metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­ethyl­enetri­ammonium [aquadi-μ2-sulfato-sulfatocerium(III)]]

aDepartment of X-ray, First Hospital, Jilin University, Changchun 130021, People's Republic of China, and bSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 30 April 2010; accepted 6 May 2010; online 15 May 2010)

A new organically templated open-framework cerium sulfate, {(C4H16N3)[Ce(SO4)3(H2O)]}n, was hydro­thermally synthesized. The CeIII cation is nine-coordinated by nine O atoms, including one water mol­ecule. Two of the SO4 groups afford one monodentate and bidentate linkages as the bridge to connect adjacent CeIII cations, while the third SO4 group attaches the CeIII cation in a bidentate mode. The crystal structure consists of layers composed of eight-membered-ring networks formed by four CeO9 polyhedra and four SO4 tetra­hedra. The triply protonated diethyl­enetriamine cations are located between adjacent layers and connect the layers via hydrogen bonds.

Related literature

For related literature, see: Choudhury et al. (2001[Choudhury, A., Krishnamoorthy, J. & Rao, C. N. R. (2001). Chem. Commun. pp. 2610-2611.]); Fu et al. (2006[Fu, Y., Xu, Z. & Ren, J. (2006). J. Mol. Struct. 788, 190-193.]); Paul et al. (2002[Paul, G., Choudhury, A. & Rao, C. N. R. (2002). J. Chem. Soc. Dalton Trans. pp. 3859-3867.]); Rao et al. (2006[Rao, C. N. R., Behera, J. N. & Dan, M. (2006). Chem. Soc. Rev. 35, 375-387.]); Wickleder (2002[Wickleder, M. S. (2002). Chem. Rev. 102, 2011-2087.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H16N3)[Ce(SO4)3(H2O)]

  • Mr = 552.51

  • Monoclinic, P 21

  • a = 6.6774 (13) Å

  • b = 10.397 (2) Å

  • c = 11.093 (2) Å

  • β = 93.77 (3)°

  • V = 768.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.44 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.480, Tmax = 0.561

  • 7575 measured reflections

  • 3485 independent reflections

  • 3443 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.041

  • S = 1.15

  • 3485 reflections

  • 225 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.71 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: −0.009 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1F⋯O4 0.83 (2) 1.98 (2) 2.766 (3) 159 (4)
O1W—H1G⋯O11i 0.81 (2) 2.06 (2) 2.850 (3) 164 (4)
N1—H1A⋯O8ii 0.89 2.02 2.769 (3) 141
N1—H1C⋯O9ii 0.89 2.02 2.883 (3) 162
N1—H1B⋯O6iii 0.89 2.05 2.852 (3) 150
N2—H2B⋯O11 0.90 1.92 2.764 (4) 156
N2—H2A⋯O2iv 0.90 2.16 2.993 (3) 154
N2—H2A⋯O4iv 0.90 2.30 2.997 (3) 134
N3—H3A⋯O5v 0.89 2.17 2.808 (3) 128
N3—H3A⋯O3vi 0.89 2.26 3.059 (4) 150
N3—H3C⋯O12v 0.89 1.91 2.799 (4) 173
N3—H3B⋯O10vii 0.89 2.04 2.763 (4) 137
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iii) x-1, y, z; (iv) x, y-1, z; (v) [-x+1, y-{\script{1\over 2}}, -z+1]; (vi) [-x, y-{\script{1\over 2}}, -z+1]; (vii) x-1, y-1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The hydrous and anhydrous lanthanide sulfates have been intensively studied due to use of the separation of rare earth elements (Wickleder, 2002). Since the pioneering works of Rao et al. (Choudhury, et al., 2001; Paul, et al., 2002; Rao, et al., 2006) on the preparation of organically templated open-framework metal sulfates, a remarkable plenty of organically templated open-framework rare-earth sulfates have been describled also. The example of organically templated cerium sulfate is few reported except for (C4H12N2)4.[Ce8(SO4)16(H2O)8] and (C2H10N2)2.[Ce2(SO4)5(H2O)2] (Fu, et al., 2006). In this work, a new layer cerium sulfate, {(C4H16N3)[Ce(SO4)3(H2O)]}n, is obtained.

The asymmetric unit of (I) comprises of one CeIII cation, three SO4 groups, one coordination water and one protonated diethylene triamine cation, as shown in Fig.1. The CeIII cation is 9-coordinated by nine oxygen including one water molecule with the bond distances from 2.468 (2) Å to 2.588 (27) Å and the angles of O—Ce—O between 54.18 (10)° and 149.13 (10)°. Three SO4 can be divided into two modes: S(1) and S(3) consist of three S—O—Ce linkages and links adjacent Ce atoms through one bidentate and one monodentate; S(2) makes two S—O—Ce linkages as a ligand of one Ce atom through bidentate. The bond angles of S—O—Ce of bidentate coordination range from 99.23 (10)° to 101.8 (1)°, and the S—O—Ce of monodentate coordination is at 141.81 (9)° and 144.17 (13)°.

As shown in Fig.2, the layer of (I) is accomplished by connect the Ce cations by µ2-S(1)O4 and µ2-S(3)O4 as the bridge along (100) and (010) direction, respectively. The S(2)O4 do not take part in the formation of layer and coordinates to Ce cation by the bidentate mode. The protonated H3DETA interacts with the layer by the H-bond of N—H···O.

Related literature top

For related literature, see: Choudhury et al. (2001); Fu et al. (2006); Paul et al. (2002); Rao et al. (2006); Wickleder (2002).

Experimental top

(I) was synthesized under hydrothermal condition. In a typically route, Ce(NO3)3.6H2O (0.30 g, 0.7 mmol) was dissolved in 5 ml deionized water under stirring, and then H2SO4 (95%, 0.25 ml, 4.55 mmol) and DETA (0.22 ml, 2.8 mmol) were dropwisely added to a clear solution with pH=3.0. After continuously stirred for 3 h, the solution with the molar ratio of Ce(NO3)3.6H2O : 6.5H2SO4 : 2.8DETA : 397H2O was transferred into 23 ml autoclave and heated at 438 K for 5 days. After naturally cooling to room temperature, colorless block soluble product was collected by filtration as a single phase. The atomic ratio of Ce : S determined by EDX was 1 : 3, in consistence with the results of structural determination of (I).

Refinement top

Water H atoms were located in a difference Fourier map and were refined with O—H = 0.82 (2) Å, H···H = 1.37 (2) Å and Uiso(H) = 1.2Ueq(O). The remaining H-atoms were placed in calculated positions (C—H = 0.89 Å, N—H = 0.89-0.90 Å) and were included in the refinement in the riding-model approximation, with U(H) = 1.2Ueq(C, N).

Structure description top

The hydrous and anhydrous lanthanide sulfates have been intensively studied due to use of the separation of rare earth elements (Wickleder, 2002). Since the pioneering works of Rao et al. (Choudhury, et al., 2001; Paul, et al., 2002; Rao, et al., 2006) on the preparation of organically templated open-framework metal sulfates, a remarkable plenty of organically templated open-framework rare-earth sulfates have been describled also. The example of organically templated cerium sulfate is few reported except for (C4H12N2)4.[Ce8(SO4)16(H2O)8] and (C2H10N2)2.[Ce2(SO4)5(H2O)2] (Fu, et al., 2006). In this work, a new layer cerium sulfate, {(C4H16N3)[Ce(SO4)3(H2O)]}n, is obtained.

The asymmetric unit of (I) comprises of one CeIII cation, three SO4 groups, one coordination water and one protonated diethylene triamine cation, as shown in Fig.1. The CeIII cation is 9-coordinated by nine oxygen including one water molecule with the bond distances from 2.468 (2) Å to 2.588 (27) Å and the angles of O—Ce—O between 54.18 (10)° and 149.13 (10)°. Three SO4 can be divided into two modes: S(1) and S(3) consist of three S—O—Ce linkages and links adjacent Ce atoms through one bidentate and one monodentate; S(2) makes two S—O—Ce linkages as a ligand of one Ce atom through bidentate. The bond angles of S—O—Ce of bidentate coordination range from 99.23 (10)° to 101.8 (1)°, and the S—O—Ce of monodentate coordination is at 141.81 (9)° and 144.17 (13)°.

As shown in Fig.2, the layer of (I) is accomplished by connect the Ce cations by µ2-S(1)O4 and µ2-S(3)O4 as the bridge along (100) and (010) direction, respectively. The S(2)O4 do not take part in the formation of layer and coordinates to Ce cation by the bidentate mode. The protonated H3DETA interacts with the layer by the H-bond of N—H···O.

For related literature, see: Choudhury et al. (2001); Fu et al. (2006); Paul et al. (2002); Rao et al. (2006); Wickleder (2002).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The unit cell of (I), showing the atomic labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 1+x, y, z; (ii) 1-x, 0.5+y, -z.]
[Figure 2] Fig. 2. The stick plot of (I), displaying the layer along (101) direction composed by linking the Ce cation with µ2-S(1)O4 and µ2-S(3)O4. S(1) is shown in yellow, S(2) in green and S(3) in blue.
Poly[diethylenetriammonium [aquadi-µ2-sulfato-sulfatocerium(III)]] top
Crystal data top
(C4H16N3)[Ce(SO4)3(H2O)]F(000) = 546
Mr = 552.51Dx = 2.388 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1000 reflections
a = 6.6774 (13) Åθ = 3.1–24.8°
b = 10.397 (2) ŵ = 3.44 mm1
c = 11.093 (2) ÅT = 293 K
β = 93.77 (3)°Block, colorless
V = 768.5 (3) Å30.25 × 0.22 × 0.19 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3485 independent reflections
Radiation source: fine-focus sealed tube3443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 78
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.480, Tmax = 0.561l = 1414
7575 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.005P)2 + 0.1027P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
3485 reflectionsΔρmax = 0.56 e Å3
225 parametersΔρmin = 0.71 e Å3
4 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.009 (8)
Crystal data top
(C4H16N3)[Ce(SO4)3(H2O)]V = 768.5 (3) Å3
Mr = 552.51Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.6774 (13) ŵ = 3.44 mm1
b = 10.397 (2) ÅT = 293 K
c = 11.093 (2) Å0.25 × 0.22 × 0.19 mm
β = 93.77 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3485 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
3443 reflections with I > 2σ(I)
Tmin = 0.480, Tmax = 0.561Rint = 0.017
7575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.015H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041Δρmax = 0.56 e Å3
S = 1.15Δρmin = 0.71 e Å3
3485 reflectionsAbsolute structure: Flack (1983)
225 parametersAbsolute structure parameter: 0.009 (8)
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.468643 (16)0.636197 (16)0.819119 (10)0.00928 (4)
S11.00549 (10)0.68984 (7)0.75724 (6)0.01204 (13)
S20.57509 (11)0.41208 (7)0.63748 (6)0.01388 (14)
S30.57345 (10)0.97128 (6)0.93682 (6)0.01258 (13)
O10.5483 (3)0.8315 (2)0.9420 (2)0.0190 (4)
O20.3896 (3)1.0370 (2)0.97444 (19)0.0198 (4)
O30.5087 (3)0.5445 (2)0.60536 (19)0.0199 (4)
O40.6164 (4)1.0119 (2)0.81523 (19)0.0249 (5)
O51.1298 (3)0.5804 (2)0.71992 (18)0.0181 (4)
O60.5651 (3)0.40504 (19)0.77192 (18)0.0172 (4)
O70.8387 (2)0.6423 (3)0.82503 (16)0.0198 (4)
O81.1447 (3)0.7667 (2)0.83878 (18)0.0160 (4)
O90.7341 (3)1.01219 (19)1.02740 (19)0.0178 (4)
O100.9302 (3)0.7643 (2)0.6533 (2)0.0264 (5)
O110.4326 (3)0.3179 (2)0.5804 (2)0.0242 (5)
O120.7762 (3)0.3875 (2)0.6036 (2)0.0276 (5)
O1W0.4833 (4)0.8105 (2)0.66809 (19)0.0199 (4)
H1F0.529 (5)0.879 (2)0.696 (3)0.024*
H1G0.520 (5)0.799 (3)0.600 (2)0.024*
N10.0899 (4)0.3572 (3)0.9309 (2)0.0214 (5)
H1A0.16650.33820.99120.026*
H1B0.16530.39210.87030.026*
H1C0.00490.41270.95670.026*
N20.2464 (4)0.1635 (2)0.7422 (2)0.0204 (6)
H2A0.32740.13340.80390.025*
H2B0.32570.19280.68560.025*
N30.0952 (4)0.0122 (3)0.5183 (2)0.0245 (6)
H3A0.18510.01420.46090.029*
H3B0.15180.06930.56530.029*
H3C0.00790.04860.48450.029*
C10.0052 (5)0.2382 (3)0.8884 (3)0.0223 (6)
H1D0.09690.17690.86040.027*
H1E0.08730.19920.95400.027*
C20.1330 (5)0.2739 (3)0.7870 (3)0.0182 (6)
H2C0.04770.30900.72080.022*
H2D0.22680.34050.81470.022*
C30.1272 (5)0.0532 (3)0.6894 (3)0.0234 (7)
H3D0.05790.01080.75240.028*
H3E0.21690.00870.65580.028*
C40.0234 (5)0.0989 (3)0.5919 (3)0.0279 (8)
H4A0.13550.13980.62800.034*
H4B0.03830.16150.54120.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.00800 (7)0.00962 (6)0.01010 (6)0.00022 (6)0.00020 (5)0.00028 (7)
S10.0082 (3)0.0151 (3)0.0127 (3)0.0003 (2)0.0003 (3)0.0010 (2)
S20.0137 (3)0.0150 (3)0.0128 (3)0.0005 (3)0.0002 (3)0.0029 (2)
S30.0141 (3)0.0122 (3)0.0113 (3)0.0004 (2)0.0007 (3)0.0016 (2)
O10.0245 (11)0.0130 (10)0.0190 (10)0.0016 (8)0.0016 (9)0.0026 (8)
O20.0165 (10)0.0207 (10)0.0216 (10)0.0066 (8)0.0027 (9)0.0042 (8)
O30.0222 (11)0.0194 (10)0.0178 (10)0.0059 (8)0.0012 (9)0.0004 (8)
O40.0369 (13)0.0251 (12)0.0131 (10)0.0070 (10)0.0043 (10)0.0000 (8)
O50.0118 (9)0.0214 (10)0.0208 (10)0.0010 (8)0.0019 (9)0.0082 (8)
O60.0212 (10)0.0181 (10)0.0118 (9)0.0005 (8)0.0022 (9)0.0000 (8)
O70.0102 (7)0.0279 (10)0.0216 (8)0.0029 (11)0.0029 (7)0.0037 (12)
O80.0133 (9)0.0177 (10)0.0171 (9)0.0015 (7)0.0012 (8)0.0040 (8)
O90.0142 (9)0.0185 (10)0.0202 (10)0.0012 (8)0.0033 (9)0.0053 (8)
O100.0243 (11)0.0317 (13)0.0220 (11)0.0019 (10)0.0074 (10)0.0097 (9)
O110.0277 (12)0.0270 (12)0.0176 (10)0.0095 (10)0.0012 (10)0.0062 (9)
O120.0199 (10)0.0321 (13)0.0317 (12)0.0067 (9)0.0077 (10)0.0061 (10)
O1W0.0268 (11)0.0179 (11)0.0153 (10)0.0013 (10)0.0034 (9)0.0011 (8)
N10.0179 (13)0.0301 (15)0.0164 (11)0.0004 (10)0.0017 (11)0.0016 (10)
N20.0166 (11)0.0171 (16)0.0268 (12)0.0019 (9)0.0046 (11)0.0027 (9)
N30.0334 (15)0.0221 (14)0.0174 (12)0.0037 (11)0.0025 (12)0.0021 (10)
C10.0245 (16)0.0212 (15)0.0213 (14)0.0046 (12)0.0027 (13)0.0043 (11)
C20.0202 (14)0.0151 (14)0.0193 (13)0.0008 (11)0.0025 (12)0.0001 (11)
C30.0255 (16)0.0140 (14)0.0300 (16)0.0022 (11)0.0046 (14)0.0006 (12)
C40.0401 (19)0.0169 (15)0.0250 (15)0.0030 (12)0.0111 (16)0.0025 (11)
Geometric parameters (Å, º) top
Ce1—O72.4685 (17)N1—C11.481 (4)
Ce1—O1W2.474 (2)N1—H1A0.8900
Ce1—O12.484 (2)N1—H1B0.8900
Ce1—O5i2.518 (2)N1—H1C0.8900
Ce1—O62.551 (2)N2—C21.479 (4)
Ce1—O8i2.575 (2)N2—C31.493 (4)
Ce1—O32.586 (2)N2—H2A0.9000
Ce1—O9ii2.588 (2)N2—H2B0.9000
Ce1—O2ii2.631 (2)N3—C41.476 (4)
S1—O101.451 (2)N3—H3A0.8900
S1—O71.470 (2)N3—H3B0.8900
S1—O51.483 (2)N3—H3C0.8900
S1—O81.487 (2)C1—C21.502 (4)
S2—O121.441 (2)C1—H1D0.9700
S2—O111.478 (2)C1—H1E0.9700
S2—O31.482 (2)C2—H2C0.9700
S2—O61.499 (2)C2—H2D0.9700
S3—O41.460 (2)C3—C41.504 (4)
S3—O11.465 (2)C3—H3D0.9700
S3—O91.483 (2)C3—H3E0.9700
S3—O21.488 (2)C4—H4A0.9700
O1W—H1F0.828 (18)C4—H4B0.9700
O1W—H1G0.813 (18)
O7—Ce1—O1W85.13 (8)O11—S2—O3109.76 (14)
O7—Ce1—O177.68 (8)O11—S2—O3109.76 (14)
O1W—Ce1—O175.90 (8)O12—S2—O6110.75 (13)
O7—Ce1—O5i152.47 (7)O11—S2—O6108.94 (13)
O1W—Ce1—O5i86.97 (8)O11—S2—O6108.94 (13)
O1—Ce1—O5i125.59 (7)O3—S2—O6104.62 (12)
O7—Ce1—O676.34 (8)O12—S2—Ce1122.98 (10)
O1W—Ce1—O6121.95 (7)O11—S2—Ce1126.18 (10)
O1—Ce1—O6146.61 (7)O11—S2—Ce1126.18 (10)
O5i—Ce1—O685.70 (7)O3—S2—Ce153.00 (8)
O7—Ce1—O8i146.03 (8)O6—S2—Ce151.77 (8)
O1W—Ce1—O8i75.06 (7)O4—S3—O1110.70 (14)
O1—Ce1—O8i70.94 (7)O4—S3—O1110.70 (14)
O5i—Ce1—O8i54.73 (6)O4—S3—O9111.45 (13)
O6—Ce1—O8i137.61 (6)O4—S3—O9111.45 (13)
O7—Ce1—O382.53 (7)O1—S3—O9109.74 (12)
O1W—Ce1—O368.78 (7)O4—S3—O2109.99 (14)
O1—Ce1—O3140.66 (7)O4—S3—O2109.99 (14)
O5i—Ce1—O370.03 (7)O1—S3—O2110.21 (14)
O6—Ce1—O354.67 (6)O9—S3—O2104.58 (12)
O8i—Ce1—O3114.22 (7)O4—S3—Ce1iv130.80 (10)
O7—Ce1—O9ii124.15 (7)O4—S3—Ce1iv130.80 (10)
O1W—Ce1—O9ii148.88 (7)O1—S3—Ce1iv118.49 (10)
O1—Ce1—O9ii98.55 (7)O9—S3—Ce1iv51.63 (9)
O5i—Ce1—O9ii71.27 (7)O2—S3—Ce1iv53.35 (8)
O6—Ce1—O9ii79.38 (7)S3—O1—Ce1144.17 (13)
O8i—Ce1—O9ii74.23 (7)S3—O2—Ce1iv99.66 (10)
O3—Ce1—O9ii120.64 (7)S2—O3—Ce199.75 (10)
O7—Ce1—O2ii71.62 (7)S1—O5—Ce1iii101.82 (10)
O1W—Ce1—O2ii148.08 (7)S2—O6—Ce1100.75 (10)
O1—Ce1—O2ii77.94 (7)S1—O7—Ce1141.80 (12)
O5i—Ce1—O2ii123.49 (7)S1—O8—Ce1iii99.21 (10)
O6—Ce1—O2ii74.22 (7)S3—O9—Ce1iv101.66 (10)
O8i—Ce1—O2ii112.91 (7)Ce1—O1W—H1F114 (3)
O3—Ce1—O2ii126.92 (7)Ce1—O1W—H1G123 (3)
O9ii—Ce1—O2ii53.54 (6)H1F—O1W—H1G110 (3)
O7—Ce1—S1i163.95 (6)C1—N1—H1A109.5
O1W—Ce1—S1i78.82 (6)C1—N1—H1B109.5
O1—Ce1—S1i98.37 (5)H1A—N1—H1B109.5
O5i—Ce1—S1i27.23 (5)C1—N1—H1C109.5
O6—Ce1—S1i112.13 (5)H1A—N1—H1C109.5
O8i—Ce1—S1i27.55 (4)H1B—N1—H1C109.5
O3—Ce1—S1i91.41 (6)C2—N2—C3117.1 (2)
O9ii—Ce1—S1i71.66 (5)C2—N2—H2A108.0
O2ii—Ce1—S1i123.17 (5)C3—N2—H2A108.0
O7—Ce1—S276.78 (6)C2—N2—H2B108.0
O1W—Ce1—S294.98 (6)C3—N2—H2B108.0
O1—Ce1—S2153.51 (6)H2A—N2—H2B107.3
O5i—Ce1—S277.70 (5)C4—N3—H3A109.5
O6—Ce1—S227.48 (4)C4—N3—H3B109.5
O8i—Ce1—S2131.42 (5)H3A—N3—H3B109.5
O3—Ce1—S227.25 (5)C4—N3—H3C109.5
O9ii—Ce1—S2101.51 (5)H3A—N3—H3C109.5
O2ii—Ce1—S2100.43 (5)H3B—N3—H3C109.5
S1i—Ce1—S2104.25 (3)N1—C1—C2108.0 (2)
O7—Ce1—S3ii97.66 (6)N1—C1—H1D110.1
O1W—Ce1—S3ii164.83 (5)C2—C1—H1D110.1
O1—Ce1—S3ii90.07 (5)N1—C1—H1E110.1
O5i—Ce1—S3ii96.83 (6)C2—C1—H1E110.1
O6—Ce1—S3ii73.10 (5)H1D—C1—H1E108.4
O8i—Ce1—S3ii95.10 (5)N2—C2—C1112.9 (2)
O3—Ce1—S3ii126.32 (5)N2—C2—H2C109.0
O9ii—Ce1—S3ii26.70 (4)C1—C2—H2C109.0
O2ii—Ce1—S3ii26.99 (4)N2—C2—H2D109.0
S1i—Ce1—S3ii97.89 (3)C1—C2—H2D109.0
S2—Ce1—S3ii100.18 (2)H2C—C2—H2D107.8
O10—S1—O7110.58 (13)N2—C3—C4110.7 (2)
O10—S1—O5111.01 (14)N2—C3—H3D109.5
O7—S1—O5109.98 (15)C4—C3—H3D109.5
O10—S1—O8111.51 (13)N2—C3—H3E109.5
O7—S1—O8109.51 (12)C4—C3—H3E109.5
O5—S1—O8104.08 (11)H3D—C3—H3E108.1
O10—S1—Ce1iii123.20 (11)N3—C4—C3109.2 (3)
O7—S1—Ce1iii126.20 (9)N3—C4—H4A109.8
O5—S1—Ce1iii50.96 (8)C3—C4—H4A109.8
O8—S1—Ce1iii53.24 (8)N3—C4—H4B109.8
O12—S2—O11110.80 (15)C3—C4—H4B109.8
O12—S2—O11110.80 (15)H4A—C4—H4B108.3
O12—S2—O3111.77 (14)
O7—Ce1—S2—O125.76 (14)O4—S3—O2—Ce1iv126.59 (11)
O1W—Ce1—S2—O1278.04 (14)O4—S3—O2—Ce1iv126.59 (11)
O1—Ce1—S2—O129.97 (17)O1—S3—O2—Ce1iv111.08 (11)
O5i—Ce1—S2—O12163.83 (14)O9—S3—O2—Ce1iv6.81 (12)
O6—Ce1—S2—O1291.51 (16)O12—S2—O3—Ce1115.66 (13)
O8i—Ce1—S2—O12152.48 (14)O11—S2—O3—Ce1120.98 (12)
O3—Ce1—S2—O1293.70 (17)O11—S2—O3—Ce1120.98 (12)
O9ii—Ce1—S2—O12128.49 (13)O6—S2—O3—Ce14.23 (12)
O2ii—Ce1—S2—O1273.88 (13)O7—Ce1—O3—S275.58 (12)
S1i—Ce1—S2—O12157.75 (12)O1W—Ce1—O3—S2163.23 (14)
S3ii—Ce1—S2—O12101.32 (13)O1—Ce1—O3—S2135.61 (11)
O7—Ce1—S2—O11172.06 (13)O5i—Ce1—O3—S2102.14 (12)
O1W—Ce1—S2—O11104.14 (14)O6—Ce1—O3—S22.95 (8)
O1—Ce1—S2—O11172.22 (17)O8i—Ce1—O3—S2135.32 (10)
O5i—Ce1—S2—O1118.35 (13)O9ii—Ce1—O3—S249.90 (13)
O6—Ce1—S2—O1186.31 (16)O2ii—Ce1—O3—S215.33 (15)
O8i—Ce1—S2—O1129.70 (14)S1i—Ce1—O3—S2119.34 (10)
O3—Ce1—S2—O1188.48 (17)S3ii—Ce1—O3—S218.47 (13)
O9ii—Ce1—S2—O1149.33 (13)O1—S3—O4—O40.0 (7)
O2ii—Ce1—S2—O11103.93 (13)O9—S3—O4—O40.0 (7)
S1i—Ce1—S2—O1124.43 (12)O2—S3—O4—O40.0 (7)
S3ii—Ce1—S2—O1176.49 (12)Ce1iv—S3—O4—O40.0 (8)
O7—Ce1—S2—O11172.06 (13)O10—S1—O5—Ce1iii116.35 (13)
O1W—Ce1—S2—O11104.14 (14)O7—S1—O5—Ce1iii120.96 (10)
O1—Ce1—S2—O11172.22 (17)O8—S1—O5—Ce1iii3.73 (13)
O5i—Ce1—S2—O1118.35 (13)O12—S2—O6—Ce1116.27 (13)
O6—Ce1—S2—O1186.31 (16)O11—S2—O6—Ce1121.62 (12)
O8i—Ce1—S2—O1129.70 (14)O11—S2—O6—Ce1121.62 (12)
O3—Ce1—S2—O1188.48 (17)O3—S2—O6—Ce14.30 (12)
O9ii—Ce1—S2—O1149.33 (13)O7—Ce1—O6—S287.55 (11)
O2ii—Ce1—S2—O11103.93 (13)O1W—Ce1—O6—S212.30 (13)
S1i—Ce1—S2—O1124.43 (12)O1—Ce1—O6—S2127.41 (12)
S3ii—Ce1—S2—O1176.49 (12)O5i—Ce1—O6—S271.42 (11)
O7—Ce1—S2—O399.46 (13)O8i—Ce1—O6—S291.15 (13)
O1W—Ce1—S2—O315.66 (13)O3—Ce1—O6—S22.92 (8)
O1—Ce1—S2—O383.74 (16)O9ii—Ce1—O6—S2143.15 (11)
O5i—Ce1—S2—O370.13 (13)O2ii—Ce1—O6—S2161.97 (11)
O6—Ce1—S2—O3174.79 (15)S1i—Ce1—O6—S278.11 (10)
O8i—Ce1—S2—O358.78 (13)S3ii—Ce1—O6—S2169.90 (10)
O9ii—Ce1—S2—O3137.81 (12)O10—S1—O7—Ce13.9 (3)
O2ii—Ce1—S2—O3167.59 (12)O5—S1—O7—Ce1119.0 (2)
S1i—Ce1—S2—O364.05 (11)O8—S1—O7—Ce1127.2 (2)
S3ii—Ce1—S2—O3164.97 (11)Ce1iii—S1—O7—Ce1174.67 (17)
O7—Ce1—S2—O685.75 (12)O1W—Ce1—O7—S116.4 (3)
O1W—Ce1—S2—O6169.55 (12)O1—Ce1—O7—S193.0 (3)
O1—Ce1—S2—O6101.48 (15)O5i—Ce1—O7—S157.5 (4)
O5i—Ce1—S2—O6104.66 (12)O6—Ce1—O7—S1108.2 (3)
O8i—Ce1—S2—O6116.01 (12)O8i—Ce1—O7—S170.3 (3)
O3—Ce1—S2—O6174.79 (15)O3—Ce1—O7—S152.8 (3)
O9ii—Ce1—S2—O636.98 (11)O9ii—Ce1—O7—S1175.0 (2)
O2ii—Ce1—S2—O617.63 (11)O2ii—Ce1—O7—S1174.2 (3)
S1i—Ce1—S2—O6110.74 (10)S1i—Ce1—O7—S115.7 (5)
S3ii—Ce1—S2—O69.81 (10)S2—Ce1—O7—S179.9 (3)
O4—S3—O1—Ce121.6 (3)S3ii—Ce1—O7—S1178.6 (3)
O4—S3—O1—Ce121.6 (3)O10—S1—O8—Ce1iii116.13 (12)
O9—S3—O1—Ce1145.0 (2)O7—S1—O8—Ce1iii121.17 (12)
O2—S3—O1—Ce1100.3 (2)O5—S1—O8—Ce1iii3.62 (12)
Ce1iv—S3—O1—Ce1158.70 (17)O4—S3—O9—Ce1iv125.76 (12)
O7—Ce1—O1—S393.1 (2)O4—S3—O9—Ce1iv125.76 (12)
O1W—Ce1—O1—S35.1 (2)O1—S3—O9—Ce1iv111.24 (12)
O5i—Ce1—O1—S370.6 (3)O2—S3—O9—Ce1iv6.96 (13)
O6—Ce1—O1—S3132.7 (2)O12—S2—O11—O110.0 (2)
O8i—Ce1—O1—S373.7 (2)O3—S2—O11—O110.0 (2)
O3—Ce1—O1—S331.6 (3)O6—S2—O11—O110.00 (19)
O9ii—Ce1—O1—S3143.6 (2)Ce1—S2—O11—O110.00 (19)
O2ii—Ce1—O1—S3166.7 (2)C3—N2—C2—C161.8 (3)
S1i—Ce1—O1—S371.1 (2)N1—C1—C2—N2176.3 (2)
S2—Ce1—O1—S377.5 (3)C2—N2—C3—C453.3 (4)
S3ii—Ce1—O1—S3169.0 (2)N2—C3—C4—N3163.5 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+2; (iii) x+1, y, z; (iv) x+1, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1F···O40.83 (2)1.98 (2)2.766 (3)159 (4)
O1W—H1G···O11v0.81 (2)2.06 (2)2.850 (3)164 (4)
N1—H1A···O8ii0.892.022.769 (3)141
N1—H1C···O9ii0.892.022.883 (3)162
N1—H1B···O6i0.892.052.852 (3)150
N2—H2B···O110.901.922.764 (4)156
N2—H2A···O2vi0.902.162.993 (3)154
N2—H2A···O4vi0.902.302.997 (3)134
N3—H3A···O5vii0.892.172.808 (3)128
N3—H3A···O3viii0.892.263.059 (4)150
N3—H3C···O12vii0.891.912.799 (4)173
N3—H3B···O10ix0.892.042.763 (4)137
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+2; (v) x+1, y+1/2, z+1; (vi) x, y1, z; (vii) x+1, y1/2, z+1; (viii) x, y1/2, z+1; (ix) x1, y1, z.

Experimental details

Crystal data
Chemical formula(C4H16N3)[Ce(SO4)3(H2O)]
Mr552.51
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.6774 (13), 10.397 (2), 11.093 (2)
β (°) 93.77 (3)
V3)768.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.44
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.480, 0.561
No. of measured, independent and
observed [I > 2σ(I)] reflections
7575, 3485, 3443
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.041, 1.15
No. of reflections3485
No. of parameters225
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.71
Absolute structureFlack (1983)
Absolute structure parameter0.009 (8)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1F···O40.828 (18)1.975 (18)2.766 (3)159 (4)
O1W—H1G···O11i0.813 (18)2.06 (2)2.850 (3)164 (4)
N1—H1A···O8ii0.892.022.769 (3)140.5
N1—H1C···O9ii0.892.022.883 (3)161.7
N1—H1B···O6iii0.892.052.852 (3)149.7
N2—H2B···O110.901.922.764 (4)156.0
N2—H2A···O2iv0.902.162.993 (3)154.2
N2—H2A···O4iv0.902.302.997 (3)133.8
N3—H3A···O5v0.892.172.808 (3)127.7
N3—H3A···O3vi0.892.263.059 (4)149.5
N3—H3C···O12v0.891.912.799 (4)173.2
N3—H3B···O10vii0.892.042.763 (4)137.2
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+2; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y1/2, z+1; (vi) x, y1/2, z+1; (vii) x1, y1, z.
 

Acknowledgements

This project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, Chinese Education Ministry (grant No. 20071108) and the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChoudhury, A., Krishnamoorthy, J. & Rao, C. N. R. (2001). Chem. Commun. pp. 2610–2611.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, Y., Xu, Z. & Ren, J. (2006). J. Mol. Struct. 788, 190–193.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPaul, G., Choudhury, A. & Rao, C. N. R. (2002). J. Chem. Soc. Dalton Trans. pp. 3859–3867.  Web of Science CSD CrossRef Google Scholar
First citationRao, C. N. R., Behera, J. N. & Dan, M. (2006). Chem. Soc. Rev. 35, 375–387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWickleder, M. S. (2002). Chem. Rev. 102, 2011–2087.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds