metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1,2-bis­­[bis­­(3-hy­droxy­prop­yl)phosphino]ethane}di­chloridoiron(II)

aDepartment of Chemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, USA
*Correspondence e-mail: dtyler@uoregon.edu

(Received 5 May 2010; accepted 13 May 2010; online 22 May 2010)

In the title compound, [FeCl2(C14H32O4P2)2], the FeII atom (site symmetry [\overline{1}]) adopts a distorted trans-FeCl2P4 octa­hedral geometry with two P,P′-bidentate ligands in the equatorial positions and two chloride ions in the axial positions. In the crystal, mol­ecules are linked by O—H⋯O and O—H⋯Cl hydrogen bonds, generating a three-dimensional network.

Related literature

For background to the applications of iron–diphosphine complexes, see: Lyon (1993[Lyon, D. K. (1993). US Patent No. 5 225 174.]); Miller et al. (2002[Miller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453-5465.]). For further synthetic details, see: Baxley et al. (1996[Baxley, G. T., Miller, W. K., Lyon, D. K., Miller, B. E., Nieckarz, G. F., Weakley, T. J. R. & Tyler, D. R. (1996). Inorg. Chem. 35, 6688-6693.]).

[Scheme 1]

Experimental

Crystal data
  • [FeCl2(C14H32O4P2)2]

  • Mr = 779.42

  • Triclinic, [P \overline 1]

  • a = 8.7120 (4) Å

  • b = 10.4252 (5) Å

  • c = 10.7441 (5) Å

  • α = 96.086 (1)°

  • β = 104.215 (1)°

  • γ = 105.860 (1)°

  • V = 894.12 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 173 K

  • 0.29 × 0.26 × 0.18 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.802, Tmax = 0.870

  • 10053 measured reflections

  • 3863 independent reflections

  • 3693 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.06

  • 3863 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—P1 2.2790 (3)
Fe1—P2 2.3008 (3)
Fe1—Cl1 2.3507 (3)
P1—Fe1—P2 85.008 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3i 0.79 (3) 1.98 (3) 2.7660 (18) 174 (3)
O2—H2O⋯O1ii 0.73 (2) 2.12 (2) 2.8548 (17) 174 (2)
O3—H3O⋯O4iii 0.81 (3) 1.93 (3) 2.7370 (19) 171 (3)
O4—H4O⋯Cl1iv 0.84 (3) 2.28 (3) 3.1150 (13) 171 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) -x+2, -y+2, -z+1; (iii) -x, -y+1, -z-1; (iv) x, y, z-1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Iron-diphosphine complexes containing water-soluble phosphine ligands have shown promise as dinitrogen scrubbers for nitrogen-containing natural gas streams (Lyon, 1993). Sulfonated phosphines have been used to impart water-solubility, however the sulfonate groups are often non-innocent and can prevent iron complexes from binding N2. We have focused on hydroxyl functionalized phosphine ligands, such as DHPrPE (DHPrPE = 1,2-bis(dihydroxypropylphosphino)ethane) to synthesize water-soluble iron complexes capable of binding dinitrogen (Miller et al., 2002). However, using this particular ligand we were previously unable to isolate the trans dichloride complex, which is the required isomer to achieve dinitrogen binding. Here we report the synthesis and structural characterization of trans-Fe(DHPrPE)2Cl2 (DHPrPE = 1,2-bis(dihydroxypropylphosphino)ethane).

The structure of Fe[(CH2CH2)P2(CH2CH2CH2OH)2]2Cl2 is centrosymmetyrical. The Fe atom has a distorted octahedral coordination with four P atoms in equatorial positions and two Cl atoms in apical positions (Fig. 1). The Fe(1)—Cl distance is 2.3507 (3) Å, the Fe(1)—P(1,2) distances are 2.2790 (3) and 2.3008 (3) Å, respectively. All -OH groups are involved in intra- and inter-molecular O—H···Cl and O—H···O H-bonds (Table 1).

Related literature top

For background to the applications of iron–diphosphine complexes, see: Lyon (1993); Miller et al. (2002). For further synthetic details, see: Baxley et al. (1996).

Experimental top

1,2-bis(dihydroxypropylphosphino)ethane (DHPrPE) was synthesized as previously reported (Baxley et al., 1996). trans-Fe(DHPrPE)2Cl2 was prepared by adding DHPrPE (0.33 g, 1.01 mmol) to a stirring solution of FeCl2(H2O)4 (0.10 g, 0.505 mmol) in 20 ml of methanol, giving a deep purple solution. The 31P{1H} NMR spectrum of the purple solution at 233 K showed three resonances (79, 71, and 53 ppm), likely due to a mixture of trans and cis isomers. The purple solution was layered with diethyl ether and allowed to stand at room temperature for one week. After this time a few lime green blocks of (I) were isolated from the purple mother liquor. The 31P{1H} NMR spectrum of the green crystals at 233 K showed a single resonance at 53 ppm.

Refinement top

The H atoms in CH2 groups were positioned geometrically and refined in the riding model approximation, C—H = 0.99 Å; Uiso(H) = 1.2Ueq(C). The H atoms in -OH groups were found from the residual density map and refined with isotropic thermal parameters. There are eight flexible (CH2CH2CH2OH) groups in the structure and as a result there are elongations of displacement ellipsoids for some atoms.

Structure description top

Iron-diphosphine complexes containing water-soluble phosphine ligands have shown promise as dinitrogen scrubbers for nitrogen-containing natural gas streams (Lyon, 1993). Sulfonated phosphines have been used to impart water-solubility, however the sulfonate groups are often non-innocent and can prevent iron complexes from binding N2. We have focused on hydroxyl functionalized phosphine ligands, such as DHPrPE (DHPrPE = 1,2-bis(dihydroxypropylphosphino)ethane) to synthesize water-soluble iron complexes capable of binding dinitrogen (Miller et al., 2002). However, using this particular ligand we were previously unable to isolate the trans dichloride complex, which is the required isomer to achieve dinitrogen binding. Here we report the synthesis and structural characterization of trans-Fe(DHPrPE)2Cl2 (DHPrPE = 1,2-bis(dihydroxypropylphosphino)ethane).

The structure of Fe[(CH2CH2)P2(CH2CH2CH2OH)2]2Cl2 is centrosymmetyrical. The Fe atom has a distorted octahedral coordination with four P atoms in equatorial positions and two Cl atoms in apical positions (Fig. 1). The Fe(1)—Cl distance is 2.3507 (3) Å, the Fe(1)—P(1,2) distances are 2.2790 (3) and 2.3008 (3) Å, respectively. All -OH groups are involved in intra- and inter-molecular O—H···Cl and O—H···O H-bonds (Table 1).

For background to the applications of iron–diphosphine complexes, see: Lyon (1993); Miller et al. (2002). For further synthetic details, see: Baxley et al. (1996).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with 50% probability displacement ellipsoids (H atoms are omitted for clarity). Symmetry code: (i): -x+1, -y+1, -z.
Bis{1,2-bis[bis(3-hydroxypropyl)phosphino]ethane}dichloridoiron(II) top
Crystal data top
[FeCl2(C14H32O4P2)2]Z = 1
Mr = 779.42F(000) = 416
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7120 (4) ÅCell parameters from 7234 reflections
b = 10.4252 (5) Åθ = 2.5–28.3°
c = 10.7441 (5) ŵ = 0.80 mm1
α = 96.086 (1)°T = 173 K
β = 104.215 (1)°Block, lime green
γ = 105.860 (1)°0.29 × 0.26 × 0.18 mm
V = 894.12 (7) Å3
Data collection top
Bruker APEX CCD
diffractometer
3863 independent reflections
Radiation source: fine-focus sealed tube3693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
phi and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.802, Tmax = 0.870k = 1313
10053 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.5361P]
where P = (Fo2 + 2Fc2)/3
3863 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[FeCl2(C14H32O4P2)2]γ = 105.860 (1)°
Mr = 779.42V = 894.12 (7) Å3
Triclinic, P1Z = 1
a = 8.7120 (4) ÅMo Kα radiation
b = 10.4252 (5) ŵ = 0.80 mm1
c = 10.7441 (5) ÅT = 173 K
α = 96.086 (1)°0.29 × 0.26 × 0.18 mm
β = 104.215 (1)°
Data collection top
Bruker APEX CCD
diffractometer
3863 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3693 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.870Rint = 0.015
10053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.47 e Å3
3863 reflectionsΔρmin = 0.47 e Å3
212 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50000.00000.01036 (8)
Cl10.31246 (4)0.50199 (3)0.12398 (3)0.01664 (9)
P10.69987 (4)0.68781 (3)0.13091 (3)0.01216 (9)
P20.40130 (4)0.65190 (3)0.11033 (3)0.01239 (9)
O10.68912 (15)0.87217 (12)0.56263 (11)0.0248 (2)
O21.34336 (14)0.95555 (12)0.22692 (12)0.0234 (2)
O30.07362 (16)0.74720 (14)0.34828 (12)0.0309 (3)
O40.19987 (17)0.52861 (13)0.62339 (12)0.0335 (3)
C10.70197 (17)0.82669 (14)0.03860 (14)0.0154 (3)
H1A0.76850.91490.09670.019*
H1B0.75220.81420.03320.019*
C20.52256 (18)0.82418 (14)0.01648 (14)0.0158 (3)
H2A0.51740.89190.07410.019*
H2B0.47630.84650.05540.019*
C30.65904 (18)0.75708 (14)0.28043 (14)0.0168 (3)
H3A0.54910.77220.25450.020*
H3B0.64970.68670.33560.020*
C40.78515 (19)0.88863 (15)0.36498 (15)0.0206 (3)
H4A0.88800.86950.40960.025*
H4B0.81440.95410.30780.025*
C50.7216 (2)0.95323 (15)0.46720 (15)0.0213 (3)
H5A0.80501.04170.51230.026*
H5B0.61770.97090.42250.026*
C60.92139 (17)0.69512 (14)0.18114 (14)0.0166 (3)
H6A0.94670.67120.26900.020*
H6B0.93680.62470.12020.020*
C71.04890 (17)0.83151 (14)0.18558 (14)0.0168 (3)
H7A1.02650.85550.09760.020*
H7B1.03490.90280.24640.020*
C81.22756 (18)0.82938 (15)0.22905 (15)0.0192 (3)
H8A1.25220.80990.31880.023*
H8B1.24090.75570.17060.023*
C90.18524 (17)0.65570 (14)0.13785 (14)0.0160 (3)
H9A0.11380.58900.21760.019*
H9B0.14540.62700.06340.019*
C100.16433 (19)0.79529 (15)0.15321 (16)0.0204 (3)
H10A0.21100.85620.06670.024*
H10B0.22920.83470.21140.024*
C110.01607 (19)0.78978 (15)0.20895 (16)0.0215 (3)
H11A0.08720.72600.16880.026*
H11B0.02690.88080.18600.026*
C120.43480 (19)0.67282 (16)0.27098 (14)0.0197 (3)
H12A0.44710.76840.28000.024*
H12B0.54160.65690.27150.024*
C130.3005 (3)0.58188 (19)0.39026 (16)0.0370 (5)
H13A0.29260.48610.38550.044*
H13B0.19200.59360.38860.044*
C140.3314 (3)0.6099 (2)0.51359 (17)0.0419 (5)
H14A0.34520.70690.51680.050*
H14B0.43650.59300.51800.050*
H1O0.758 (3)0.837 (2)0.583 (2)0.045 (7)*
H2O1.337 (3)1.004 (2)0.279 (2)0.031 (6)*
H3O0.109 (3)0.665 (3)0.364 (3)0.053 (8)*
H4O0.238 (3)0.531 (3)0.688 (3)0.059 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01193 (14)0.00882 (13)0.00954 (13)0.00263 (10)0.00279 (10)0.00068 (10)
Cl10.01817 (17)0.01714 (17)0.01571 (17)0.00498 (13)0.00786 (13)0.00194 (12)
P10.01309 (17)0.00982 (16)0.01179 (17)0.00240 (13)0.00236 (13)0.00038 (12)
P20.01403 (17)0.01074 (17)0.01157 (17)0.00349 (13)0.00256 (13)0.00212 (13)
O10.0274 (6)0.0288 (6)0.0194 (6)0.0108 (5)0.0071 (5)0.0024 (5)
O20.0183 (5)0.0214 (6)0.0274 (6)0.0007 (4)0.0093 (5)0.0008 (5)
O30.0328 (7)0.0297 (7)0.0267 (6)0.0113 (5)0.0006 (5)0.0082 (5)
O40.0410 (7)0.0356 (7)0.0143 (6)0.0014 (6)0.0085 (5)0.0019 (5)
C10.0158 (7)0.0116 (6)0.0159 (7)0.0016 (5)0.0022 (5)0.0025 (5)
C20.0178 (7)0.0111 (6)0.0163 (7)0.0037 (5)0.0022 (5)0.0018 (5)
C30.0192 (7)0.0155 (7)0.0136 (6)0.0034 (5)0.0048 (5)0.0009 (5)
C40.0207 (7)0.0189 (7)0.0173 (7)0.0020 (6)0.0045 (6)0.0038 (6)
C50.0256 (8)0.0191 (7)0.0166 (7)0.0064 (6)0.0042 (6)0.0024 (6)
C60.0146 (7)0.0135 (7)0.0197 (7)0.0040 (5)0.0023 (5)0.0017 (5)
C70.0149 (7)0.0148 (7)0.0192 (7)0.0037 (5)0.0037 (5)0.0023 (5)
C80.0152 (7)0.0175 (7)0.0223 (7)0.0038 (5)0.0039 (6)0.0002 (6)
C90.0155 (7)0.0134 (6)0.0183 (7)0.0050 (5)0.0029 (5)0.0033 (5)
C100.0186 (7)0.0146 (7)0.0275 (8)0.0063 (6)0.0040 (6)0.0057 (6)
C110.0205 (7)0.0176 (7)0.0275 (8)0.0087 (6)0.0053 (6)0.0053 (6)
C120.0220 (7)0.0227 (7)0.0154 (7)0.0067 (6)0.0057 (6)0.0075 (6)
C130.0521 (12)0.0281 (9)0.0166 (8)0.0088 (8)0.0096 (8)0.0009 (7)
C140.0450 (11)0.0479 (12)0.0166 (8)0.0061 (9)0.0030 (8)0.0052 (8)
Geometric parameters (Å, º) top
Fe1—P1i2.2790 (3)C4—H4A0.9900
Fe1—P12.2790 (3)C4—H4B0.9900
Fe1—P22.3008 (3)C5—H5A0.9900
Fe1—P2i2.3008 (3)C5—H5B0.9900
Fe1—Cl1i2.3507 (3)C6—C71.5344 (19)
Fe1—Cl12.3507 (3)C6—H6A0.9900
P1—C11.8383 (14)C6—H6B0.9900
P1—C31.8449 (14)C7—C81.518 (2)
P1—C61.8496 (14)C7—H7A0.9900
P2—C91.8445 (14)C7—H7B0.9900
P2—C121.8452 (15)C8—H8A0.9900
P2—C21.8478 (14)C8—H8B0.9900
O1—C51.4287 (19)C9—C101.5360 (19)
O1—H1O0.79 (3)C9—H9A0.9900
O2—C81.4285 (18)C9—H9B0.9900
O2—H2O0.73 (2)C10—C111.521 (2)
O3—C111.435 (2)C10—H10A0.9900
O3—H3O0.81 (3)C10—H10B0.9900
O4—C141.420 (2)C11—H11A0.9900
O4—H4O0.84 (3)C11—H11B0.9900
C1—C21.5212 (19)C12—C131.520 (2)
C1—H1A0.9900C12—H12A0.9900
C1—H1B0.9900C12—H12B0.9900
C2—H2A0.9900C13—C141.459 (2)
C2—H2B0.9900C13—H13A0.9900
C3—C41.528 (2)C13—H13B0.9900
C3—H3A0.9900C14—H14A0.9900
C3—H3B0.9900C14—H14B0.9900
C4—C51.521 (2)
P1i—Fe1—P1180.0O1—C5—H5B108.8
P1i—Fe1—P294.992 (12)C4—C5—H5B108.8
P1—Fe1—P285.008 (12)H5A—C5—H5B107.7
P1i—Fe1—P2i85.008 (12)C7—C6—P1116.21 (10)
P1—Fe1—P2i94.992 (12)C7—C6—H6A108.2
P2—Fe1—P2i180.0P1—C6—H6A108.2
P1i—Fe1—Cl1i93.761 (12)C7—C6—H6B108.2
P1—Fe1—Cl1i86.239 (12)P1—C6—H6B108.2
P2—Fe1—Cl1i91.646 (12)H6A—C6—H6B107.4
P2i—Fe1—Cl1i88.354 (12)C8—C7—C6112.88 (12)
P1i—Fe1—Cl186.239 (12)C8—C7—H7A109.0
P1—Fe1—Cl193.761 (12)C6—C7—H7A109.0
P2—Fe1—Cl188.354 (12)C8—C7—H7B109.0
P2i—Fe1—Cl191.646 (12)C6—C7—H7B109.0
Cl1i—Fe1—Cl1180.0H7A—C7—H7B107.8
C1—P1—C3101.59 (7)O2—C8—C7111.79 (12)
C1—P1—C6102.93 (7)O2—C8—H8A109.3
C3—P1—C6105.40 (7)C7—C8—H8A109.3
C1—P1—Fe1106.37 (5)O2—C8—H8B109.3
C3—P1—Fe1116.80 (5)C7—C8—H8B109.3
C6—P1—Fe1121.13 (5)H8A—C8—H8B107.9
C9—P2—C12101.59 (7)C10—C9—P2114.10 (10)
C9—P2—C2101.99 (6)C10—C9—H9A108.7
C12—P2—C299.55 (7)P2—C9—H9A108.7
C9—P2—Fe1122.82 (5)C10—C9—H9B108.7
C12—P2—Fe1119.70 (5)P2—C9—H9B108.7
C2—P2—Fe1107.56 (5)H9A—C9—H9B107.6
C5—O1—H1O110.5 (18)C11—C10—C9113.31 (12)
C8—O2—H2O104.6 (17)C11—C10—H10A108.9
C11—O3—H3O107.7 (19)C9—C10—H10A108.9
C14—O4—H4O106.7 (19)C11—C10—H10B108.9
C2—C1—P1107.68 (9)C9—C10—H10B108.9
C2—C1—H1A110.2H10A—C10—H10B107.7
P1—C1—H1A110.2O3—C11—C10112.15 (13)
C2—C1—H1B110.2O3—C11—H11A109.2
P1—C1—H1B110.2C10—C11—H11A109.2
H1A—C1—H1B108.5O3—C11—H11B109.2
C1—C2—P2107.90 (9)C10—C11—H11B109.2
C1—C2—H2A110.1H11A—C11—H11B107.9
P2—C2—H2A110.1C13—C12—P2116.73 (11)
C1—C2—H2B110.1C13—C12—H12A108.1
P2—C2—H2B110.1P2—C12—H12A108.1
H2A—C2—H2B108.4C13—C12—H12B108.1
C4—C3—P1117.88 (10)P2—C12—H12B108.1
C4—C3—H3A107.8H12A—C12—H12B107.3
P1—C3—H3A107.8C14—C13—C12113.40 (15)
C4—C3—H3B107.8C14—C13—H13A108.9
P1—C3—H3B107.8C12—C13—H13A108.9
H3A—C3—H3B107.2C14—C13—H13B108.9
C5—C4—C3113.34 (13)C12—C13—H13B108.9
C5—C4—H4A108.9H13A—C13—H13B107.7
C3—C4—H4A108.9O4—C14—C13112.24 (16)
C5—C4—H4B108.9O4—C14—H14A109.2
C3—C4—H4B108.9C13—C14—H14A109.2
H4A—C4—H4B107.7O4—C14—H14B109.2
O1—C5—C4113.85 (13)C13—C14—H14B109.2
O1—C5—H5A108.8H14A—C14—H14B107.9
C4—C5—H5A108.8
P2—Fe1—P1—C118.86 (5)C6—P1—C1—C2176.02 (9)
P2i—Fe1—P1—C1161.14 (5)Fe1—P1—C1—C247.68 (10)
Cl1i—Fe1—P1—C173.13 (5)P1—C1—C2—P254.31 (11)
Cl1—Fe1—P1—C1106.87 (5)C9—P2—C2—C1168.04 (10)
P2—Fe1—P1—C393.66 (5)C12—P2—C2—C187.83 (10)
P2i—Fe1—P1—C386.34 (5)Fe1—P2—C2—C137.63 (10)
Cl1i—Fe1—P1—C3174.36 (5)C1—P1—C3—C460.57 (12)
Cl1—Fe1—P1—C35.64 (5)C6—P1—C3—C446.50 (13)
P1i—Fe1—P1—C6117 (100)Fe1—P1—C3—C4175.77 (9)
P2—Fe1—P1—C6135.60 (6)P1—C3—C4—C5166.97 (11)
P2i—Fe1—P1—C644.40 (6)C3—C4—C5—O163.80 (17)
Cl1i—Fe1—P1—C643.61 (6)C1—P1—C6—C722.64 (12)
Cl1—Fe1—P1—C6136.39 (6)C3—P1—C6—C783.45 (12)
P1i—Fe1—P2—C955.49 (6)Fe1—P1—C6—C7141.10 (9)
P1—Fe1—P2—C9124.51 (6)P1—C6—C7—C8179.38 (10)
Cl1i—Fe1—P2—C9149.41 (6)C6—C7—C8—O2177.46 (12)
Cl1—Fe1—P2—C930.59 (6)C12—P2—C9—C1069.66 (12)
P1i—Fe1—P2—C1274.53 (6)C2—P2—C9—C1032.86 (12)
P1—Fe1—P2—C12105.47 (6)Fe1—P2—C9—C10153.12 (9)
Cl1i—Fe1—P2—C1219.39 (6)P2—C9—C10—C11165.53 (11)
Cl1—Fe1—P2—C12160.61 (6)C9—C10—C11—O380.07 (16)
P1i—Fe1—P2—C2173.09 (5)C9—P2—C12—C1348.66 (15)
P1—Fe1—P2—C26.91 (5)C2—P2—C12—C13153.12 (14)
Cl1i—Fe1—P2—C292.99 (5)Fe1—P2—C12—C1390.26 (14)
Cl1—Fe1—P2—C287.01 (5)P2—C12—C13—C14176.65 (16)
C3—P1—C1—C274.99 (10)C12—C13—C14—O4176.86 (17)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3ii0.79 (3)1.98 (3)2.7660 (18)174 (3)
O2—H2O···O1iii0.73 (2)2.12 (2)2.8548 (17)174 (2)
O3—H3O···O4iv0.81 (3)1.93 (3)2.7370 (19)171 (3)
O4—H4O···Cl1v0.84 (3)2.28 (3)3.1150 (13)171 (3)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+2, y+2, z+1; (iv) x, y+1, z1; (v) x, y, z1.

Experimental details

Crystal data
Chemical formula[FeCl2(C14H32O4P2)2]
Mr779.42
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.7120 (4), 10.4252 (5), 10.7441 (5)
α, β, γ (°)96.086 (1), 104.215 (1), 105.860 (1)
V3)894.12 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.29 × 0.26 × 0.18
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.802, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
10053, 3863, 3693
Rint0.015
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.06
No. of reflections3863
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.47

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Fe1—P12.2790 (3)Fe1—Cl12.3507 (3)
Fe1—P22.3008 (3)
P1—Fe1—P285.008 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i0.79 (3)1.98 (3)2.7660 (18)174 (3)
O2—H2O···O1ii0.73 (2)2.12 (2)2.8548 (17)174 (2)
O3—H3O···O4iii0.81 (3)1.93 (3)2.7370 (19)171 (3)
O4—H4O···Cl1iv0.84 (3)2.28 (3)3.1150 (13)171 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+2, z+1; (iii) x, y+1, z1; (iv) x, y, z1.
 

Acknowledgements

We thank the NSF for funding.

References

First citationBaxley, G. T., Miller, W. K., Lyon, D. K., Miller, B. E., Nieckarz, G. F., Weakley, T. J. R. & Tyler, D. R. (1996). Inorg. Chem. 35, 6688–6693.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLyon, D. K. (1993). US Patent No. 5 225 174.  Google Scholar
First citationMiller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453–5465.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds