-dimethylaniline top
Crystal data top
C16H18N2OF(000) = 544
Mr = 254.32Dx = 1.212 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1616 reflections
a = 15.182 (8) Åθ = 2.7–21.5°
b = 11.756 (6) ŵ = 0.08 mm1
c = 7.809 (4) ÅT = 298 K
V = 1393.8 (13) Å3Block, yellow
Z = 40.60 × 0.58 × 0.49 mm
Data collection top
Siemens SMART CCD
diffractometer
2335 independent reflections
Radiation source: fine-focus sealed tube1554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 1718
Tmin = 0.956, Tmax = 0.963k = 1311
6900 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.2535P]
where P = (Fo2 + 2Fc2)/3
2335 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C16H18N2OV = 1393.8 (13) Å3
Mr = 254.32Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 15.182 (8) ŵ = 0.08 mm1
b = 11.756 (6) ÅT = 298 K
c = 7.809 (4) Å0.60 × 0.58 × 0.49 mm
Data collection top
Siemens SMART CCD
diffractometer
2335 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
1554 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.963Rint = 0.055
6900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.123H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
2335 reflectionsΔρmin = 0.18 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.08529 (16)0.7420 (2)1.1920 (4)0.0457 (6)
N20.1439 (2)1.0507 (2)0.5158 (4)0.0597 (8)
O10.04554 (14)0.71462 (18)1.4179 (3)0.0612 (6)
C10.10910 (19)0.7230 (3)1.0385 (5)0.0483 (8)
H10.12490.64901.00950.058*
C20.11330 (18)0.8091 (2)0.9052 (4)0.0441 (7)
C30.0861 (2)0.9208 (2)0.9266 (5)0.0498 (8)
H30.06220.94241.03130.060*
C40.0930 (2)1.0008 (3)0.7990 (4)0.0488 (8)
H40.07211.07420.81720.059*
C50.1316 (2)0.9720 (3)0.6405 (4)0.0441 (8)
C60.1559 (2)0.8582 (3)0.6161 (4)0.0486 (8)
H60.17890.83540.51120.058*
C70.1464 (2)0.7804 (3)0.7451 (4)0.0490 (9)
H70.16280.70530.72470.059*
C80.1310 (2)1.1711 (3)0.5473 (6)0.0668 (10)
H8A0.14251.21300.44410.100*
H8B0.17061.19590.63560.100*
H8C0.07141.18430.58320.100*
C90.1775 (3)1.0189 (3)0.3522 (5)0.0838 (13)
H9A0.18161.08500.28050.126*
H9B0.13860.96450.30030.126*
H9C0.23490.98580.36560.126*
C100.09047 (19)0.6513 (2)1.3124 (4)0.0419 (7)
C110.0228 (2)0.6391 (2)1.4323 (4)0.0455 (7)
C120.0272 (2)0.5535 (2)1.5526 (5)0.0535 (8)
H120.01820.54501.63150.064*
C130.0982 (2)0.4804 (3)1.5570 (5)0.0613 (9)
H130.10050.42281.63850.074*
C140.1645 (2)0.4925 (3)1.4428 (5)0.0600 (9)
H140.21240.44331.44620.072*
C150.1615 (2)0.5780 (2)1.3207 (5)0.0522 (8)
H150.20770.58611.24350.063*
C160.1075 (3)0.7158 (4)1.5491 (7)0.1119 (18)
H16A0.15170.77181.52460.168*
H16B0.07890.73411.65530.168*
H16C0.13450.64221.55780.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0510 (15)0.0398 (15)0.0465 (16)0.0020 (12)0.0057 (14)0.0021 (13)
N20.082 (2)0.0495 (17)0.0477 (19)0.0023 (15)0.0034 (16)0.0051 (14)
O10.0611 (14)0.0659 (14)0.0565 (14)0.0128 (11)0.0183 (14)0.0079 (13)
C10.0491 (18)0.0401 (17)0.056 (2)0.0014 (13)0.0061 (17)0.0022 (18)
C20.0444 (16)0.0412 (17)0.047 (2)0.0059 (14)0.0060 (16)0.0013 (16)
C30.0525 (18)0.0463 (17)0.0506 (19)0.0001 (14)0.0084 (18)0.0012 (18)
C40.0532 (19)0.0412 (17)0.052 (2)0.0033 (15)0.0015 (18)0.0010 (17)
C50.0472 (18)0.0457 (18)0.0393 (19)0.0050 (14)0.0056 (15)0.0044 (16)
C60.0574 (19)0.051 (2)0.0379 (18)0.0011 (15)0.0008 (15)0.0072 (16)
C70.057 (2)0.0390 (18)0.051 (2)0.0002 (15)0.0008 (16)0.0017 (16)
C80.072 (2)0.051 (2)0.077 (2)0.0034 (17)0.005 (2)0.0163 (19)
C90.123 (4)0.070 (3)0.058 (3)0.007 (2)0.006 (3)0.011 (2)
C100.0513 (18)0.0315 (15)0.0430 (18)0.0035 (14)0.0018 (16)0.0028 (15)
C110.0547 (18)0.0434 (17)0.0383 (17)0.0013 (14)0.0023 (17)0.0032 (16)
C120.061 (2)0.0488 (19)0.050 (2)0.0071 (16)0.0132 (18)0.0029 (17)
C130.076 (2)0.0470 (19)0.061 (2)0.0001 (18)0.004 (2)0.0091 (19)
C140.057 (2)0.0491 (19)0.074 (3)0.0080 (15)0.004 (2)0.011 (2)
C150.0488 (18)0.0497 (19)0.058 (2)0.0004 (15)0.0052 (17)0.0025 (18)
C160.108 (3)0.122 (4)0.106 (4)0.047 (3)0.061 (3)0.035 (3)
Geometric parameters (Å, º) top
N1—C11.272 (4)C8—H8A0.9600
N1—C101.423 (4)C8—H8B0.9600
N2—C51.356 (4)C8—H8C0.9600
N2—C91.425 (5)C9—H9A0.9600
N2—C81.450 (4)C9—H9B0.9600
O1—C111.370 (3)C9—H9C0.9600
O1—C161.390 (5)C10—C151.382 (4)
C1—C21.453 (5)C10—C111.398 (4)
C1—H10.9300C11—C121.378 (4)
C2—C31.387 (4)C12—C131.379 (4)
C2—C71.390 (4)C12—H120.9300
C3—C41.374 (4)C13—C141.353 (5)
C3—H30.9300C13—H130.9300
C4—C51.410 (4)C14—C151.386 (4)
C4—H40.9300C14—H140.9300
C5—C61.401 (4)C15—H150.9300
C6—C71.368 (4)C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—H70.9300C16—H16C0.9600
C1—N1—C10118.4 (3)H8B—C8—H8C109.5
C5—N2—C9120.9 (3)N2—C9—H9A109.5
C5—N2—C8121.7 (3)N2—C9—H9B109.5
C9—N2—C8117.2 (3)H9A—C9—H9B109.5
C11—O1—C16117.3 (3)N2—C9—H9C109.5
N1—C1—C2124.4 (3)H9A—C9—H9C109.5
N1—C1—H1117.8H9B—C9—H9C109.5
C2—C1—H1117.8C15—C10—C11118.6 (3)
C3—C2—C7116.5 (3)C15—C10—N1122.8 (3)
C3—C2—C1124.1 (3)C11—C10—N1118.6 (3)
C7—C2—C1119.4 (3)O1—C11—C12124.4 (3)
C4—C3—C2122.5 (3)O1—C11—C10115.8 (3)
C4—C3—H3118.7C12—C11—C10119.7 (3)
C2—C3—H3118.7C11—C12—C13120.7 (3)
C3—C4—C5120.3 (3)C11—C12—H12119.7
C3—C4—H4119.9C13—C12—H12119.7
C5—C4—H4119.9C14—C13—C12120.0 (3)
N2—C5—C6121.2 (3)C14—C13—H13120.0
N2—C5—C4121.6 (3)C12—C13—H13120.0
C6—C5—C4117.3 (3)C13—C14—C15120.3 (3)
C7—C6—C5120.7 (3)C13—C14—H14119.8
C7—C6—H6119.6C15—C14—H14119.8
C5—C6—H6119.6C10—C15—C14120.7 (3)
C6—C7—C2122.6 (3)C10—C15—H15119.6
C6—C7—H7118.7C14—C15—H15119.6
C2—C7—H7118.7O1—C16—H16A109.5
N2—C8—H8A109.5O1—C16—H16B109.5
N2—C8—H8B109.5H16A—C16—H16B109.5
H8A—C8—H8B109.5O1—C16—H16C109.5
N2—C8—H8C109.5H16A—C16—H16C109.5
H8A—C8—H8C109.5H16B—C16—H16C109.5
C10—N1—C1—C2175.4 (3)C1—C2—C7—C6177.0 (3)
N1—C1—C2—C34.6 (5)C1—N1—C10—C1542.7 (4)
N1—C1—C2—C7175.3 (3)C1—N1—C10—C11140.4 (3)
C7—C2—C3—C41.6 (5)C16—O1—C11—C1210.2 (5)
C1—C2—C3—C4178.4 (3)C16—O1—C11—C10170.9 (4)
C2—C3—C4—C52.1 (5)C15—C10—C11—O1179.7 (3)
C9—N2—C5—C63.6 (5)N1—C10—C11—O12.5 (4)
C8—N2—C5—C6170.9 (3)C15—C10—C11—C121.5 (4)
C9—N2—C5—C4175.8 (3)N1—C10—C11—C12178.6 (3)
C8—N2—C5—C49.8 (5)O1—C11—C12—C13179.4 (3)
C3—C4—C5—N2176.2 (3)C10—C11—C12—C130.7 (5)
C3—C4—C5—C64.5 (4)C11—C12—C13—C140.2 (5)
N2—C5—C6—C7177.4 (3)C12—C13—C14—C150.1 (5)
C4—C5—C6—C73.2 (4)C11—C10—C15—C141.5 (4)
C5—C6—C7—C20.5 (5)N1—C10—C15—C14178.5 (3)
C3—C2—C7—C62.9 (5)C13—C14—C15—C100.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···N1i0.962.673.620 (5)170
C4—H4···O1i0.932.643.546 (4)166
Symmetry code: (i) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H18N2O
Mr254.32
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)15.182 (8), 11.756 (6), 7.809 (4)
V3)1393.8 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.60 × 0.58 × 0.49
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.956, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
6900, 2335, 1554
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.01
No. of reflections2335
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N1—C11.272 (4)C1—C21.453 (5)
N1—C101.423 (4)
C1—N1—C10118.4 (3)C11—C10—N1118.6 (3)
N1—C1—C2124.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···N1i0.962.673.620 (5)170
C4—H4···O1i0.932.643.546 (4)166
Symmetry code: (i) x, y+2, z1/2.
 

Acknowledgements

The authors acknowledge the National Science Foundation of China for its financial support of this project (grant No. 20971115).

References

First citationAtwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37–52.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X.-Y., Fan, Y.-H., Bi, C.-F., Wang, Q. & Gao, Y. (2009). Acta Cryst. E65, o2170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds