organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­cyclo­hexyl-1-(4-nitro­benzo­yl)urea

aDepartment of Physics, Anna University Chennai, Chennai 600 025, India
*Correspondence e-mail: kali@annauniv.edu

(Received 29 April 2010; accepted 1 May 2010; online 8 May 2010)

In the title compound, C20H27N3O4, both cyclo­hexane rings adopt chair conformations. The benzene ring and the amide group are oriented at a dihedral angle of 62.1 (2)°. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [010], which contain R22(12) ring motifs.

Related literature

For the biological activity of benzoyl­urea and N-aroylurea derivatives, see: Song et al. (2008[Song, D.-Q., Wang, Y., Wu, L.-J., Yang, P., Wang, Y.-M., Gao, L.-M., Li, Y., Qu, J.-R., Wang, Y.-H., Li, Y.-H., Du, N.-N., Han, Y.-X., Zhang, Z.-P. & Jiang, J.-D. (2008). J. Med. Chem. 51, 3094-3103.], 2009[Song, D.-Q., Wang, Y.-M., Du, N.-N., He, W.-Y., Chen, K.-L., Wang, G.-F., Yang, P., Wu, L.-Z., Zhang, X.-B. & Jiang, J.-D. (2009). Bioorg. Med. Chem. Lett. 19, 755-758.]); Amornraksa et al. (2009[Amornraksa, K., Worachartcheewan, A. & Prachayasittikul, V. (2009). Eur. J. Sci. Res. 31, 510-518.]). For related N-benzoyl-N,N′-dicyclo­hexyl­urea structures, see: Orea Flores et al. (2006[Orea Flores, M. L., Galindo Guzmán, A., Gnecco Medina, D. & Bernès, S. (2006). Acta Cryst. E62, o2922-o2923.]); Wang & Peng (2008[Wang, Y.-W. & Peng, Y. (2008). Acta Cryst. E64, o160.]).

[Scheme 1]

Experimental

Crystal data
  • C20H27N3O4

  • Mr = 373.45

  • Monoclinic, C 2/c

  • a = 25.294 (2) Å

  • b = 9.5757 (7) Å

  • c = 16.6943 (14) Å

  • β = 105.140 (2)°

  • V = 3903.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 1999[Bruker (1999). SADABS., Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.836, Tmax = 0.982

  • 22623 measured reflections

  • 5012 independent reflections

  • 3152 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.02

  • 5012 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.10 2.9396 (15) 166
C1—H1⋯O2ii 0.98 2.43 3.3636 (18) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzoylurea derivatives act as antimitotic (Song et al., 2008) and antiproliferative (Song et al., 2009) agents. Some of the N-aroylurea analogs have been found to exhibit antioxidant activity (Amornraksa et al., 2009). We report here the crystal structure of the title compound, (I), an aroylurea.

In the title molecule (Fig. 1), both cyclohexane rings adopt chair conformations. The benzoyl carbonyl group is twisted away from the N–H group and as a result no intramolecular N—H···O hydrogen bond is formed. The dihedral angle between the N1/C7/O1 and N2/C14/O2 planes is 65.0 (2)°. The amide group (C7/O1/N1) and the benzene ring (C15–C20) are oriented at a dihedral angle of 62.1 (1)°. The nitro group is almost coplanar with the attached benzene ring [C19—C18—N3—O3 = -0.8 (3)° and C17—C18—N3—O4 = -1.6 (3)°]. Bond lengths and angles are comparable to those observed in N-benzoyl-N,N'-dicyclohexylurea (Orea Flores et al., 2006) and N-(4-bromobenzoyl)-N,N-dicyclohexylurea (Wang & Peng, 2008).

In the crystal structure, N1—H1A···O1i and C1—H1···O2ii hydrogen bonds (symmetry codes as in Table 1) generate R22(12) ring motifs which are fused into a ribbon-like structure along the b axis (Fig.2).

Related literature top

For the biological activity of benzoylurea and N-aroylurea derivatives, see: Song et al. (2008, 2009); Amornraksa et al. (2009). For related N-benzoyl-N,N'-dicyclohexylurea structures, see: Orea Flores et al. (2006); Wang & Peng (2008).

Experimental top

4-Nitrobenzoic acid (1 g, 5.9 mmol) and dicyclohexylcarbodiimide (1.203 g, 5.9 mmol) were dissolved in dichloromethane (30 ml). The resulting mixture was stirred overnight and then the solvent was removed by rotary evaporator. The product was isolated by column chromatography by using ethyl acetate-hexane (1:9) as eluent. Pale yellow blocks of (I) were obtained by slow evaporation of an ethanolic solution over a period of two weeks.

Refinement top

H atoms were initially located in a difference Fourier map and later placed in idealized positions and constrained to ride on their parent atoms, with N–H = 0.86 Å, C–H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C,N). The Uij parameters of the nitro group atoms indicate possible disorder but attempts to model the disorder were not successful. Beamstop affected reflection 200 was omitted during the refinement.

Structure description top

Benzoylurea derivatives act as antimitotic (Song et al., 2008) and antiproliferative (Song et al., 2009) agents. Some of the N-aroylurea analogs have been found to exhibit antioxidant activity (Amornraksa et al., 2009). We report here the crystal structure of the title compound, (I), an aroylurea.

In the title molecule (Fig. 1), both cyclohexane rings adopt chair conformations. The benzoyl carbonyl group is twisted away from the N–H group and as a result no intramolecular N—H···O hydrogen bond is formed. The dihedral angle between the N1/C7/O1 and N2/C14/O2 planes is 65.0 (2)°. The amide group (C7/O1/N1) and the benzene ring (C15–C20) are oriented at a dihedral angle of 62.1 (1)°. The nitro group is almost coplanar with the attached benzene ring [C19—C18—N3—O3 = -0.8 (3)° and C17—C18—N3—O4 = -1.6 (3)°]. Bond lengths and angles are comparable to those observed in N-benzoyl-N,N'-dicyclohexylurea (Orea Flores et al., 2006) and N-(4-bromobenzoyl)-N,N-dicyclohexylurea (Wang & Peng, 2008).

In the crystal structure, N1—H1A···O1i and C1—H1···O2ii hydrogen bonds (symmetry codes as in Table 1) generate R22(12) ring motifs which are fused into a ribbon-like structure along the b axis (Fig.2).

For the biological activity of benzoylurea and N-aroylurea derivatives, see: Song et al. (2008, 2009); Amornraksa et al. (2009). For related N-benzoyl-N,N'-dicyclohexylurea structures, see: Orea Flores et al. (2006); Wang & Peng (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing fused R22(12) ring motifs generating a molecular ribbon extending along the b axis.
1,3-Dicyclohexyl-1-(4-nitrobenzoyl)urea top
Crystal data top
C20H27N3O4F(000) = 1600
Mr = 373.45Dx = 1.271 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4827 reflections
a = 25.294 (2) Åθ = 2.5–23.4°
b = 9.5757 (7) ŵ = 0.09 mm1
c = 16.6943 (14) ÅT = 292 K
β = 105.140 (2)°Block, pale-yellow
V = 3903.1 (5) Å30.25 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5012 independent reflections
Radiation source: fine-focus sealed tube3152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scanθmax = 28.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker 1999)
h = 3434
Tmin = 0.836, Tmax = 0.982k = 1212
22623 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0549P)2 + 1.482P]
where P = (Fo2 + 2Fc2)/3
5012 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C20H27N3O4V = 3903.1 (5) Å3
Mr = 373.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.294 (2) ŵ = 0.09 mm1
b = 9.5757 (7) ÅT = 292 K
c = 16.6943 (14) Å0.25 × 0.20 × 0.20 mm
β = 105.140 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5012 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 1999)
3152 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.982Rint = 0.031
22623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
5012 reflectionsΔρmin = 0.14 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18614 (6)0.20858 (14)0.12793 (9)0.0419 (3)
H10.19690.11160.12200.050*
C20.12619 (7)0.2094 (2)0.12851 (11)0.0651 (5)
H2A0.11510.30390.13740.078*
H2B0.12120.15170.17380.078*
C30.09045 (7)0.1538 (3)0.04623 (12)0.0795 (6)
H3A0.09910.05630.04020.095*
H3B0.05220.15960.04660.095*
C40.09915 (8)0.2346 (2)0.02572 (12)0.0786 (6)
H4A0.08700.33010.02280.094*
H4B0.07750.19380.07700.094*
C50.15886 (8)0.2338 (2)0.02557 (11)0.0713 (5)
H5A0.16380.29020.07130.086*
H5B0.17000.13910.03370.086*
C60.19480 (8)0.29061 (19)0.05559 (10)0.0603 (4)
H6A0.23300.28500.05490.072*
H6B0.18600.38800.06150.072*
C70.25502 (6)0.18506 (14)0.26110 (9)0.0405 (3)
C80.34370 (6)0.27308 (16)0.35126 (10)0.0511 (4)
H80.35450.35510.38690.061*
C90.36104 (7)0.2997 (2)0.27233 (12)0.0665 (5)
H9A0.34360.38410.24600.080*
H9B0.34920.22260.23410.080*
C100.42312 (8)0.3153 (3)0.29111 (15)0.0843 (6)
H10A0.43350.32690.23960.101*
H10B0.43450.39820.32460.101*
C110.45178 (8)0.1898 (3)0.33654 (17)0.0955 (8)
H11A0.49110.20370.34930.115*
H11B0.44270.10810.30130.115*
C120.43525 (8)0.1653 (3)0.41589 (16)0.1003 (8)
H12A0.44710.24340.45320.120*
H12B0.45310.08170.44280.120*
C130.37307 (7)0.1487 (2)0.39846 (13)0.0748 (6)
H13A0.36170.06440.36630.090*
H13B0.36310.13930.45050.090*
C140.25633 (7)0.32416 (15)0.38509 (9)0.0478 (4)
C150.19665 (6)0.29435 (15)0.37139 (9)0.0462 (3)
C160.16036 (8)0.40464 (17)0.36337 (13)0.0689 (5)
H160.17320.49560.36320.083*
C170.10558 (9)0.3818 (2)0.35558 (14)0.0784 (6)
H170.08110.45600.34890.094*
C180.08794 (7)0.2471 (2)0.35787 (11)0.0611 (4)
C190.12263 (7)0.13583 (19)0.36631 (11)0.0599 (4)
H190.10950.04530.36740.072*
C200.17750 (7)0.15920 (16)0.37322 (10)0.0521 (4)
H200.20160.08420.37910.063*
N10.22096 (5)0.26334 (11)0.20560 (7)0.0426 (3)
H1A0.21920.35100.21570.051*
N20.28337 (5)0.25964 (12)0.33451 (7)0.0450 (3)
N30.02944 (8)0.2204 (3)0.35113 (12)0.0897 (6)
O10.26427 (4)0.06149 (10)0.25260 (6)0.0535 (3)
O20.27950 (5)0.40101 (12)0.44180 (7)0.0660 (3)
O30.01453 (7)0.1016 (3)0.35244 (15)0.1366 (8)
O40.00053 (8)0.3209 (3)0.34562 (14)0.1356 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0420 (8)0.0411 (7)0.0381 (8)0.0019 (6)0.0026 (6)0.0032 (6)
C20.0507 (10)0.0968 (13)0.0464 (10)0.0144 (9)0.0101 (8)0.0049 (9)
C30.0459 (10)0.1293 (18)0.0568 (12)0.0117 (11)0.0016 (8)0.0154 (12)
C40.0766 (14)0.0941 (14)0.0491 (11)0.0318 (11)0.0122 (9)0.0059 (10)
C50.0924 (15)0.0818 (12)0.0369 (9)0.0024 (10)0.0122 (9)0.0032 (8)
C60.0683 (11)0.0700 (10)0.0455 (9)0.0077 (9)0.0199 (8)0.0026 (8)
C70.0382 (7)0.0415 (7)0.0391 (8)0.0064 (6)0.0052 (6)0.0011 (6)
C80.0437 (8)0.0566 (8)0.0464 (9)0.0144 (7)0.0000 (7)0.0014 (7)
C90.0496 (10)0.0845 (12)0.0617 (11)0.0081 (9)0.0079 (8)0.0146 (9)
C100.0558 (12)0.1142 (17)0.0825 (15)0.0205 (11)0.0175 (10)0.0039 (13)
C110.0434 (11)0.1230 (19)0.109 (2)0.0024 (12)0.0003 (11)0.0069 (16)
C120.0559 (12)0.1229 (19)0.1000 (19)0.0031 (12)0.0191 (12)0.0269 (15)
C130.0529 (11)0.0874 (13)0.0695 (13)0.0088 (9)0.0099 (9)0.0259 (10)
C140.0610 (10)0.0460 (7)0.0338 (8)0.0122 (7)0.0075 (7)0.0021 (6)
C150.0602 (10)0.0465 (8)0.0329 (7)0.0064 (7)0.0142 (7)0.0015 (6)
C160.0856 (14)0.0472 (9)0.0866 (14)0.0010 (8)0.0453 (11)0.0004 (9)
C170.0818 (14)0.0768 (13)0.0902 (15)0.0217 (10)0.0466 (12)0.0135 (11)
C180.0551 (10)0.0856 (12)0.0461 (10)0.0019 (9)0.0198 (8)0.0029 (8)
C190.0637 (11)0.0619 (10)0.0558 (10)0.0155 (8)0.0188 (8)0.0026 (8)
C200.0582 (10)0.0475 (8)0.0505 (9)0.0055 (7)0.0140 (7)0.0030 (7)
N10.0465 (7)0.0358 (6)0.0405 (7)0.0001 (5)0.0020 (5)0.0033 (5)
N20.0433 (7)0.0482 (7)0.0384 (7)0.0094 (5)0.0019 (5)0.0027 (5)
N30.0614 (12)0.1421 (19)0.0727 (12)0.0012 (13)0.0299 (9)0.0005 (12)
O10.0563 (7)0.0400 (5)0.0544 (7)0.0028 (4)0.0028 (5)0.0017 (5)
O20.0836 (9)0.0709 (7)0.0413 (6)0.0298 (6)0.0121 (6)0.0137 (5)
O30.0837 (12)0.1591 (19)0.183 (2)0.0499 (13)0.0636 (13)0.0461 (16)
O40.0759 (11)0.192 (2)0.1528 (19)0.0377 (13)0.0546 (12)0.0442 (16)
Geometric parameters (Å, º) top
C1—N11.4613 (17)C10—C111.503 (3)
C1—C61.504 (2)C10—H10A0.97
C1—C21.519 (2)C10—H10B0.97
C1—H10.98C11—C121.508 (4)
C2—C31.530 (2)C11—H11A0.97
C2—H2A0.97C11—H11B0.97
C2—H2B0.97C12—C131.531 (3)
C3—C41.493 (3)C12—H12A0.97
C3—H3A0.97C12—H12B0.97
C3—H3B0.97C13—H13A0.97
C4—C51.510 (3)C13—H13B0.97
C4—H4A0.97C14—O21.2213 (17)
C4—H4B0.97C14—N21.365 (2)
C5—C61.521 (2)C14—C151.494 (2)
C5—H5A0.97C15—C161.383 (2)
C5—H5B0.97C15—C201.385 (2)
C6—H6A0.97C16—C171.375 (3)
C6—H6B0.97C16—H160.93
C7—O11.2217 (16)C17—C181.369 (3)
C7—N11.3213 (18)C17—H170.93
C7—N21.4377 (17)C18—C191.364 (3)
C8—N21.4834 (19)C18—N31.477 (3)
C8—C131.512 (2)C19—C201.381 (2)
C8—C91.515 (2)C19—H190.93
C8—H80.98C20—H200.93
C9—C101.526 (2)N1—H1A0.86
C9—H9A0.97N3—O31.200 (3)
C9—H9B0.97N3—O41.213 (3)
N1—C1—C6110.17 (12)C9—C10—H10A109.4
N1—C1—C2111.33 (12)C11—C10—H10B109.4
C6—C1—C2110.94 (13)C9—C10—H10B109.4
N1—C1—H1108.1H10A—C10—H10B108.0
C6—C1—H1108.1C10—C11—C12111.1 (2)
C2—C1—H1108.1C10—C11—H11A109.4
C1—C2—C3110.45 (15)C12—C11—H11A109.4
C1—C2—H2A109.6C10—C11—H11B109.4
C3—C2—H2A109.6C12—C11—H11B109.4
C1—C2—H2B109.6H11A—C11—H11B108.0
C3—C2—H2B109.6C11—C12—C13110.85 (17)
H2A—C2—H2B108.1C11—C12—H12A109.5
C4—C3—C2111.43 (17)C13—C12—H12A109.5
C4—C3—H3A109.3C11—C12—H12B109.5
C2—C3—H3A109.3C13—C12—H12B109.5
C4—C3—H3B109.3H12A—C12—H12B108.1
C2—C3—H3B109.3C8—C13—C12110.96 (16)
H3A—C3—H3B108.0C8—C13—H13A109.4
C3—C4—C5110.71 (15)C12—C13—H13A109.4
C3—C4—H4A109.5C8—C13—H13B109.4
C5—C4—H4A109.5C12—C13—H13B109.4
C3—C4—H4B109.5H13A—C13—H13B108.0
C5—C4—H4B109.5O2—C14—N2122.40 (15)
H4A—C4—H4B108.1O2—C14—C15119.65 (15)
C4—C5—C6111.38 (16)N2—C14—C15117.92 (12)
C4—C5—H5A109.4C16—C15—C20119.26 (16)
C6—C5—H5A109.4C16—C15—C14119.19 (14)
C4—C5—H5B109.4C20—C15—C14121.35 (14)
C6—C5—H5B109.4C17—C16—C15120.97 (16)
H5A—C5—H5B108.0C17—C16—H16119.5
C1—C6—C5110.49 (14)C15—C16—H16119.5
C1—C6—H6A109.6C18—C17—C16118.38 (17)
C5—C6—H6A109.6C18—C17—H17120.8
C1—C6—H6B109.6C16—C17—H17120.8
C5—C6—H6B109.6C19—C18—C17122.23 (17)
H6A—C6—H6B108.1C19—C18—N3118.54 (18)
O1—C7—N1125.28 (13)C17—C18—N3119.23 (19)
O1—C7—N2120.81 (12)C18—C19—C20119.19 (16)
N1—C7—N2113.87 (12)C18—C19—H19120.4
N2—C8—C13111.79 (13)C20—C19—H19120.4
N2—C8—C9111.58 (12)C19—C20—C15119.96 (16)
C13—C8—C9111.80 (16)C19—C20—H20120.0
N2—C8—H8107.1C15—C20—H20120.0
C13—C8—H8107.1C7—N1—C1123.38 (11)
C9—C8—H8107.1C7—N1—H1A118.3
C8—C9—C10110.73 (15)C1—N1—H1A118.3
C8—C9—H9A109.5C14—N2—C7122.22 (12)
C10—C9—H9A109.5C14—N2—C8120.06 (12)
C8—C9—H9B109.5C7—N2—C8117.59 (12)
C10—C9—H9B109.5O3—N3—O4124.0 (2)
H9A—C9—H9B108.1O3—N3—C18118.4 (2)
C11—C10—C9111.10 (17)O4—N3—C18117.5 (2)
C11—C10—H10A109.4
N1—C1—C2—C3179.16 (15)C17—C18—C19—C200.3 (3)
C6—C1—C2—C356.1 (2)N3—C18—C19—C20179.59 (16)
C1—C2—C3—C456.0 (2)C18—C19—C20—C150.1 (3)
C2—C3—C4—C556.1 (2)C16—C15—C20—C190.6 (2)
C3—C4—C5—C656.5 (2)C14—C15—C20—C19175.33 (14)
N1—C1—C6—C5179.75 (13)O1—C7—N1—C14.9 (2)
C2—C1—C6—C556.51 (19)N2—C7—N1—C1177.33 (12)
C4—C5—C6—C156.7 (2)C6—C1—N1—C7126.35 (15)
N2—C8—C9—C10179.16 (15)C2—C1—N1—C7110.13 (16)
C13—C8—C9—C1054.8 (2)O2—C14—N2—C7171.22 (13)
C8—C9—C10—C1155.8 (2)C15—C14—N2—C710.96 (19)
C9—C10—C11—C1257.2 (3)O2—C14—N2—C84.6 (2)
C10—C11—C12—C1356.8 (3)C15—C14—N2—C8173.21 (12)
N2—C8—C13—C12179.41 (17)O1—C7—N2—C14121.45 (16)
C9—C8—C13—C1254.7 (2)N1—C7—N2—C1460.66 (18)
C11—C12—C13—C855.3 (3)O1—C7—N2—C862.63 (18)
O2—C14—C15—C1653.2 (2)N1—C7—N2—C8115.27 (14)
N2—C14—C15—C16128.91 (16)C13—C8—N2—C1497.56 (18)
O2—C14—C15—C20121.55 (17)C9—C8—N2—C14136.42 (15)
N2—C14—C15—C2056.33 (19)C13—C8—N2—C786.42 (17)
C20—C15—C16—C171.3 (3)C9—C8—N2—C739.60 (18)
C14—C15—C16—C17176.15 (17)C19—C18—N3—O30.8 (3)
C15—C16—C17—C181.5 (3)C17—C18—N3—O3179.3 (2)
C16—C17—C18—C191.0 (3)C19—C18—N3—O4178.3 (2)
C16—C17—C18—N3178.90 (17)C17—C18—N3—O41.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.102.9396 (15)166
C1—H1···O2ii0.982.433.3636 (18)160
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H27N3O4
Mr373.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)292
a, b, c (Å)25.294 (2), 9.5757 (7), 16.6943 (14)
β (°) 105.140 (2)
V3)3903.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker 1999)
Tmin, Tmax0.836, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
22623, 5012, 3152
Rint0.031
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.02
No. of reflections5012
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.102.9396 (15)166
C1—H1···O2ii0.982.433.3636 (18)160
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT-Madras, Chennai, for providing data-collection facilities.

References

First citationAmornraksa, K., Worachartcheewan, A. & Prachayasittikul, V. (2009). Eur. J. Sci. Res. 31, 510–518.  Google Scholar
First citationBruker (1999). SADABS., Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOrea Flores, M. L., Galindo Guzmán, A., Gnecco Medina, D. & Bernès, S. (2006). Acta Cryst. E62, o2922–o2923.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, D.-Q., Wang, Y.-M., Du, N.-N., He, W.-Y., Chen, K.-L., Wang, G.-F., Yang, P., Wu, L.-Z., Zhang, X.-B. & Jiang, J.-D. (2009). Bioorg. Med. Chem. Lett. 19, 755–758.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSong, D.-Q., Wang, Y., Wu, L.-J., Yang, P., Wang, Y.-M., Gao, L.-M., Li, Y., Qu, J.-R., Wang, Y.-H., Li, Y.-H., Du, N.-N., Han, Y.-X., Zhang, Z.-P. & Jiang, J.-D. (2008). J. Med. Chem. 51, 3094–3103.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-W. & Peng, Y. (2008). Acta Cryst. E64, o160.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds