metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-Ethyl N-iso­propyl­thio­carbamato-κS](tri­cyclo­hexyl­phosphine-κP)gold(I)

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 April 2010; accepted 29 April 2010; online 8 May 2010)

The AuI atom in the title compound, [Au(C6H12NOS)(C18H33P)], is coordinated within a S,P-donor set that defines a slightly distorted linear geometry [S—Au—P angle = 173.44 (5)°], with the distortion due in part to a close intra­molecular Au⋯O contact [3.023 (4) Å]. The N-bound isopropyl group is disordered over two orientations in a 0.618 (15):0.382 (15) ratio.

Related literature

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see: Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C6H12NOS)(C18H33P)]

  • Mr = 623.61

  • Triclinic, [P \overline 1]

  • a = 9.1226 (6) Å

  • b = 12.3857 (8) Å

  • c = 12.6754 (9) Å

  • α = 93.475 (1)°

  • β = 105.380 (2)°

  • γ = 102.597 (1)°

  • V = 1336.94 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.65 mm−1

  • T = 223 K

  • 0.23 × 0.15 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.607, Tmax = 1

  • 9521 measured reflections

  • 6097 independent reflections

  • 5524 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.107

  • S = 1.11

  • 6097 reflections

  • 277 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −1.25 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The investigation of the title compound, (I), forms a part of systematic structural studies of molecules with the general formula R3PAu[SC(OR') NR''] for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008).

In accord with the literature precedents, the gold atom in (I) exists within an SP donor set defined by the phosphine-P and thiolate-S atoms, Table 1 and Fig. 1. The coordination geometry is distorted from the ideal linear [S—Au—P = 173.44 (5) °] owing to the relatively close approach of the O1 atom, 3.023 (4) Å. The carbonimidothioate ligand is functioning as a thiolate as seen in the values of the C1–S1 and C1N1 bond distances of 1.752 (5) and 1.254 (7) Å, respectively.

Related literature top

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Cy3PAuCl and EtOC(S)N(H)(i-Pr) in the presence of NaOH (Hall et al., 1993). Crystals were obtained by the slow evaporation of a CHCl3/hexane (3/1) solution held at room temperature.

Refinement top

The H atoms were geometrically placed (C—H = 0.97-0.99 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.19 and 1.25 e Å-3, respectively, were located 0.84 Å and 1.20 Å from the Au atom. High thermal motion was noted in the iso-propyl substituent and two positions were resolved for each of the C atoms. Anisotopic refinement (constrained to be equivalent for paired components of the disorder, and approximately isotropic by the EADP and ISOR commands in SHELXL-97, respectively) and with the C–C distances restrained to 1.52±0.01 Å showed the major component of the disorder had a site occupancy factor = 0.618 (15).

Structure description top

The investigation of the title compound, (I), forms a part of systematic structural studies of molecules with the general formula R3PAu[SC(OR') NR''] for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008).

In accord with the literature precedents, the gold atom in (I) exists within an SP donor set defined by the phosphine-P and thiolate-S atoms, Table 1 and Fig. 1. The coordination geometry is distorted from the ideal linear [S—Au—P = 173.44 (5) °] owing to the relatively close approach of the O1 atom, 3.023 (4) Å. The carbonimidothioate ligand is functioning as a thiolate as seen in the values of the C1–S1 and C1N1 bond distances of 1.752 (5) and 1.254 (7) Å, respectively.

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. Only the major component of the disordered iso-propyl group is shown for reasons of clarity.
[(Z)-Ethyl N-isopropylthiocarbamato-κS](tricyclohexylphosphine- κP)gold(I) top
Crystal data top
[Au(C6H12NOS)(C18H33P)]Z = 2
Mr = 623.61F(000) = 628
Triclinic, P1Dx = 1.549 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.1226 (6) ÅCell parameters from 4588 reflections
b = 12.3857 (8) Åθ = 2.5–29.5°
c = 12.6754 (9) ŵ = 5.65 mm1
α = 93.475 (1)°T = 223 K
β = 105.380 (2)°Block, colourless
γ = 102.597 (1)°0.23 × 0.15 × 0.08 mm
V = 1336.94 (16) Å3
Data collection top
Bruker SMART CCD
diffractometer
6097 independent reflections
Radiation source: fine-focus sealed tube5524 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1110
Tmin = 0.607, Tmax = 1k = 1516
9521 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
6097 reflections(Δ/σ)max = 0.001
277 parametersΔρmax = 1.19 e Å3
22 restraintsΔρmin = 1.25 e Å3
Crystal data top
[Au(C6H12NOS)(C18H33P)]γ = 102.597 (1)°
Mr = 623.61V = 1336.94 (16) Å3
Triclinic, P1Z = 2
a = 9.1226 (6) ÅMo Kα radiation
b = 12.3857 (8) ŵ = 5.65 mm1
c = 12.6754 (9) ÅT = 223 K
α = 93.475 (1)°0.23 × 0.15 × 0.08 mm
β = 105.380 (2)°
Data collection top
Bruker SMART CCD
diffractometer
6097 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5524 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 1Rint = 0.023
9521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03322 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.11Δρmax = 1.19 e Å3
6097 reflectionsΔρmin = 1.25 e Å3
277 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au0.26509 (2)0.057107 (13)0.194175 (15)0.03141 (8)
S10.41297 (18)0.22569 (11)0.17233 (13)0.0414 (3)
P10.12363 (15)0.11673 (10)0.19756 (11)0.0291 (3)
O10.2734 (5)0.2778 (3)0.3143 (3)0.0408 (9)
N10.4305 (6)0.4290 (4)0.2737 (4)0.0406 (10)
C10.3760 (6)0.3254 (4)0.2593 (4)0.0320 (10)
C20.532 (2)0.4809 (13)0.213 (2)0.046 (3)0.618 (15)
H20.51850.42960.14680.056*0.618 (15)
C30.496 (2)0.5899 (13)0.1786 (15)0.088 (4)0.618 (15)
H3A0.54670.61270.12240.132*0.618 (15)
H3B0.53570.64700.24200.132*0.618 (15)
H3C0.38390.57960.14920.132*0.618 (15)
C40.6991 (15)0.5034 (16)0.2851 (13)0.074 (4)0.618 (15)
H4A0.71540.55900.34700.111*0.618 (15)
H4B0.76970.53060.24200.111*0.618 (15)
H4C0.71950.43500.31210.111*0.618 (15)
C2A0.560 (4)0.475 (2)0.215 (3)0.046 (3)0.382 (15)
H2A0.60350.41530.18750.056*0.382 (15)
C3A0.479 (4)0.534 (2)0.123 (2)0.088 (4)0.382 (15)
H3D0.50740.51620.05630.132*0.382 (15)
H3E0.51180.61360.14500.132*0.382 (15)
H3F0.36650.50870.10860.132*0.382 (15)
C4A0.682 (3)0.560 (2)0.304 (2)0.074 (4)0.382 (15)
H4D0.64500.62740.30970.111*0.382 (15)
H4E0.77970.57720.28490.111*0.382 (15)
H4F0.69760.53000.37370.111*0.382 (15)
C50.2278 (9)0.3534 (6)0.3835 (6)0.0575 (17)
H5A0.18290.40740.34020.069*
H5B0.31900.39430.44340.069*
C60.1106 (12)0.2858 (7)0.4286 (7)0.075 (2)
H6A0.02090.24580.36860.113*
H6B0.07720.33410.47580.113*
H6C0.15650.23280.47130.113*
C70.2235 (6)0.1951 (4)0.3003 (5)0.0380 (11)
H70.28340.23290.26180.046*
C80.3462 (8)0.1216 (6)0.3977 (5)0.0538 (16)
H8A0.29470.08110.43980.065*
H8B0.41780.06650.37070.065*
C90.4408 (8)0.1896 (6)0.4740 (6)0.0632 (19)
H9A0.51410.14040.53860.076*
H9B0.50160.22400.43480.076*
C100.3270 (11)0.2814 (7)0.5114 (7)0.079 (2)
H10A0.38680.32720.55680.095*
H10B0.27410.24620.55670.095*
C110.2085 (8)0.3532 (5)0.4159 (6)0.0561 (17)
H11A0.13490.40690.44260.067*
H11B0.26090.39540.37620.067*
C120.1193 (7)0.2887 (5)0.3382 (5)0.0392 (11)
H12A0.05290.25690.37430.047*
H12B0.05020.33980.27340.047*
C130.0697 (6)0.1169 (4)0.2183 (4)0.0324 (10)
H130.12460.19490.21960.039*
C140.0525 (8)0.0501 (6)0.3267 (5)0.0496 (14)
H14A0.00720.02640.32860.059*
H14B0.00600.08300.38760.059*
C150.2119 (12)0.0484 (8)0.3415 (7)0.076 (3)
H15A0.26700.12440.34640.091*
H15B0.19700.00250.41100.091*
C160.3115 (10)0.0032 (7)0.2487 (7)0.068 (2)
H16A0.26300.07560.24840.082*
H16B0.41520.00830.25940.082*
C170.3286 (8)0.0688 (7)0.1394 (6)0.0601 (18)
H17A0.38750.03520.07920.072*
H17B0.38850.14540.13670.072*
C180.1682 (6)0.0710 (5)0.1221 (5)0.0450 (13)
H18A0.18380.11790.05300.054*
H18B0.11250.00460.11650.054*
C190.0823 (6)0.1990 (4)0.0622 (4)0.0337 (10)
H190.01850.16110.00780.040*
C200.2347 (7)0.1946 (5)0.0286 (6)0.0462 (14)
H20A0.29170.11670.03400.055*
H20B0.30210.23220.07950.055*
C210.1981 (10)0.2509 (6)0.0891 (6)0.0586 (17)
H21A0.13960.20880.14060.070*
H21B0.29630.25050.10700.070*
C220.1034 (9)0.3689 (5)0.1022 (5)0.0561 (17)
H22A0.16610.41280.05610.067*
H22B0.07690.40180.17920.067*
C230.0453 (8)0.3736 (5)0.0695 (5)0.0474 (14)
H23A0.10220.45170.07580.057*
H23B0.11250.33600.12050.057*
C240.0122 (6)0.3184 (4)0.0485 (5)0.0375 (11)
H24A0.11140.31960.06520.045*
H24B0.04600.36020.10050.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.03193 (12)0.02433 (12)0.03862 (12)0.00659 (8)0.01104 (8)0.00564 (7)
S10.0477 (8)0.0273 (6)0.0540 (8)0.0038 (6)0.0272 (7)0.0036 (6)
P10.0273 (6)0.0248 (6)0.0360 (6)0.0074 (5)0.0089 (5)0.0056 (5)
O10.051 (2)0.0296 (18)0.049 (2)0.0086 (17)0.0264 (19)0.0060 (16)
N10.047 (3)0.028 (2)0.042 (2)0.002 (2)0.011 (2)0.0035 (18)
C10.030 (2)0.030 (2)0.036 (2)0.009 (2)0.008 (2)0.0079 (19)
C20.054 (8)0.032 (3)0.052 (3)0.002 (4)0.022 (4)0.004 (3)
C30.111 (8)0.065 (7)0.088 (8)0.012 (6)0.032 (6)0.033 (6)
C40.053 (5)0.090 (9)0.081 (6)0.003 (6)0.034 (5)0.008 (7)
C2A0.054 (8)0.032 (3)0.052 (3)0.002 (4)0.022 (4)0.004 (3)
C3A0.111 (8)0.065 (7)0.088 (8)0.012 (6)0.032 (6)0.033 (6)
C4A0.053 (5)0.090 (9)0.081 (6)0.003 (6)0.034 (5)0.008 (7)
C50.074 (5)0.045 (3)0.058 (4)0.006 (3)0.036 (4)0.009 (3)
C60.108 (7)0.056 (4)0.073 (5)0.005 (4)0.058 (5)0.005 (4)
C70.037 (3)0.033 (3)0.044 (3)0.009 (2)0.010 (2)0.010 (2)
C80.054 (4)0.051 (4)0.046 (3)0.007 (3)0.001 (3)0.013 (3)
C90.051 (4)0.064 (4)0.055 (4)0.004 (3)0.011 (3)0.015 (3)
C100.095 (6)0.073 (5)0.057 (4)0.014 (5)0.001 (4)0.033 (4)
C110.053 (4)0.045 (3)0.072 (4)0.013 (3)0.017 (3)0.029 (3)
C120.040 (3)0.035 (3)0.041 (3)0.005 (2)0.012 (2)0.010 (2)
C130.029 (2)0.029 (2)0.040 (3)0.008 (2)0.011 (2)0.006 (2)
C140.052 (4)0.059 (4)0.042 (3)0.025 (3)0.013 (3)0.002 (3)
C150.106 (7)0.099 (7)0.055 (4)0.061 (6)0.047 (4)0.022 (4)
C160.067 (5)0.082 (5)0.086 (5)0.046 (4)0.046 (4)0.035 (4)
C170.041 (3)0.078 (5)0.073 (5)0.029 (3)0.020 (3)0.031 (4)
C180.033 (3)0.059 (4)0.051 (3)0.020 (3)0.016 (2)0.019 (3)
C190.033 (3)0.032 (2)0.038 (3)0.009 (2)0.012 (2)0.008 (2)
C200.037 (3)0.045 (3)0.063 (4)0.010 (3)0.025 (3)0.004 (3)
C210.071 (5)0.054 (4)0.064 (4)0.019 (4)0.039 (4)0.006 (3)
C220.087 (5)0.046 (3)0.044 (3)0.033 (4)0.020 (3)0.003 (3)
C230.056 (4)0.041 (3)0.043 (3)0.015 (3)0.009 (3)0.002 (2)
C240.034 (3)0.033 (3)0.045 (3)0.007 (2)0.013 (2)0.001 (2)
Geometric parameters (Å, º) top
Au—P12.2653 (13)C9—H9B0.9800
Au—S12.3013 (13)C10—C111.476 (11)
S1—C11.752 (5)C10—H10A0.9800
P1—C71.838 (5)C10—H10B0.9800
P1—C191.845 (5)C11—C121.493 (8)
P1—C131.850 (5)C11—H11A0.9800
O1—C11.365 (6)C11—H11B0.9800
O1—C51.444 (7)C12—H12A0.9800
N1—C11.254 (7)C12—H12B0.9800
N1—C2A1.58 (5)C13—C141.512 (8)
N1—C21.42 (3)C13—C181.531 (7)
C2—C41.511 (9)C13—H130.9900
C2—C31.519 (9)C14—C151.519 (10)
C2—H20.9900C14—H14A0.9800
C3—H3A0.9700C14—H14B0.9800
C3—H3B0.9700C15—C161.503 (11)
C3—H3C0.9700C15—H15A0.9800
C4—H4A0.9700C15—H15B0.9800
C4—H4B0.9700C16—C171.516 (12)
C4—H4C0.9700C16—H16A0.9800
C2A—C4A1.516 (10)C16—H16B0.9800
C2A—C3A1.524 (10)C17—C181.541 (8)
C2A—H2A0.9900C17—H17A0.9800
C3A—H3D0.9700C17—H17B0.9800
C3A—H3E0.9700C18—H18A0.9800
C3A—H3F0.9700C18—H18B0.9800
C4A—H4D0.9700C19—C241.514 (7)
C4A—H4E0.9700C19—C201.549 (7)
C4A—H4F0.9700C19—H190.9900
C5—C61.471 (10)C20—C211.526 (10)
C5—H5A0.9800C20—H20A0.9800
C5—H5B0.9800C20—H20B0.9800
C6—H6A0.9700C21—C221.501 (10)
C6—H6B0.9700C21—H21A0.9800
C6—H6C0.9700C21—H21B0.9800
C7—C81.514 (8)C22—C231.511 (9)
C7—C121.519 (7)C22—H22A0.9800
C7—H70.9900C22—H22B0.9800
C8—C91.538 (9)C23—C241.531 (8)
C8—H8A0.9800C23—H23A0.9800
C8—H8B0.9800C23—H23B0.9800
C9—C101.552 (11)C24—H24A0.9800
C9—H9A0.9800C24—H24B0.9800
P1—Au—S1173.44 (5)H11A—C11—H11B107.8
C1—S1—Au105.39 (17)C11—C12—C7113.5 (5)
C7—P1—C19106.1 (2)C11—C12—H12A108.9
C7—P1—C13108.4 (2)C7—C12—H12A108.9
C19—P1—C13105.9 (2)C11—C12—H12B108.9
C7—P1—Au114.59 (18)C7—C12—H12B108.9
C19—P1—Au108.69 (16)H12A—C12—H12B107.7
C13—P1—Au112.55 (16)C14—C13—C18110.5 (5)
C1—O1—C5116.3 (4)C14—C13—P1111.4 (4)
C1—N1—C2A116.2 (12)C18—C13—P1109.9 (3)
C1—N1—C2121.2 (9)C14—C13—H13108.3
C2A—N1—C29.0 (14)C18—C13—H13108.3
N1—C1—O1120.3 (5)P1—C13—H13108.3
N1—C1—S1127.9 (4)C13—C14—C15110.9 (6)
O1—C1—S1111.8 (4)C13—C14—H14A109.5
C4—C2—N1108.7 (15)C15—C14—H14A109.5
C4—C2—C3109.3 (15)C13—C14—H14B109.5
N1—C2—C3111.9 (17)C15—C14—H14B109.5
C4—C2—H2109.0H14A—C14—H14B108.0
N1—C2—H2109.0C16—C15—C14112.7 (6)
C3—C2—H2109.0C16—C15—H15A109.0
C4A—C2A—N1103 (3)C14—C15—H15A109.0
C4A—C2A—C3A110 (2)C16—C15—H15B109.0
N1—C2A—C3A104 (3)C14—C15—H15B109.0
C4A—C2A—H2A113.1H15A—C15—H15B107.8
N1—C2A—H2A113.1C15—C16—C17110.0 (6)
C3A—C2A—H2A113.1C15—C16—H16A109.7
C2A—C3A—H3D109.5C17—C16—H16A109.7
C2A—C3A—H3E109.5C15—C16—H16B109.7
H3D—C3A—H3E109.5C17—C16—H16B109.7
C2A—C3A—H3F109.5H16A—C16—H16B108.2
H3D—C3A—H3F109.5C16—C17—C18111.9 (6)
H3E—C3A—H3F109.5C16—C17—H17A109.2
C2A—C4A—H4D109.5C18—C17—H17A109.2
C2A—C4A—H4E109.5C16—C17—H17B109.2
H4D—C4A—H4E109.5C18—C17—H17B109.2
C2A—C4A—H4F109.5H17A—C17—H17B107.9
H4D—C4A—H4F109.5C13—C18—C17110.5 (5)
H4E—C4A—H4F109.5C13—C18—H18A109.6
O1—C5—C6107.2 (5)C17—C18—H18A109.6
O1—C5—H5A110.3C13—C18—H18B109.6
C6—C5—H5A110.3C17—C18—H18B109.6
O1—C5—H5B110.3H18A—C18—H18B108.1
C6—C5—H5B110.3C24—C19—C20110.4 (4)
H5A—C5—H5B108.5C24—C19—P1116.4 (4)
C5—C6—H6A109.5C20—C19—P1111.2 (4)
C5—C6—H6B109.5C24—C19—H19106.0
H6A—C6—H6B109.5C20—C19—H19106.0
C5—C6—H6C109.5P1—C19—H19106.0
H6A—C6—H6C109.5C21—C20—C19111.0 (5)
H6B—C6—H6C109.5C21—C20—H20A109.4
C8—C7—C12111.1 (5)C19—C20—H20A109.4
C8—C7—P1113.6 (4)C21—C20—H20B109.4
C12—C7—P1116.5 (4)C19—C20—H20B109.4
C8—C7—H7104.8H20A—C20—H20B108.0
C12—C7—H7104.8C22—C21—C20111.0 (5)
P1—C7—H7104.8C22—C21—H21A109.4
C7—C8—C9111.9 (5)C20—C21—H21A109.4
C7—C8—H8A109.2C22—C21—H21B109.4
C9—C8—H8A109.2C20—C21—H21B109.4
C7—C8—H8B109.2H21A—C21—H21B108.0
C9—C8—H8B109.2C21—C22—C23111.1 (5)
H8A—C8—H8B107.9C21—C22—H22A109.4
C8—C9—C10109.4 (6)C23—C22—H22A109.4
C8—C9—H9A109.8C21—C22—H22B109.4
C10—C9—H9A109.8C23—C22—H22B109.4
C8—C9—H9B109.8H22A—C22—H22B108.0
C10—C9—H9B109.8C22—C23—C24112.0 (5)
H9A—C9—H9B108.2C22—C23—H23A109.2
C11—C10—C9111.4 (6)C24—C23—H23A109.2
C11—C10—H10A109.4C22—C23—H23B109.2
C9—C10—H10A109.4C24—C23—H23B109.2
C11—C10—H10B109.4H23A—C23—H23B107.9
C9—C10—H10B109.4C19—C24—C23110.4 (5)
H10A—C10—H10B108.0C19—C24—H24A109.6
C10—C11—C12112.8 (6)C23—C24—H24A109.6
C10—C11—H11A109.0C19—C24—H24B109.6
C12—C11—H11A109.0C23—C24—H24B109.6
C10—C11—H11B109.0H24A—C24—H24B108.1
C12—C11—H11B109.0

Experimental details

Crystal data
Chemical formula[Au(C6H12NOS)(C18H33P)]
Mr623.61
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)9.1226 (6), 12.3857 (8), 12.6754 (9)
α, β, γ (°)93.475 (1), 105.380 (2), 102.597 (1)
V3)1336.94 (16)
Z2
Radiation typeMo Kα
µ (mm1)5.65
Crystal size (mm)0.23 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.607, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
9521, 6097, 5524
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.107, 1.11
No. of reflections6097
No. of parameters277
No. of restraints22
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 1.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds