organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Piperidin-1-yl)-6-(1H-pyrazol-1-yl)pyridazine

aDepartment of Chemistry, Islamia University, Ba-hawalpur, Pakistan and Applied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, cMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and dInstitute of Chemistry, University of the Punjab, Lahore 54000, Pakistan
*Correspondence e-mail: onurs@omu.edu.tr, iukhan.gcu@gmail.com

(Received 4 May 2010; accepted 5 May 2010; online 8 May 2010)

In the title compound, C12H15N5, the piperidine ring adopts a chair conformation with the substituent C atom in an equatorial site and the dihedral angle between the pyridazine and pyrazole ring planes is 10.36 (2)°.

Related literature

For related structures, see: Blake et al. (2002[Blake, A. J., Hubberstey, P. & Mackrell, A. D. (2002). Acta Cryst. E58, o1408-o1410.]); Ather et al. (2009[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N5

  • Mr = 229.29

  • Monoclinic, P 21 /n

  • a = 5.9665 (6) Å

  • b = 20.189 (3) Å

  • c = 9.9695 (13) Å

  • β = 103.230 (7)°

  • V = 1169.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.31 × 0.25 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 11710 measured reflections

  • 2674 independent reflections

  • 1282 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.182

  • S = 1.01

  • 2674 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our onging studies of azolylpyridazines (Ather et al., 2009), we now report the synthesis and structure of the title compound, (I).

Compound (I) consists of a pyridazine ring with piperidine and pyrazole substituents at the 3- and 6-positions, respectively (Fig. 1). Least-squares mean-plane calculations for the pyridazine (N3/N4/C4/C5/C6/C7) and pyrazole (N1/N2/C3/C1/C2) rings show that these are approximately planar, with respective maximum deviations of 0.0042 (16)Å for atom C7 and 0.0026 (19)Å for atom C2. The dihedral angle between the pyridazine and pyrazole ring planes is 10.36 (2)°. The piperidine ring in (I) adopts a chair conformation. The N5—C7 and N2—C4 bond lengths indicate significant single-bond character, whereas the N3C7 and N4C4 bond lengths are indicative of significant double-bond character. The N1—N2 and N3—N4 bond lengths [1.357 (3)Å and 1.353 (3) Å, respectively] agree with the corresponding distances in 3,4,6-Tris(pyrazol-1-yl)pyridazine (Blake et al., 2002).

Related literature top

For related structures, see: Blake et al. (2002); Ather et al. (2009).

Experimental top

A mixture of 1.0 g (0.18 mmol) of 3-chloro-6-(1 H-Pyrozol-1-yl) pyridazine and 5 ml of piperidine was refluxed for 2 h, concentrated under vacuum, cooled and added to cooled water. The ppt filtered dried and recrystallized from benzene to give colourless prisms of (I) (m.p. 383-384 K).

Refinement top

All H atoms attached to C atoms were refined using a riding model [C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms and C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for metyhlene H atoms].

Structure description top

As part of our onging studies of azolylpyridazines (Ather et al., 2009), we now report the synthesis and structure of the title compound, (I).

Compound (I) consists of a pyridazine ring with piperidine and pyrazole substituents at the 3- and 6-positions, respectively (Fig. 1). Least-squares mean-plane calculations for the pyridazine (N3/N4/C4/C5/C6/C7) and pyrazole (N1/N2/C3/C1/C2) rings show that these are approximately planar, with respective maximum deviations of 0.0042 (16)Å for atom C7 and 0.0026 (19)Å for atom C2. The dihedral angle between the pyridazine and pyrazole ring planes is 10.36 (2)°. The piperidine ring in (I) adopts a chair conformation. The N5—C7 and N2—C4 bond lengths indicate significant single-bond character, whereas the N3C7 and N4C4 bond lengths are indicative of significant double-bond character. The N1—N2 and N3—N4 bond lengths [1.357 (3)Å and 1.353 (3) Å, respectively] agree with the corresponding distances in 3,4,6-Tris(pyrazol-1-yl)pyridazine (Blake et al., 2002).

For related structures, see: Blake et al. (2002); Ather et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), showing 30% displacement ellipsoids.
3-(Piperidin-1-yl)-6-(1H-pyrazol-1-yl)pyridazine top
Crystal data top
C12H15N5F(000) = 488
Mr = 229.29Dx = 1.303 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1639 reflections
a = 5.9665 (6) Åθ = 2.3–21.3°
b = 20.189 (3) ŵ = 0.08 mm1
c = 9.9695 (13) ÅT = 296 K
β = 103.230 (7)°Prism, colourless
V = 1169.0 (2) Å30.31 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1282 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
phi and ω scansh = 77
11710 measured reflectionsk = 2626
2674 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0863P)2]
where P = (Fo2 + 2Fc2)/3
2674 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H15N5V = 1169.0 (2) Å3
Mr = 229.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.9665 (6) ŵ = 0.08 mm1
b = 20.189 (3) ÅT = 296 K
c = 9.9695 (13) Å0.31 × 0.25 × 0.22 mm
β = 103.230 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
1282 reflections with I > 2σ(I)
11710 measured reflectionsRint = 0.054
2674 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
2674 reflectionsΔρmin = 0.21 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3406 (6)0.72572 (15)0.3173 (3)0.0738 (9)
H10.40140.69010.27820.089*
C20.1112 (6)0.74333 (16)0.2984 (3)0.0756 (9)
H20.00870.72030.24150.091*
C30.4568 (5)0.77160 (14)0.4052 (3)0.0639 (8)
H30.61550.77400.43840.077*
C40.3331 (4)0.86969 (12)0.5224 (2)0.0452 (6)
C50.1481 (4)0.90081 (13)0.5592 (3)0.0501 (7)
H50.00190.88570.52740.060*
C60.1955 (4)0.95375 (14)0.6429 (2)0.0496 (7)
H60.07790.97670.66990.060*
C70.4275 (4)0.97398 (12)0.6893 (2)0.0415 (6)
C80.3360 (4)1.08147 (13)0.7801 (3)0.0540 (7)
H8A0.17741.06650.75590.065*
H8B0.35811.11250.70980.065*
C90.3800 (4)1.11603 (15)0.9163 (3)0.0638 (8)
H9A0.33781.08700.98400.077*
H9B0.28421.15530.90850.077*
C100.6306 (4)1.13584 (14)0.9652 (3)0.0674 (8)
H10A0.66981.16890.90370.081*
H10B0.65671.15481.05690.081*
C110.7792 (4)1.07512 (14)0.9672 (3)0.0580 (8)
H11A0.94011.08790.99320.070*
H11B0.75011.04431.03590.070*
C120.7328 (4)1.04124 (14)0.8292 (3)0.0530 (7)
H12A0.77791.07020.76230.064*
H12B0.82441.00120.83600.064*
N10.0810 (4)0.79630 (13)0.3697 (2)0.0692 (7)
N20.2982 (4)0.81341 (11)0.4357 (2)0.0536 (6)
N30.5964 (3)0.94188 (11)0.6493 (2)0.0493 (6)
N40.5475 (3)0.88877 (11)0.5649 (2)0.0523 (6)
N50.4896 (3)1.02450 (10)0.7825 (2)0.0449 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.099 (3)0.052 (2)0.072 (2)0.0073 (17)0.0227 (18)0.0060 (17)
C20.093 (3)0.063 (2)0.070 (2)0.0127 (18)0.0162 (17)0.0139 (18)
C30.0711 (19)0.0549 (19)0.0662 (19)0.0141 (15)0.0166 (15)0.0039 (16)
C40.0482 (14)0.0451 (16)0.0416 (14)0.0045 (11)0.0088 (11)0.0059 (12)
C50.0386 (13)0.0639 (19)0.0480 (15)0.0021 (12)0.0104 (11)0.0014 (14)
C60.0327 (12)0.0650 (19)0.0517 (16)0.0071 (12)0.0108 (10)0.0019 (14)
C70.0343 (12)0.0508 (16)0.0404 (14)0.0054 (11)0.0106 (9)0.0055 (12)
C80.0348 (13)0.0593 (18)0.0672 (18)0.0064 (12)0.0104 (11)0.0022 (15)
C90.0484 (16)0.0595 (19)0.086 (2)0.0036 (13)0.0211 (13)0.0177 (16)
C100.0549 (17)0.064 (2)0.084 (2)0.0063 (14)0.0176 (14)0.0157 (16)
C110.0395 (13)0.071 (2)0.0610 (18)0.0092 (13)0.0070 (11)0.0054 (15)
C120.0322 (12)0.0668 (19)0.0600 (17)0.0016 (12)0.0107 (10)0.0036 (14)
N10.0619 (15)0.0732 (18)0.0691 (17)0.0082 (12)0.0077 (12)0.0157 (14)
N20.0590 (13)0.0462 (14)0.0545 (14)0.0035 (11)0.0110 (10)0.0021 (11)
N30.0378 (11)0.0543 (14)0.0583 (13)0.0065 (9)0.0161 (9)0.0031 (11)
N40.0433 (12)0.0542 (14)0.0610 (14)0.0082 (10)0.0156 (10)0.0008 (12)
N50.0286 (9)0.0566 (14)0.0496 (12)0.0048 (9)0.0090 (8)0.0008 (11)
Geometric parameters (Å, º) top
C1—C31.352 (4)C8—C91.496 (4)
C1—C21.384 (4)C8—H8A0.9700
C1—H10.9300C8—H8B0.9700
C2—N11.319 (4)C9—C101.516 (3)
C2—H20.9300C9—H9A0.9700
C3—N21.353 (3)C9—H9B0.9700
C3—H30.9300C10—C111.510 (4)
C4—N41.310 (3)C10—H10A0.9700
C4—C51.391 (3)C10—H10B0.9700
C4—N21.414 (3)C11—C121.504 (3)
C5—C61.346 (3)C11—H11A0.9700
C5—H50.9300C11—H11B0.9700
C6—C71.415 (3)C12—N51.458 (3)
C6—H60.9300C12—H12A0.9700
C7—N31.334 (3)C12—H12B0.9700
C7—N51.372 (3)N1—N21.357 (3)
C8—N51.467 (3)N3—N41.353 (3)
C3—C1—C2104.9 (3)C8—C9—H9B109.3
C3—C1—H1127.6C10—C9—H9B109.3
C2—C1—H1127.6H9A—C9—H9B107.9
N1—C2—C1112.8 (3)C11—C10—C9108.8 (2)
N1—C2—H2123.6C11—C10—H10A109.9
C1—C2—H2123.6C9—C10—H10A109.9
C1—C3—N2106.9 (3)C11—C10—H10B109.9
C1—C3—H3126.5C9—C10—H10B109.9
N2—C3—H3126.5H10A—C10—H10B108.3
N4—C4—C5123.9 (2)C12—C11—C10111.9 (2)
N4—C4—N2115.5 (2)C12—C11—H11A109.2
C5—C4—N2120.7 (2)C10—C11—H11A109.2
C6—C5—C4117.1 (2)C12—C11—H11B109.2
C6—C5—H5121.5C10—C11—H11B109.2
C4—C5—H5121.5H11A—C11—H11B107.9
C5—C6—C7118.9 (2)N5—C12—C11111.04 (19)
C5—C6—H6120.6N5—C12—H12A109.4
C7—C6—H6120.6C11—C12—H12A109.4
N3—C7—N5117.3 (2)N5—C12—H12B109.4
N3—C7—C6120.8 (2)C11—C12—H12B109.4
N5—C7—C6121.9 (2)H12A—C12—H12B108.0
N5—C8—C9111.8 (2)C2—N1—N2103.6 (2)
N5—C8—H8A109.3C3—N2—N1111.8 (2)
C9—C8—H8A109.3C3—N2—C4128.7 (2)
N5—C8—H8B109.3N1—N2—C4119.4 (2)
C9—C8—H8B109.3C7—N3—N4120.05 (19)
H8A—C8—H8B107.9C4—N4—N3119.34 (19)
C8—C9—C10111.7 (2)C7—N5—C12118.89 (18)
C8—C9—H9A109.3C7—N5—C8120.04 (18)
C10—C9—H9A109.3C12—N5—C8113.3 (2)
C3—C1—C2—N10.5 (4)C5—C4—N2—C3169.6 (2)
C2—C1—C3—N20.4 (3)N4—C4—N2—N1169.8 (2)
N4—C4—C5—C60.4 (4)C5—C4—N2—N111.0 (3)
N2—C4—C5—C6179.5 (2)N5—C7—N3—N4175.5 (2)
C4—C5—C6—C70.7 (4)C6—C7—N3—N40.9 (3)
C5—C6—C7—N31.0 (4)C5—C4—N4—N30.3 (4)
C5—C6—C7—N5175.2 (2)N2—C4—N4—N3179.4 (2)
N5—C8—C9—C1054.4 (3)C7—N3—N4—C40.5 (3)
C8—C9—C10—C1154.9 (3)N3—C7—N5—C121.6 (3)
C9—C10—C11—C1255.6 (3)C6—C7—N5—C12177.9 (2)
C10—C11—C12—N555.7 (3)N3—C7—N5—C8148.8 (2)
C1—C2—N1—N20.4 (3)C6—C7—N5—C834.8 (3)
C1—C3—N2—N10.2 (3)C11—C12—N5—C7156.3 (2)
C1—C3—N2—C4179.6 (2)C11—C12—N5—C854.3 (3)
C2—N1—N2—C30.1 (3)C9—C8—N5—C7157.0 (2)
C2—N1—N2—C4179.4 (2)C9—C8—N5—C1254.1 (3)
N4—C4—N2—C39.6 (4)

Experimental details

Crystal data
Chemical formulaC12H15N5
Mr229.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.9665 (6), 20.189 (3), 9.9695 (13)
β (°) 103.230 (7)
V3)1169.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.31 × 0.25 × 0.22
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11710, 2674, 1282
Rint0.054
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.182, 1.01
No. of reflections2674
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

UK thanks the Higher Education Commission of Pakistan for financial support under the project `Strengthening of the Materials Chemistry Laboratory' at GCUL.

References

First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlake, A. J., Hubberstey, P. & Mackrell, A. D. (2002). Acta Cryst. E58, o1408–o1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds