organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Bis(4-bromo­phen­yl)-1-phenyl-4,5-di­hydro-1H-pyrazole

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 April 2010; accepted 29 April 2010; online 8 May 2010)

In the title compound, C21H16Br2N2, the central pyrazole ring adopts an flattened envelope conformation, with the stereogenic C atom in the flap position. The deviations from planarity for this ring are relatively minor (r.m.s. deviation = 0.045 Å) and the dihedral angles formed with the N- and Cimine-bound benzene rings are 7.73 (13) and 11.00 (13)°, respectively. By contrast, the benzene ring bound at the chiral C atom is almost orthogonal to the rest of the mol­ecule; the dihedral angle formed between this ring and the pyrazole ring is 79.53 (13)°. In the crystal, the packing is stabilized by C—H⋯N and C—H⋯Br inter­actions.

Related literature

For the pharmacological activity of pyrazoline derivatives, see: Hes et al. (1978[Hes, R. V., Wellinga, K. & Grosscurt, A. C. (1978). J. Agric. Food Chem. 26, 915-918.]); Amir et al. (2008[Amir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918-922.]); Sarojini et al. (2010[Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Design Discov. 7, 214-224.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.]); Yathirajan et al. (2007[Yathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2718.]). For the structure of the parent compound, 1,3,5-triphenyl-2-pyrazoline, see: Foces-Foces et al. (2001[Foces-Foces, C., Jagerovic, N. & Elguero, J. (2001). Z. Kristallogr. 216, 240-244.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16Br2N2

  • Mr = 456.18

  • Orthorhombic, P 21 21 21

  • a = 10.5815 (3) Å

  • b = 11.2119 (3) Å

  • c = 15.4569 (4) Å

  • V = 1833.79 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.43 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.08 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.537, Tmax = 0.746

  • 17504 measured reflections

  • 4201 independent reflections

  • 3753 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.052

  • S = 1.02

  • 4201 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1804 Friedel pairs

  • Flack parameter: 0.003 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N1i 0.95 2.58 3.374 (3) 141
C20—H20⋯Br1ii 0.95 2.92 3.768 (2) 148
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Derivatives of pyrazoline possess a range of pharmacological activities, having, for example, anti-tumour, anti-microbial, and anti-tubercular activities (Hes et al., 1978; Amir et al., 2008). Further, some of these compounds also have anti-inflammatory, anti-diabetic, anaesthetic, analgesic and DPPH scavenging properties (Sarojini et al., 2010). In continuation of previous structural studies of pyrazoline derivatives (Fun et al., 2010, Yathirajan et al., 2007), the title compound, (I), was synthesised and its crystal structure determined.

The structure analysis of (I) shows the C1 centre to have an S configuration, Fig. 1. The conformation of the central pyrazole ring is an envelope on the C1 atom as defined by the ring-puckering parameters of q2 = 0.101 (3) Å and φ2 = 251.7 (14) ° (Cremer & Pople, 1975). That being stated, the maximum deviations from the five atoms of the ring are 0.052 (2) and -0.064 (3) Å for the N2 and C1 atoms, respectively; the r.m.s. deviation = 0.0450 Å. The N2- and C3-bound benzene rings are approximately co-planar with the central ring as seen in the dihedral angles formed between their respective least-squares planes and that through the pyrazole ring of 7.73 (13) and 11.00 (13) °; the dihedral angle between these benzene rings is 4.32 (12) °. By contrast, the C1-bound benzene ring is almost orthogonal to the remaining molecule with a dihedral angle of 79.53 (13) ° formed between it and the pyrazole ring. To a first approximation, the overall conformation in (I) resembles that in the analogous 1,3,5-triphenyl-2-pyrazoline "parent" compound although the deviations from planarity are slightly greater in the literature structure (Foces-Foces et al., 2001). Further, the N1–N2 [1.369 (3) Å] and N1C3 [1.291 (3) Å] bond distances in (I) are comparable to the equivalent distances in 1,3,5-triphenyl-2-pyrazoline of 1.387 (5) and 1.285 (7) Å, respectively.

The molecules are consolidated into a 3-D network by C–H···N and C—H···Br contacts, Fig. 2 and Table 1.

Related literature top

For the pharmacological activity of pyrazoline derivatives, see: Hes et al. (1978); Amir et al. (2008); Sarojini et al. (2010). For related structures, see: Fun et al. (2010); Yathirajan et al. (2007). For the structure of the parent compound, 1,3,5-triphenyl-2-pyrazoline, see: Foces-Foces et al. (2001). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of (2E)-1,3-bis(4-bromophenyl)prop-2-en-1-one (3.66 g, 0.01 mol) and phenyl hydrazine (1.08 g, 0.01 mol) in glacial acetic acid (50 ml) was refluxed for 6 h. The reaction mixture was cooled and poured into ice-cold water (50 ml). The precipitate was collected by filtration and purified by recrystallization from ethanol. Yellow blocks of (I) were grown from toluene by slow evaporation; the yield was 86%, m.pt. 481 K. Analytical data (%): Found (Calc'd): C 55.21 (55.29); H 3.48 (3.54); N 6.10 (6.14).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Ueq(C).

Structure description top

Derivatives of pyrazoline possess a range of pharmacological activities, having, for example, anti-tumour, anti-microbial, and anti-tubercular activities (Hes et al., 1978; Amir et al., 2008). Further, some of these compounds also have anti-inflammatory, anti-diabetic, anaesthetic, analgesic and DPPH scavenging properties (Sarojini et al., 2010). In continuation of previous structural studies of pyrazoline derivatives (Fun et al., 2010, Yathirajan et al., 2007), the title compound, (I), was synthesised and its crystal structure determined.

The structure analysis of (I) shows the C1 centre to have an S configuration, Fig. 1. The conformation of the central pyrazole ring is an envelope on the C1 atom as defined by the ring-puckering parameters of q2 = 0.101 (3) Å and φ2 = 251.7 (14) ° (Cremer & Pople, 1975). That being stated, the maximum deviations from the five atoms of the ring are 0.052 (2) and -0.064 (3) Å for the N2 and C1 atoms, respectively; the r.m.s. deviation = 0.0450 Å. The N2- and C3-bound benzene rings are approximately co-planar with the central ring as seen in the dihedral angles formed between their respective least-squares planes and that through the pyrazole ring of 7.73 (13) and 11.00 (13) °; the dihedral angle between these benzene rings is 4.32 (12) °. By contrast, the C1-bound benzene ring is almost orthogonal to the remaining molecule with a dihedral angle of 79.53 (13) ° formed between it and the pyrazole ring. To a first approximation, the overall conformation in (I) resembles that in the analogous 1,3,5-triphenyl-2-pyrazoline "parent" compound although the deviations from planarity are slightly greater in the literature structure (Foces-Foces et al., 2001). Further, the N1–N2 [1.369 (3) Å] and N1C3 [1.291 (3) Å] bond distances in (I) are comparable to the equivalent distances in 1,3,5-triphenyl-2-pyrazoline of 1.387 (5) and 1.285 (7) Å, respectively.

The molecules are consolidated into a 3-D network by C–H···N and C—H···Br contacts, Fig. 2 and Table 1.

For the pharmacological activity of pyrazoline derivatives, see: Hes et al. (1978); Amir et al. (2008); Sarojini et al. (2010). For related structures, see: Fun et al. (2010); Yathirajan et al. (2007). For the structure of the parent compound, 1,3,5-triphenyl-2-pyrazoline, see: Foces-Foces et al. (2001). For conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the crystal packing in (I) mediated by C–H···N and C–H···Br contacts, shown as orange and purple dashed lines, respectively.
3,5-Bis(4-bromophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C21H16Br2N2F(000) = 904
Mr = 456.18Dx = 1.652 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4444 reflections
a = 10.5815 (3) Åθ = 2.3–26.2°
b = 11.2119 (3) ŵ = 4.43 mm1
c = 15.4569 (4) ÅT = 100 K
V = 1833.79 (9) Å3Block, yellow
Z = 40.35 × 0.15 × 0.08 mm
Data collection top
Bruker SMART APEX
diffractometer
4201 independent reflections
Radiation source: fine-focus sealed tube3753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.537, Tmax = 0.746k = 1414
17504 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0105P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4201 reflectionsΔρmax = 0.60 e Å3
226 parametersΔρmin = 0.40 e Å3
0 restraintsAbsolute structure: Flack (1983), 1804 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (7)
Crystal data top
C21H16Br2N2V = 1833.79 (9) Å3
Mr = 456.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.5815 (3) ŵ = 4.43 mm1
b = 11.2119 (3) ÅT = 100 K
c = 15.4569 (4) Å0.35 × 0.15 × 0.08 mm
Data collection top
Bruker SMART APEX
diffractometer
4201 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3753 reflections with I > 2σ(I)
Tmin = 0.537, Tmax = 0.746Rint = 0.044
17504 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.60 e Å3
S = 1.02Δρmin = 0.40 e Å3
4201 reflectionsAbsolute structure: Flack (1983), 1804 Friedel pairs
226 parametersAbsolute structure parameter: 0.003 (7)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45694 (3)0.39983 (2)0.095975 (18)0.03237 (9)
Br21.28094 (3)0.06644 (3)0.379191 (19)0.02784 (8)
N10.68637 (18)0.10495 (19)0.19763 (12)0.0155 (5)
N20.56377 (19)0.07418 (19)0.18013 (13)0.0175 (5)
C10.5321 (3)0.0486 (2)0.20739 (15)0.0184 (5)
H10.45560.04790.24530.022*
C20.6507 (2)0.0809 (3)0.26139 (16)0.0226 (6)
H2A0.68780.15760.24220.027*
H2B0.63040.08590.32380.027*
C30.7385 (2)0.0217 (2)0.24286 (16)0.0144 (6)
C40.5117 (2)0.1321 (2)0.13185 (17)0.0165 (6)
C50.4266 (3)0.2261 (2)0.13916 (17)0.0206 (6)
H50.37900.23510.19090.025*
C60.4100 (3)0.3064 (2)0.07249 (17)0.0230 (6)
H60.35210.37070.07810.028*
C70.4791 (3)0.2917 (2)0.00225 (17)0.0208 (6)
C80.5631 (3)0.1994 (2)0.01219 (16)0.0213 (6)
H80.60870.19010.06470.026*
C90.5803 (2)0.1200 (2)0.05566 (17)0.0193 (6)
H90.63940.05670.05000.023*
C100.8685 (2)0.0309 (2)0.27394 (16)0.0141 (6)
C110.9485 (3)0.1218 (2)0.24481 (16)0.0179 (6)
H110.91820.17840.20410.021*
C121.0714 (3)0.1300 (2)0.27476 (17)0.0199 (6)
H121.12560.19140.25440.024*
C131.1146 (2)0.0478 (3)0.33476 (17)0.0190 (6)
C141.0378 (2)0.0425 (2)0.36482 (16)0.0190 (5)
H141.06850.09810.40620.023*
C150.9159 (2)0.0512 (2)0.33413 (16)0.0178 (6)
H150.86310.11400.35410.021*
C160.4888 (2)0.1457 (2)0.12849 (16)0.0168 (5)
C170.3627 (2)0.1161 (2)0.11246 (16)0.0195 (6)
H170.32710.04680.13800.023*
C180.2893 (3)0.1876 (3)0.05953 (17)0.0223 (6)
H180.20360.16660.04940.027*
C190.3379 (3)0.2884 (3)0.02115 (17)0.0222 (6)
H190.28690.33620.01570.027*
C200.4627 (3)0.3189 (2)0.03732 (17)0.0225 (6)
H200.49690.38860.01130.027*
C210.5387 (3)0.2497 (2)0.09078 (16)0.0188 (5)
H210.62360.27250.10180.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0559 (2)0.01873 (14)0.02246 (14)0.00349 (14)0.01182 (14)0.00164 (12)
Br20.01697 (13)0.03195 (17)0.03461 (17)0.00011 (12)0.00644 (13)0.00337 (14)
N10.0142 (11)0.0171 (11)0.0151 (10)0.0003 (9)0.0004 (8)0.0027 (10)
N20.0142 (11)0.0189 (12)0.0193 (10)0.0029 (10)0.0035 (9)0.0018 (9)
C10.0191 (14)0.0189 (13)0.0172 (13)0.0012 (12)0.0014 (11)0.0035 (11)
C20.0227 (14)0.0244 (16)0.0208 (13)0.0058 (13)0.0072 (12)0.0030 (13)
C30.0172 (14)0.0140 (13)0.0121 (12)0.0011 (10)0.0006 (10)0.0028 (10)
C40.0134 (13)0.0182 (13)0.0179 (13)0.0005 (10)0.0044 (11)0.0022 (11)
C50.0194 (14)0.0231 (14)0.0195 (14)0.0009 (11)0.0028 (11)0.0035 (12)
C60.0255 (16)0.0166 (14)0.0269 (16)0.0043 (12)0.0055 (13)0.0047 (12)
C70.0284 (17)0.0171 (14)0.0170 (13)0.0012 (12)0.0115 (12)0.0024 (12)
C80.0264 (17)0.0217 (15)0.0159 (13)0.0010 (12)0.0008 (12)0.0018 (11)
C90.0176 (14)0.0183 (15)0.0219 (13)0.0058 (11)0.0012 (11)0.0030 (12)
C100.0150 (14)0.0137 (13)0.0136 (12)0.0018 (10)0.0004 (10)0.0022 (10)
C110.0209 (15)0.0173 (14)0.0156 (12)0.0048 (12)0.0016 (12)0.0017 (10)
C120.0203 (15)0.0163 (14)0.0232 (14)0.0003 (11)0.0030 (12)0.0011 (11)
C130.0124 (13)0.0239 (15)0.0205 (13)0.0005 (11)0.0010 (11)0.0094 (12)
C140.0222 (14)0.0176 (13)0.0173 (13)0.0044 (11)0.0033 (12)0.0025 (11)
C150.0210 (14)0.0143 (13)0.0180 (13)0.0003 (11)0.0037 (11)0.0002 (11)
C160.0189 (13)0.0188 (12)0.0126 (12)0.0049 (10)0.0008 (11)0.0013 (11)
C170.0218 (14)0.0186 (13)0.0181 (14)0.0005 (11)0.0008 (12)0.0025 (12)
C180.0187 (15)0.0292 (16)0.0190 (14)0.0032 (13)0.0030 (13)0.0058 (12)
C190.0255 (16)0.0243 (16)0.0168 (14)0.0098 (13)0.0023 (12)0.0001 (12)
C200.0249 (16)0.0230 (14)0.0196 (14)0.0061 (13)0.0040 (13)0.0033 (11)
C210.0159 (14)0.0221 (13)0.0183 (13)0.0028 (11)0.0021 (12)0.0021 (12)
Geometric parameters (Å, º) top
Br1—C71.903 (3)C9—H90.9500
Br2—C131.901 (2)C10—C111.399 (4)
N1—C31.291 (3)C10—C151.402 (4)
N1—N21.369 (3)C11—C121.383 (4)
N2—C161.382 (3)C11—H110.9500
N2—C11.478 (3)C12—C131.385 (4)
C1—C41.512 (4)C12—H120.9500
C1—C21.550 (4)C13—C141.379 (4)
C1—H11.0000C14—C151.377 (4)
C2—C31.506 (4)C14—H140.9500
C2—H2A0.9900C15—H150.9500
C2—H2B0.9900C16—C171.397 (3)
C3—C101.461 (4)C16—C211.407 (3)
C4—C91.390 (4)C17—C181.383 (4)
C4—C51.391 (4)C17—H170.9500
C5—C61.380 (4)C18—C191.377 (4)
C5—H50.9500C18—H180.9500
C6—C71.377 (4)C19—C201.386 (4)
C6—H60.9500C19—H190.9500
C7—C81.373 (4)C20—C211.390 (4)
C8—C91.388 (4)C20—H200.9500
C8—H80.9500C21—H210.9500
C3—N1—N2109.2 (2)C11—C10—C15118.4 (2)
N1—N2—C16120.8 (2)C11—C10—C3121.0 (2)
N1—N2—C1113.1 (2)C15—C10—C3120.6 (2)
C16—N2—C1125.1 (2)C12—C11—C10120.6 (2)
N2—C1—C4112.9 (2)C12—C11—H11119.7
N2—C1—C2100.8 (2)C10—C11—H11119.7
C4—C1—C2112.8 (2)C11—C12—C13119.3 (2)
N2—C1—H1110.0C11—C12—H12120.3
C4—C1—H1110.0C13—C12—H12120.3
C2—C1—H1110.0C14—C13—C12121.3 (2)
C3—C2—C1102.6 (2)C14—C13—Br2120.3 (2)
C3—C2—H2A111.2C12—C13—Br2118.3 (2)
C1—C2—H2A111.2C15—C14—C13119.2 (2)
C3—C2—H2B111.2C15—C14—H14120.4
C1—C2—H2B111.2C13—C14—H14120.4
H2A—C2—H2B109.2C14—C15—C10121.1 (2)
N1—C3—C10122.0 (2)C14—C15—H15119.4
N1—C3—C2113.1 (2)C10—C15—H15119.4
C10—C3—C2124.9 (2)N2—C16—C17120.9 (2)
C9—C4—C5118.8 (2)N2—C16—C21120.3 (2)
C9—C4—C1121.3 (2)C17—C16—C21118.8 (2)
C5—C4—C1119.9 (2)C18—C17—C16120.3 (3)
C6—C5—C4121.0 (2)C18—C17—H17119.9
C6—C5—H5119.5C16—C17—H17119.9
C4—C5—H5119.5C19—C18—C17121.4 (3)
C7—C6—C5118.8 (2)C19—C18—H18119.3
C7—C6—H6120.6C17—C18—H18119.3
C5—C6—H6120.6C18—C19—C20118.7 (3)
C8—C7—C6121.8 (2)C18—C19—H19120.6
C8—C7—Br1118.3 (2)C20—C19—H19120.6
C6—C7—Br1119.8 (2)C19—C20—C21121.4 (3)
C7—C8—C9118.9 (2)C19—C20—H20119.3
C7—C8—H8120.5C21—C20—H20119.3
C9—C8—H8120.5C20—C21—C16119.5 (3)
C8—C9—C4120.6 (2)C20—C21—H21120.3
C8—C9—H9119.7C16—C21—H21120.3
C4—C9—H9119.7
C3—N1—N2—C16176.5 (2)N1—C3—C10—C1110.1 (4)
C3—N1—N2—C17.3 (3)C2—C3—C10—C11171.9 (2)
N1—N2—C1—C4110.1 (2)N1—C3—C10—C15169.7 (2)
C16—N2—C1—C458.6 (3)C2—C3—C10—C158.4 (4)
N1—N2—C1—C210.5 (3)C15—C10—C11—C120.1 (4)
C16—N2—C1—C2179.1 (2)C3—C10—C11—C12179.8 (2)
N2—C1—C2—C39.2 (2)C10—C11—C12—C130.6 (4)
C4—C1—C2—C3111.5 (2)C11—C12—C13—C140.4 (4)
N2—N1—C3—C10178.0 (2)C11—C12—C13—Br2176.76 (19)
N2—N1—C3—C20.3 (3)C12—C13—C14—C150.3 (4)
C1—C2—C3—N16.1 (3)Br2—C13—C14—C15177.42 (19)
C1—C2—C3—C10175.7 (2)C13—C14—C15—C100.8 (4)
N2—C1—C4—C934.0 (3)C11—C10—C15—C140.7 (4)
C2—C1—C4—C979.5 (3)C3—C10—C15—C14179.1 (2)
N2—C1—C4—C5148.6 (2)N1—N2—C16—C17178.2 (2)
C2—C1—C4—C598.0 (3)C1—N2—C16—C1713.9 (4)
C9—C4—C5—C60.2 (4)N1—N2—C16—C211.9 (3)
C1—C4—C5—C6177.3 (2)C1—N2—C16—C21165.9 (2)
C4—C5—C6—C70.4 (4)N2—C16—C17—C18179.0 (2)
C5—C6—C7—C80.2 (4)C21—C16—C17—C180.8 (4)
C5—C6—C7—Br1179.2 (2)C16—C17—C18—C190.3 (4)
C6—C7—C8—C91.1 (4)C17—C18—C19—C200.9 (4)
Br1—C7—C8—C9179.9 (2)C18—C19—C20—C210.3 (4)
C7—C8—C9—C41.3 (4)C19—C20—C21—C160.8 (4)
C5—C4—C9—C80.6 (4)N2—C16—C21—C20178.4 (2)
C1—C4—C9—C8178.1 (2)C17—C16—C21—C201.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N1i0.952.583.374 (3)141
C20—H20···Br1ii0.952.923.768 (2)148
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC21H16Br2N2
Mr456.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)10.5815 (3), 11.2119 (3), 15.4569 (4)
V3)1833.79 (9)
Z4
Radiation typeMo Kα
µ (mm1)4.43
Crystal size (mm)0.35 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.537, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
17504, 4201, 3753
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.052, 1.02
No. of reflections4201
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.40
Absolute structureFlack (1983), 1804 Friedel pairs
Absolute structure parameter0.003 (7)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N1i0.952.583.374 (3)141
C20—H20···Br1ii0.952.923.768 (2)148
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: yathirajan@hotmail.com.

Acknowledgements

SS thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the University of Mysore for the sanction of sabbatical leave

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918–922.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFoces-Foces, C., Jagerovic, N. & Elguero, J. (2001). Z. Kristallogr. 216, 240–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHes, R. V., Wellinga, K. & Grosscurt, A. C. (1978). J. Agric. Food Chem. 26, 915–918.  Google Scholar
First citationSarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Design Discov. 7, 214–224.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationYathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2718.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds