metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-bi­phenyl-2,2′-di­carboxyl­ato)bis­­[aqua­(2,2′-bi­pyridine)cadmium(II)]

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China, and bDepartment of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
*Correspondence e-mail: anzhe6409@sina.com

(Received 27 April 2010; accepted 5 May 2010; online 12 May 2010)

In the centrosymmetric dinuclear mol­ecule of the title compound, [Cd2(C14H8O4)2(C10H8N2)2(H2O)2], the Cd2+ ion is coordinated by three O atoms from two different diphenyl­dicarboxyl­ate (dpa) ligands (one O,O′-bidentate and one monodentate), a chelating bipyridine ligand and a water mol­ecule, generating an extremely distorted trigonal-prismatic (or irregular) CdN2O4 coordination geometry for the metal ion. The bridging ligands generate an 18-membered ring, which is stabilized by two pairs of intra­molecular O—H⋯O hydrogen bonds.

Related literature

For background to coordination polymers, see: Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]); Ghosh & Bharadwaj (2004[Ghosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293-2298.]); Evans et al. (1999[Evans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 111, 557-559.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C14H8O4)2(C10H8N2)2(H2O)2]

  • Mr = 1053.61

  • Monoclinic, P 21 /n

  • a = 11.532 (2) Å

  • b = 10.961 (2) Å

  • c = 16.891 (3) Å

  • β = 98.37 (3)°

  • V = 2112.4 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 295 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.882, Tmax = 0.919

  • 15936 measured reflections

  • 3697 independent reflections

  • 3223 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.063

  • S = 1.00

  • 3697 reflections

  • 295 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O4 2.1960 (18)
Cd1—O1 2.2540 (18)
Cd1—N2 2.324 (2)
Cd1—N1 2.362 (2)
Cd1—O5 2.385 (2)
Cd1—O2 2.586 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1W⋯O4i 0.81 (4) 1.94 (4) 2.738 (3) 168 (4)
O5—H2W⋯O2i 0.80 (4) 2.28 (4) 2.932 (3) 138 (3)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design of inorganic-organic supramolecular complexes has received long-lasting research interest not only because of their appealing structural and topological novelty but also due to their unusual optical, electronic, magnetic and catalytic properties, and their further potential medical value derived from their antiviral and the inhibition of angiogenesis (Hagrman et al., 1999; Ghosh et al., 2004; Evans et al., 1999). In this paper, we report one new metal complexes constructed from 2,2-bipyridine, diphenate, and cadmium(II) ion.

Figure 1 gives the Cd atom is coordinated by three oxygen atoms from two different dpa ligands with Cd—O bond distance range from 2.1964 (19) to 2.586 (2) %A, and two nitrogen atoms from one bipyridine ligand (average Cd—N distance 2.343 %A). Two such asymmetric units connect to form an 18-numbered ring, which contains two Cd atoms, two dpa ligands, and two bipyridine ligands.

Related literature top

For background to coordination polymers, see: Hagrman et al. (1999); Ghosh et al. (2004); Evans et al. (1999).

Experimental top

A mixture of cadmium(II) acetate (1 mmol), diphenic acid (1 mmol), 2,2'-bipyridine (1 mmol), sodium hydroxide (2 mmol)and water (15 ml) was stirred for 30 min in air. The mixture was then transferred to a 25 ml Teflon-lined hydrothermal bomb. The bomb was kept at 433 K for 72 h under autogenous pressure. Upon cooling, colorless prisms of (I) were obtained from the reaction mixture.

Refinement top

The water H atoms were located in a difference map and freely refined. All C-bound H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Structure description top

The design of inorganic-organic supramolecular complexes has received long-lasting research interest not only because of their appealing structural and topological novelty but also due to their unusual optical, electronic, magnetic and catalytic properties, and their further potential medical value derived from their antiviral and the inhibition of angiogenesis (Hagrman et al., 1999; Ghosh et al., 2004; Evans et al., 1999). In this paper, we report one new metal complexes constructed from 2,2-bipyridine, diphenate, and cadmium(II) ion.

Figure 1 gives the Cd atom is coordinated by three oxygen atoms from two different dpa ligands with Cd—O bond distance range from 2.1964 (19) to 2.586 (2) %A, and two nitrogen atoms from one bipyridine ligand (average Cd—N distance 2.343 %A). Two such asymmetric units connect to form an 18-numbered ring, which contains two Cd atoms, two dpa ligands, and two bipyridine ligands.

For background to coordination polymers, see: Hagrman et al. (1999); Ghosh et al. (2004); Evans et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms. Unlablled atoms are generated by (1–x, 1–y, –z).
Bis(µ-biphenyl-2,2'-dicarboxylato)bis[aqua(2,2'-bipyridine)cadmium(II)] top
Crystal data top
[Cd2(C14H8O4)2(C10H8N2)2(H2O)2]F(000) = 1056
Mr = 1053.61Dx = 1.656 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3697 reflections
a = 11.532 (2) Åθ = 3.1–25.0°
b = 10.961 (2) ŵ = 1.07 mm1
c = 16.891 (3) ÅT = 295 K
β = 98.37 (3)°Block, colorless
V = 2112.4 (7) Å30.12 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3697 independent reflections
Radiation source: fine-focus sealed tube3223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.882, Tmax = 0.919k = 1213
15936 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.8848P]
where P = (Fo2 + 2Fc2)/3
3697 reflections(Δ/σ)max = 0.003
295 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Cd2(C14H8O4)2(C10H8N2)2(H2O)2]V = 2112.4 (7) Å3
Mr = 1053.61Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.532 (2) ŵ = 1.07 mm1
b = 10.961 (2) ÅT = 295 K
c = 16.891 (3) Å0.12 × 0.10 × 0.08 mm
β = 98.37 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3697 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3223 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.919Rint = 0.030
15936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.59 e Å3
3697 reflectionsΔρmin = 0.26 e Å3
295 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7107 (2)0.6689 (2)0.01343 (15)0.0395 (6)
C20.8213 (2)0.6527 (2)0.04980 (14)0.0346 (5)
C30.9266 (2)0.6536 (2)0.00182 (15)0.0432 (6)
H30.92510.66070.05650.052*
C41.0330 (2)0.6445 (3)0.02535 (17)0.0531 (7)
H41.10250.64640.01030.064*
C51.0349 (2)0.6323 (3)0.10596 (18)0.0616 (8)
H51.10620.62570.12530.074*
C60.9320 (2)0.6300 (3)0.15806 (16)0.0534 (7)
H60.93510.62180.21250.064*
C70.8229 (2)0.6394 (2)0.13230 (14)0.0375 (5)
C80.6572 (3)0.8714 (3)0.17640 (18)0.0637 (8)
H80.70790.80550.17590.076*
C90.6904 (3)0.9662 (4)0.22807 (19)0.0726 (10)
H90.76030.96310.26330.087*
C100.6179 (3)1.0650 (3)0.2263 (2)0.0730 (9)
H100.63881.13110.25990.088*
C110.5144 (3)1.0669 (3)0.17499 (19)0.0603 (8)
H110.46541.13460.17240.072*
C120.4840 (2)0.9658 (2)0.12683 (15)0.0434 (6)
C130.3711 (2)0.9582 (2)0.07259 (16)0.0415 (6)
C140.2774 (3)1.0359 (2)0.0786 (2)0.0586 (8)
H140.28331.09470.11870.070*
C150.1764 (3)1.0254 (3)0.0250 (2)0.0705 (9)
H150.11331.07710.02840.085*
C160.1693 (3)0.9385 (3)0.0332 (2)0.0696 (9)
H160.10220.93110.07080.084*
C170.2630 (3)0.8622 (3)0.03524 (19)0.0573 (7)
H170.25750.80220.07450.069*
C180.3844 (2)0.5407 (2)0.13566 (14)0.0378 (5)
C190.3754 (2)0.4450 (2)0.19899 (14)0.0373 (5)
C200.4655 (2)0.4387 (3)0.26274 (15)0.0495 (7)
H200.52710.49400.26530.059*
C210.4666 (3)0.3531 (3)0.32235 (17)0.0628 (8)
H210.52820.35080.36450.075*
C220.3765 (3)0.2714 (3)0.31919 (18)0.0635 (9)
H220.37670.21270.35890.076*
C230.2850 (3)0.2767 (3)0.25660 (17)0.0519 (7)
H230.22360.22130.25520.062*
C240.2821 (2)0.3629 (2)0.19543 (14)0.0383 (5)
Cd10.495536 (15)0.710476 (16)0.035750 (10)0.03941 (8)
N10.5558 (2)0.8693 (2)0.12699 (13)0.0474 (5)
N20.36180 (19)0.87021 (19)0.01676 (13)0.0437 (5)
O10.62029 (16)0.71087 (16)0.05533 (11)0.0462 (4)
O20.71202 (18)0.6405 (2)0.05848 (11)0.0609 (5)
O30.29828 (17)0.58894 (17)0.09796 (11)0.0519 (5)
O40.49025 (16)0.56627 (16)0.12540 (11)0.0494 (4)
O50.37320 (18)0.60995 (18)0.07047 (13)0.0514 (5)
H1W0.417 (3)0.566 (3)0.091 (2)0.080*
H2W0.330 (3)0.563 (3)0.053 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0421 (15)0.0358 (12)0.0425 (15)0.0027 (11)0.0129 (12)0.0079 (11)
C20.0344 (13)0.0329 (12)0.0377 (13)0.0020 (10)0.0088 (10)0.0028 (10)
C30.0428 (15)0.0466 (14)0.0400 (14)0.0024 (12)0.0056 (11)0.0080 (12)
C40.0339 (15)0.0671 (19)0.0553 (17)0.0017 (13)0.0031 (12)0.0098 (15)
C50.0313 (15)0.094 (2)0.0616 (18)0.0063 (15)0.0133 (13)0.0190 (18)
C60.0382 (15)0.082 (2)0.0422 (14)0.0055 (14)0.0144 (12)0.0101 (15)
C70.0350 (13)0.0397 (13)0.0385 (13)0.0046 (11)0.0084 (10)0.0027 (11)
C80.0521 (19)0.078 (2)0.0586 (18)0.0112 (16)0.0011 (15)0.0007 (17)
C90.056 (2)0.102 (3)0.0561 (19)0.014 (2)0.0035 (15)0.0080 (19)
C100.076 (2)0.073 (2)0.070 (2)0.016 (2)0.0110 (19)0.0173 (18)
C110.063 (2)0.0493 (16)0.070 (2)0.0067 (14)0.0148 (16)0.0082 (15)
C120.0482 (16)0.0409 (14)0.0443 (14)0.0029 (12)0.0174 (12)0.0052 (12)
C130.0433 (15)0.0298 (12)0.0543 (15)0.0016 (11)0.0168 (12)0.0089 (12)
C140.056 (2)0.0354 (14)0.087 (2)0.0062 (13)0.0204 (17)0.0016 (14)
C150.0437 (19)0.0454 (17)0.122 (3)0.0111 (14)0.0120 (18)0.0057 (19)
C160.0488 (19)0.0480 (17)0.106 (3)0.0099 (14)0.0086 (17)0.0095 (18)
C170.0501 (18)0.0490 (16)0.0695 (19)0.0062 (14)0.0026 (15)0.0035 (15)
C180.0421 (15)0.0355 (12)0.0373 (13)0.0017 (11)0.0103 (11)0.0066 (11)
C190.0373 (14)0.0421 (13)0.0329 (12)0.0012 (11)0.0066 (10)0.0024 (11)
C200.0454 (16)0.0560 (16)0.0446 (15)0.0121 (13)0.0019 (12)0.0008 (13)
C210.064 (2)0.072 (2)0.0460 (16)0.0134 (17)0.0120 (14)0.0123 (16)
C220.075 (2)0.070 (2)0.0425 (16)0.0123 (17)0.0016 (15)0.0205 (15)
C230.0537 (18)0.0588 (17)0.0431 (15)0.0147 (14)0.0068 (13)0.0064 (13)
C240.0354 (13)0.0469 (14)0.0339 (12)0.0030 (11)0.0093 (10)0.0009 (11)
Cd10.03751 (12)0.04095 (12)0.04107 (12)0.00950 (8)0.01014 (8)0.00319 (8)
N10.0439 (13)0.0520 (13)0.0469 (12)0.0065 (11)0.0083 (10)0.0021 (11)
N20.0412 (12)0.0378 (11)0.0520 (13)0.0066 (9)0.0073 (10)0.0055 (10)
O10.0362 (10)0.0566 (11)0.0475 (10)0.0040 (8)0.0119 (8)0.0030 (9)
O20.0582 (13)0.0849 (15)0.0443 (11)0.0056 (11)0.0225 (9)0.0077 (11)
O30.0480 (12)0.0506 (11)0.0569 (11)0.0086 (9)0.0069 (9)0.0115 (9)
O40.0416 (11)0.0511 (10)0.0575 (11)0.0050 (9)0.0132 (9)0.0107 (9)
O50.0435 (12)0.0496 (12)0.0609 (13)0.0003 (9)0.0073 (9)0.0015 (10)
Geometric parameters (Å, º) top
C1—O21.252 (3)C15—C161.363 (5)
C1—O11.259 (3)C15—H150.9300
C1—C21.505 (3)C16—C171.370 (4)
C2—C31.388 (3)C16—H160.9300
C2—C71.404 (3)C17—N21.337 (4)
C3—C41.375 (3)C17—H170.9300
C3—H30.9300C18—O31.219 (3)
C4—C51.371 (4)C18—O41.289 (3)
C4—H40.9300C18—C191.513 (3)
C5—C61.371 (4)C19—C201.385 (4)
C5—H50.9300C19—C241.397 (3)
C6—C71.394 (3)C20—C211.375 (4)
C6—H60.9300C20—H200.9300
C7—C24i1.493 (3)C21—C221.367 (4)
C8—N11.334 (4)C21—H210.9300
C8—C91.375 (5)C22—C231.382 (4)
C8—H80.9300C22—H220.9300
C9—C101.366 (5)C23—C241.397 (4)
C9—H90.9300C23—H230.9300
C10—C111.369 (5)C24—C7i1.493 (3)
C10—H100.9300Cd1—O42.1960 (18)
C11—C121.389 (4)Cd1—O12.2540 (18)
C11—H110.9300Cd1—N22.324 (2)
C12—N11.343 (3)Cd1—N12.362 (2)
C12—C131.481 (4)Cd1—O52.385 (2)
C13—N21.342 (3)Cd1—O22.586 (2)
C13—C141.391 (4)O5—H1W0.81 (4)
C14—C151.372 (5)O5—H2W0.80 (4)
C14—H140.9300
O2—C1—O1121.9 (2)C16—C17—H17118.5
O2—C1—C2118.4 (2)O3—C18—O4123.4 (2)
O1—C1—C2119.7 (2)O3—C18—C19122.4 (2)
C3—C2—C7119.2 (2)O4—C18—C19114.2 (2)
C3—C2—C1117.3 (2)C20—C19—C24119.2 (2)
C7—C2—C1123.5 (2)C20—C19—C18117.6 (2)
C4—C3—C2122.1 (2)C24—C19—C18123.2 (2)
C4—C3—H3119.0C21—C20—C19122.0 (3)
C2—C3—H3119.0C21—C20—H20119.0
C5—C4—C3118.8 (3)C19—C20—H20119.0
C5—C4—H4120.6C22—C21—C20119.5 (3)
C3—C4—H4120.6C22—C21—H21120.3
C6—C5—C4120.1 (2)C20—C21—H21120.3
C6—C5—H5119.9C21—C22—C23119.6 (3)
C4—C5—H5119.9C21—C22—H22120.2
C5—C6—C7122.3 (2)C23—C22—H22120.2
C5—C6—H6118.8C22—C23—C24121.8 (3)
C7—C6—H6118.8C22—C23—H23119.1
C6—C7—C2117.4 (2)C24—C23—H23119.1
C6—C7—C24i116.8 (2)C23—C24—C19117.9 (2)
C2—C7—C24i125.8 (2)C23—C24—C7i116.5 (2)
N1—C8—C9123.2 (3)C19—C24—C7i125.5 (2)
N1—C8—H8118.4O4—Cd1—O1123.82 (7)
C9—C8—H8118.4O4—Cd1—N2123.57 (7)
C10—C9—C8118.2 (3)O1—Cd1—N2112.39 (7)
C10—C9—H9120.9O4—Cd1—N196.65 (8)
C8—C9—H9120.9O1—Cd1—N1106.70 (7)
C9—C10—C11120.0 (3)N2—Cd1—N170.19 (8)
C9—C10—H10120.0O4—Cd1—O596.51 (7)
C11—C10—H10120.0O1—Cd1—O581.60 (7)
C10—C11—C12118.7 (3)N2—Cd1—O586.34 (8)
C10—C11—H11120.6N1—Cd1—O5156.53 (7)
C12—C11—H11120.6O4—Cd1—O278.88 (7)
N1—C12—C11121.6 (3)O1—Cd1—O253.40 (6)
N1—C12—C13116.3 (2)N2—Cd1—O2148.28 (7)
C11—C12—C13122.1 (3)N1—Cd1—O286.32 (8)
N2—C13—C14120.5 (3)O5—Cd1—O2115.29 (7)
N2—C13—C12116.7 (2)C8—N1—C12118.2 (3)
C14—C13—C12122.8 (3)C8—N1—Cd1124.6 (2)
C15—C14—C13119.7 (3)C12—N1—Cd1117.16 (18)
C15—C14—H14120.2C17—N2—C13118.8 (2)
C13—C14—H14120.2C17—N2—Cd1121.77 (18)
C16—C15—C14119.4 (3)C13—N2—Cd1117.42 (17)
C16—C15—H15120.3C1—O1—Cd1100.02 (15)
C14—C15—H15120.3C1—O2—Cd184.66 (16)
C15—C16—C17118.7 (3)C18—O4—Cd1111.79 (16)
C15—C16—H16120.7Cd1—O5—H1W105 (3)
C17—C16—H16120.7Cd1—O5—H2W110 (3)
N2—C17—C16122.9 (3)H1W—O5—H2W104 (4)
N2—C17—H17118.5
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O4i0.81 (4)1.94 (4)2.738 (3)168 (4)
O5—H2W···O2i0.80 (4)2.28 (4)2.932 (3)138 (3)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C14H8O4)2(C10H8N2)2(H2O)2]
Mr1053.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.532 (2), 10.961 (2), 16.891 (3)
β (°) 98.37 (3)
V3)2112.4 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.882, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
15936, 3697, 3223
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.00
No. of reflections3697
No. of parameters295
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O42.1960 (18)Cd1—N12.362 (2)
Cd1—O12.2540 (18)Cd1—O52.385 (2)
Cd1—N22.324 (2)Cd1—O22.586 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O4i0.81 (4)1.94 (4)2.738 (3)168 (4)
O5—H2W···O2i0.80 (4)2.28 (4)2.932 (3)138 (3)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the program for talent introduction in Guangdong Higher Education Institutions (grant No. 201191) and the scientific research start-up funds of talent introduction in Maoming University (grant No. 208058).

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 111, 557–559.  CrossRef Google Scholar
First citationGhosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293–2298.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds