organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Acetamido­benzene­sulfonamido)-3-methyl­butanoic acid

aMaterials Chemistry Laboratory, Department of Chemistry, Government College, University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 30 April 2010; accepted 1 May 2010; online 8 May 2010)

In the title compound, C13H18N2O5S, the benzene ring and the acetamide group are almost coplanar [dihedral angle = 5.6 (3)°], and the amine group projects almost vertically from this plane [C—C—S—N = −84.5 (7)°]. A short intra­molecular C—H⋯O contact occurs. In the crystal, O—H⋯O, N—H⋯O and N—H⋯(O,O) hydrogen bonds lead to a three-dimensional network. One of the methyl groups of the isopropyl residue is disordered over two orientations in a 0.747 (16):0.253 (16) ratio.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]). For related structures, see: Sharif et al. (2010[Sharif, S., Akkurt, M., Khan, I. U., Salariya, M. A. & Ahmad, S. (2010). Acta Cryst. E66, o73-o74.]); Khan et al. (2010[Khan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O5S

  • Mr = 314.35

  • Orthorhombic, P 21 21 21

  • a = 5.1649 (13) Å

  • b = 14.724 (5) Å

  • c = 20.688 (7) Å

  • V = 1573.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.39 × 0.09 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 7356 measured reflections

  • 1647 independent reflections

  • 1083 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.209

  • S = 1.16

  • 1647 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3 0.93 2.25 2.848 (11) 122
O5—H5o⋯O3i 0.93 1.66 2.591 (9) 176
N1—H1n⋯O1ii 0.86 (5) 2.34 (7) 3.147 (9) 157 (6)
N2—H2n⋯O2iii 0.86 (3) 2.37 (3) 3.184 (8) 158 (6)
N2—H2n⋯O4 0.86 (3) 2.35 (6) 2.767 (9) 110 (5)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988; Mandell & Sande, 1992). In continuation of structural investigations of sulfonamides (Sharif et al., 2010; Khan et al., 2010), herein, the crystal structure of title compound, (I), is described.

The structure analysis of (I), Fig. 1, shows that the acetamide group is co-planar with the benzene ring to which it is attached; the dihedral angle = 5.6 (3) °. This conformation is stabilised by an intramolecular C–H···O contact, Table 1. While the S atom also lies in this plane [the S1–C1–C2–C3 torsion angle = 176.8 (7) °], the sulfonamido-O atoms lie to one side [being displaced by 0.386 (5) Å for atom O1 and 0.555 (6) Å for O2] and the amine substituent to project almost vertically to the other [the N2–S1–C1–C2 torsion angle = -84.5 (7) °]. Within the amine group, the carboxylic acid group is folded back to lie over the benzene ring; the dihedral angle between the two planes = 34.2 (5) °.

The crystal structure is stabilised by O–H···O and N–H···O hydrogen bonding interactions, Table 1. Thus, the carboxylic acid-hydroxyl group forms a donor interaction to the amide-carbonyl, and each of the N—H atoms forms a donor interaction to a sulfonamido-O; an intramolecular interaction formed between the N2—H and carboxylic acid-carbonyl group is also noted, Table 1. The result of the hydrogen bonding just described is the formation of a 3-D network, Fig. 2.

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Sharif et al. (2010); Khan et al. (2010).

Experimental top

To 2-amino-3-methylbutanoic acid (0.339 g, 2.8 mmol ) in distilled water (10 ml) was added 4-acetylaminobenzenesulfonyl chloride (0.7 g, 2.8 mmol) with stirring at room temperature, while maintaining the pH of the reaction mixture at 8 using 3% sodium carbonate. The progress of the reaction was monitored by TLC. On completion of reaction, the pH was adjusted to 3.0 by slow addition 3 N HCl. The precipitate formed in this way was washed with water, dried and recrystalized from methanol and ethyl acetate mixture (50:50 v/v) to yield colourless prisms of (I); m. pt. 510 K.

Refinement top

The O- and C-bound H atoms were geometrically placed (O–H = 0.93 Å; C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(O,C). The N-bound H atoms were refined with the distance restraint N–H = 0.86±0.01 Å, and with Uiso(H) = 1.2Ueq(N). High thermal motion was noted in the iso-propyl substituent and it proved possible to resolve two positions for one of the methyl groups. Anisotropic refinement (constrained to be equivalent for the components of the disorder by the EADP command in SHELXL-97) showed the major component of the disorder had a site occupancy factor = 0.747 (16). In the absence of significant anomalous scattering effects, 1130 Friedel pairs were averaged in the final refinement.

Structure description top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988; Mandell & Sande, 1992). In continuation of structural investigations of sulfonamides (Sharif et al., 2010; Khan et al., 2010), herein, the crystal structure of title compound, (I), is described.

The structure analysis of (I), Fig. 1, shows that the acetamide group is co-planar with the benzene ring to which it is attached; the dihedral angle = 5.6 (3) °. This conformation is stabilised by an intramolecular C–H···O contact, Table 1. While the S atom also lies in this plane [the S1–C1–C2–C3 torsion angle = 176.8 (7) °], the sulfonamido-O atoms lie to one side [being displaced by 0.386 (5) Å for atom O1 and 0.555 (6) Å for O2] and the amine substituent to project almost vertically to the other [the N2–S1–C1–C2 torsion angle = -84.5 (7) °]. Within the amine group, the carboxylic acid group is folded back to lie over the benzene ring; the dihedral angle between the two planes = 34.2 (5) °.

The crystal structure is stabilised by O–H···O and N–H···O hydrogen bonding interactions, Table 1. Thus, the carboxylic acid-hydroxyl group forms a donor interaction to the amide-carbonyl, and each of the N—H atoms forms a donor interaction to a sulfonamido-O; an intramolecular interaction formed between the N2—H and carboxylic acid-carbonyl group is also noted, Table 1. The result of the hydrogen bonding just described is the formation of a 3-D network, Fig. 2.

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Sharif et al. (2010); Khan et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit cell contents for (I). The O–H···O and N–H···O hydrogen bonds are shown as orange and blue dashed lines, respectively. Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
2-(4-Acetamidobenzenesulfonamido)-3-methylbutanoic acid top
Crystal data top
C13H18N2O5SF(000) = 664
Mr = 314.35Dx = 1.327 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 815 reflections
a = 5.1649 (13) Åθ = 3.0–18.5°
b = 14.724 (5) ŵ = 0.23 mm1
c = 20.688 (7) ÅT = 293 K
V = 1573.2 (8) Å3Prism, colourless
Z = 40.39 × 0.09 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
1083 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.075
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
φ and ω scansh = 65
7356 measured reflectionsk = 1417
1647 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.1138P)2]
where P = (Fo2 + 2Fc2)/3
1647 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.49 e Å3
2 restraintsΔρmin = 0.52 e Å3
Crystal data top
C13H18N2O5SV = 1573.2 (8) Å3
Mr = 314.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1649 (13) ŵ = 0.23 mm1
b = 14.724 (5) ÅT = 293 K
c = 20.688 (7) Å0.39 × 0.09 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
1083 reflections with I > 2σ(I)
7356 measured reflectionsRint = 0.075
1647 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.49 e Å3
1647 reflectionsΔρmin = 0.52 e Å3
205 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.6472 (3)0.98522 (14)0.24127 (8)0.0374 (6)
O10.7761 (10)0.9900 (4)0.3028 (2)0.0474 (15)
O20.3793 (9)1.0094 (4)0.2371 (3)0.0484 (14)
O30.4852 (13)0.6006 (4)0.0597 (3)0.0627 (19)
O41.0931 (11)0.9940 (5)0.0904 (3)0.068 (2)
O50.7406 (11)0.9868 (5)0.0302 (3)0.0618 (19)
H5O0.82160.95400.00230.093*
N10.8024 (12)0.6160 (5)0.1338 (3)0.0423 (17)
H1N0.947 (8)0.593 (5)0.146 (4)0.051*
N20.8017 (12)1.0547 (4)0.1940 (3)0.0347 (15)
H2N0.963 (4)1.041 (5)0.194 (3)0.042*
C10.6850 (14)0.8749 (5)0.2107 (4)0.0341 (17)
C20.5207 (16)0.8443 (6)0.1626 (4)0.044 (2)
H20.38580.88100.14830.053*
C30.5570 (17)0.7596 (6)0.1360 (4)0.051 (2)
H30.44620.73950.10360.061*
C40.7560 (14)0.7038 (5)0.1568 (4)0.0381 (19)
C50.9198 (15)0.7362 (6)0.2053 (4)0.045 (2)
H51.05370.69940.22010.054*
C60.8875 (16)0.8207 (6)0.2314 (4)0.047 (2)
H61.00110.84170.26290.056*
C70.6686 (18)0.5689 (6)0.0892 (4)0.045 (2)
C80.7567 (19)0.4720 (5)0.0793 (4)0.057 (2)
H8A0.61250.43160.08500.086*
H8B0.88910.45750.11020.086*
H8C0.82450.46520.03640.086*
C90.7105 (16)1.0683 (6)0.1282 (3)0.0403 (19)
H90.52951.04860.12560.048*
C100.8709 (15)1.0112 (6)0.0812 (3)0.0429 (19)
C110.724 (2)1.1699 (7)0.1107 (5)0.071 (3)0.747 (16)
H110.90131.18930.12090.086*0.747 (16)
C120.550 (3)1.2240 (7)0.1542 (6)0.103 (5)0.747 (16)
H12A0.58311.28760.14830.154*0.747 (16)
H12B0.58211.20770.19840.154*0.747 (16)
H12C0.37241.21130.14370.154*0.747 (16)
C130.683 (4)1.1929 (11)0.0441 (7)0.109 (7)0.747 (16)
H13A0.53091.16260.02860.164*0.747 (16)
H13B0.83021.17420.01900.164*0.747 (16)
H13C0.66081.25740.04020.164*0.747 (16)
C11A0.724 (2)1.1699 (7)0.1107 (5)0.071 (3)0.253 (16)
H11A0.61781.16950.07150.086*0.253 (16)
C12A0.550 (3)1.2240 (7)0.1542 (6)0.103 (5)0.253 (16)
H12D0.65231.25660.18510.154*0.253 (16)
H12E0.43391.18370.17640.154*0.253 (16)
H12F0.45131.26630.12880.154*0.253 (16)
C13A0.928 (14)1.213 (3)0.088 (2)0.109 (7)0.253 (16)
H13D0.95081.19900.04330.164*0.253 (16)
H13E1.07951.19450.11180.164*0.253 (16)
H13F0.90411.27740.09330.164*0.253 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0357 (10)0.0429 (11)0.0336 (9)0.0026 (9)0.0032 (8)0.0080 (8)
O10.055 (3)0.058 (4)0.029 (3)0.006 (3)0.001 (2)0.008 (3)
O20.032 (3)0.058 (4)0.055 (3)0.003 (3)0.006 (2)0.013 (3)
O30.078 (4)0.049 (4)0.061 (4)0.014 (4)0.028 (4)0.016 (3)
O40.047 (4)0.104 (6)0.054 (4)0.028 (4)0.001 (3)0.015 (4)
O50.052 (4)0.080 (5)0.053 (3)0.006 (3)0.001 (3)0.034 (4)
N10.045 (4)0.034 (4)0.048 (4)0.008 (3)0.007 (3)0.001 (3)
N20.032 (4)0.033 (3)0.039 (3)0.002 (3)0.004 (3)0.002 (3)
C10.031 (4)0.035 (4)0.036 (4)0.003 (3)0.000 (3)0.002 (3)
C20.036 (4)0.040 (5)0.056 (5)0.005 (4)0.011 (4)0.006 (4)
C30.048 (5)0.045 (5)0.059 (6)0.003 (4)0.020 (4)0.014 (5)
C40.037 (4)0.034 (4)0.043 (4)0.004 (4)0.001 (4)0.000 (4)
C50.044 (5)0.043 (5)0.047 (5)0.006 (4)0.013 (4)0.008 (4)
C60.048 (5)0.047 (5)0.044 (5)0.003 (4)0.018 (4)0.004 (4)
C70.060 (6)0.037 (5)0.038 (4)0.004 (4)0.006 (5)0.006 (4)
C80.077 (6)0.039 (5)0.054 (5)0.010 (5)0.008 (5)0.011 (5)
C90.042 (5)0.044 (5)0.035 (4)0.008 (4)0.006 (3)0.001 (4)
C100.035 (5)0.049 (5)0.045 (4)0.000 (4)0.012 (4)0.004 (4)
C110.108 (9)0.041 (6)0.064 (6)0.021 (6)0.020 (6)0.014 (5)
C120.154 (13)0.053 (7)0.102 (9)0.052 (8)0.004 (9)0.011 (7)
C130.21 (2)0.057 (9)0.064 (10)0.008 (12)0.005 (11)0.004 (8)
C11A0.108 (9)0.041 (6)0.064 (6)0.021 (6)0.020 (6)0.014 (5)
C12A0.154 (13)0.053 (7)0.102 (9)0.052 (8)0.004 (9)0.011 (7)
C13A0.21 (2)0.057 (9)0.064 (10)0.008 (12)0.005 (11)0.004 (8)
Geometric parameters (Å, º) top
S1—O21.431 (5)C8—H8B0.9600
S1—O11.438 (5)C8—H8C0.9600
S1—N21.625 (6)C9—C101.530 (10)
S1—C11.754 (8)C9—C11A1.541 (12)
O3—C71.220 (10)C9—C111.541 (12)
O4—C101.191 (9)C9—H90.9800
O5—C101.301 (9)C11—C131.434 (17)
O5—H5O0.9275C11—C121.503 (14)
N1—C71.345 (10)C11—H110.9800
N1—C41.398 (10)C12—H12A0.9600
N1—H1N0.86 (5)C12—H12B0.9600
N2—C91.454 (9)C12—H12C0.9600
N2—H2N0.86 (3)C13—H13A0.9600
C1—C61.383 (10)C13—H13B0.9600
C1—C21.383 (10)C13—H13C0.9600
C2—C31.377 (11)C11A—C13A1.32 (7)
C2—H20.9300C11A—C12A1.503 (14)
C3—C41.385 (11)C11A—H11A0.9800
C3—H30.9300C12A—H12D0.9600
C4—C51.395 (10)C12A—H12E0.9600
C5—C61.368 (11)C12A—H12F0.9600
C5—H50.9300C13A—H13D0.9600
C6—H60.9300C13A—H13E0.9600
C7—C81.512 (12)C13A—H13F0.9600
C8—H8A0.9600
O2—S1—O1119.3 (3)H8A—C8—H8C109.5
O2—S1—N2106.4 (4)H8B—C8—H8C109.5
O1—S1—N2105.9 (3)N2—C9—C10110.1 (6)
O2—S1—C1108.4 (3)N2—C9—C11A109.8 (7)
O1—S1—C1108.2 (4)C10—C9—C11A111.0 (7)
N2—S1—C1108.1 (3)N2—C9—C11109.8 (7)
C10—O5—H5O119.8C10—C9—C11111.0 (7)
C7—N1—C4128.6 (7)N2—C9—H9108.6
C7—N1—H1N116 (6)C10—C9—H9108.6
C4—N1—H1N114 (6)C11A—C9—H9108.6
C9—N2—S1119.4 (5)C11—C9—H9108.6
C9—N2—H2N110 (5)O4—C10—O5124.8 (7)
S1—N2—H2N109 (5)O4—C10—C9122.4 (8)
C6—C1—C2119.9 (7)O5—C10—C9112.8 (7)
C6—C1—S1120.4 (6)C13—C11—C12111.1 (12)
C2—C1—S1119.5 (6)C13—C11—C9116.7 (10)
C1—C2—C3119.9 (8)C12—C11—C9110.2 (9)
C1—C2—H2120.0C13—C11—H11106.0
C3—C2—H2120.0C12—C11—H11106.0
C4—C3—C2120.9 (8)C9—C11—H11106.0
C4—C3—H3119.5C13A—C11A—C12A116 (2)
C2—C3—H3119.5C13A—C11A—C9126 (3)
C3—C4—C5118.1 (7)C12A—C11A—C9110.2 (9)
C3—C4—N1124.7 (7)C13A—C11A—H11A99.3
C5—C4—N1117.2 (7)C12A—C11A—H11A99.3
C6—C5—C4121.4 (7)C9—C11A—H11A99.3
C6—C5—H5119.3C11A—C12A—H12D109.5
C4—C5—H5119.3C11A—C12A—H12E109.5
C5—C6—C1119.7 (7)H12D—C12A—H12E109.5
C5—C6—H6120.2C11A—C12A—H12F109.5
C1—C6—H6120.2H12D—C12A—H12F109.5
O3—C7—N1122.9 (8)H12E—C12A—H12F109.5
O3—C7—C8121.8 (8)C11A—C13A—H13D109.5
N1—C7—C8115.2 (8)C11A—C13A—H13E109.5
C7—C8—H8A109.5H13D—C13A—H13E109.5
C7—C8—H8B109.5C11A—C13A—H13F109.5
H8A—C8—H8B109.5H13D—C13A—H13F109.5
C7—C8—H8C109.5H13E—C13A—H13F109.5
O2—S1—N2—C949.5 (6)C4—N1—C7—C8174.9 (8)
O1—S1—N2—C9177.4 (6)S1—N2—C9—C1099.4 (7)
C1—S1—N2—C966.8 (6)S1—N2—C9—C11A138.0 (7)
O2—S1—C1—C6153.6 (6)S1—N2—C9—C11138.0 (7)
O1—S1—C1—C622.9 (7)N2—C9—C10—O431.3 (11)
N2—S1—C1—C691.4 (7)C11A—C9—C10—O490.5 (11)
O2—S1—C1—C230.5 (7)C11—C9—C10—O490.5 (11)
O1—S1—C1—C2161.2 (6)N2—C9—C10—O5150.7 (7)
N2—S1—C1—C284.5 (7)C11A—C9—C10—O587.5 (9)
C6—C1—C2—C30.8 (12)C11—C9—C10—O587.5 (9)
S1—C1—C2—C3176.7 (7)N2—C9—C11—C13169.7 (13)
C1—C2—C3—C40.2 (13)C10—C9—C11—C1347.7 (16)
C2—C3—C4—C50.4 (13)C11A—C9—C11—C130 (100)
C2—C3—C4—N1178.2 (8)N2—C9—C11—C1262.3 (12)
C7—N1—C4—C30.9 (13)C10—C9—C11—C12175.7 (9)
C7—N1—C4—C5177.7 (8)C11A—C9—C11—C120 (100)
C3—C4—C5—C60.5 (12)N2—C9—C11A—C13A85 (3)
N1—C4—C5—C6179.2 (7)C10—C9—C11A—C13A37 (3)
C4—C5—C6—C11.5 (12)C11—C9—C11A—C13A0 (100)
C2—C1—C6—C51.7 (12)N2—C9—C11A—C12A62.3 (12)
S1—C1—C6—C5177.6 (6)C10—C9—C11A—C12A175.7 (9)
C4—N1—C7—O33.5 (13)C11—C9—C11A—C12A0 (100)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.932.252.848 (11)122
O5—H5o···O3i0.931.662.591 (9)176
N1—H1n···O1ii0.86 (5)2.34 (7)3.147 (9)157 (6)
N2—H2n···O2iii0.86 (3)2.37 (3)3.184 (8)158 (6)
N2—H2n···O40.86 (3)2.35 (6)2.767 (9)110 (5)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H18N2O5S
Mr314.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.1649 (13), 14.724 (5), 20.688 (7)
V3)1573.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.39 × 0.09 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7356, 1647, 1083
Rint0.075
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.209, 1.16
No. of reflections1647
No. of parameters205
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.52

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.932.252.848 (11)122
O5—H5o···O3i0.931.662.591 (9)176
N1—H1n···O1ii0.86 (5)2.34 (7)3.147 (9)157 (6)
N2—H2n···O2iii0.86 (3)2.37 (3)3.184 (8)158 (6)
N2—H2n···O40.86 (3)2.35 (6)2.767 (9)110 (5)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: iuklodhi@yahoo.com.

Acknowledgements

We are grateful to Mr Munawar Hussain, Engineering Cell GC University, Lahore, for providing support services to the Materials Chemistry Laboratory.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw–Hill.  Google Scholar
First citationSharif, S., Akkurt, M., Khan, I. U., Salariya, M. A. & Ahmad, S. (2010). Acta Cryst. E66, o73–o74.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds