organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-[3-methyl-1-(5-thioxo-4,5-di­hydro-1,3,4-oxa­diazol-2-yl)but­yl]benzamide

aDepartment of Medicinal Chemistry, NanChang University School of Pharmaceutical Science, 330006 NanChang, JiangXi, People's Republic of China
*Correspondence e-mail: tugg199@yahoo.com

(Received 9 May 2010; accepted 11 May 2010; online 19 May 2010)

In the title compound, C14H16ClN3O2S, the dihedral angle between the 4-chloro­phenyl and 1,3,4-oxadiazole rings is 67.1 (1)° and the orientation of the amide N—H and C=O bonds is anti. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯S hydrogen bonds.

Related literature

For the biological properties of thia­diazo­les, see: Tu et al. (2008[Tu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 6663-6668.]). For details of the synthesis, see: Ginzel et al. (1989[Ginzel, K. D., Brungs, P. & Steckhan, E. (1989). Tetrahedron, 45, 1691-1701.]); Boland et al. (2006[Boland, Y., Hertsens, P., Marchand-Brynaert, J. & Garcia, Y. (2006). Synthesis, pp. 1504-1512.]); Havaldar & Patil (2009[Havaldar, F. H. & Patil, A. R. (2009). Asian J. Chem. 21, 5267-5272.]); Shriner & Furrow (1955[Shriner, R. L. & Furrow, C. L. (1955). Org. Synth. 35, 49-50.]). For related structures, see: Du et al. (2004[Du, M., Zhao, X.-J. & Guo, J.-H. (2004). Acta Cryst. E60, o327-o328.]); Ziyaev et al. (1992[Ziyaev, A. A., Galust'yan, G. G., Sabirov, K., Nasirov, S., Tashkhodzhaev, B. & Yag'budaev, M. R. (1992). Zh. Org. Khim. 28, 1538-1543.]); Zareef et al. (2006[Zareef, M., Iqbal, R., Zaidi, J. H., Arfan, M. & Parvez, M. (2006). Acta Cryst. E62, o2481-o2483.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16ClN3O2S

  • Mr = 325.81

  • Orthorhombic, P 21 21 21

  • a = 6.0171 (6) Å

  • b = 15.3120 (15) Å

  • c = 18.1493 (17) Å

  • V = 1672.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.42 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.864, Tmax = 0.938

  • 7892 measured reflections

  • 2951 independent reflections

  • 1447 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.108

  • S = 1.10

  • 2951 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1219 Friedel pairs

  • Flack parameter: −0.09 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.87 2.720 (6) 171
N3—H3⋯S1ii 0.86 2.78 3.495 (4) 142
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The present oxadiazole derivate is in continuation to our previous work of the thiadiazole scaffold compounds and their biological activity (Tu et al., 2008). The title compound (Figure 1) was synthesized according to literature procedures (Ginzel et al., 1989; Boland et al., 2006; Havaldar & Patil 2009). Here, we report the structure of the title compound.

The oxadiazole ring is essentially planar and is inclined at 67.1 (1)° with respect to the p-cholobenzene ring. The N2=C2 and S1=C1 double bonds agree with the corresponding distances in three structures containing similar systems (Du et al., 2004; Ziyaev et al., 1992; Zareef et al., 2006). The conformations of the N—H and C=O bonds are anti with respect to each other. The structure is stabilized by a network of intermolecular hydrogen bonds of the type N—H···S (Table 1, Figure 2).

Related literature top

For the biological properties of thiadiazoles, see: Tu et al. (2008). For details of the synthesis, see: Ginzel et al. (1989); Boland et al. (2006); Havaldar & Patil (2009). For related structures, see: Du et al. (2004); Ziyaev et al. (1992); Zareef et al. (2006). For related literature [on what subject?], see: Shriner & Furrow (1955).

Experimental top

To a stirred solution of DL-leucine methyl ester hydrochloride (0.03 mol) in CH2Cl2 (20 ml) was added triethylamine (0.06 mol) at 273 K. After 0.5 h, a solution of p-chlorobenzoic acid chloride (0.03 mol) in CH2Cl2 (10 ml) was added. The mixture was stirred for 2 h at 273 K, then allowed to warm to r.t. for 24 h. Washed with 10% HCl, 1 N NaOH and water. The organic layer was evaporated in vacuo and the residue was recrystallized from methanol to give corresponding amides as a white solid.

A mixture of the amides (0.02 mol) and 80% hydrazine monohydrate (0.04 mol) in absolute methanol (20 ml) was heated under reflux over night. After cooling, a white solid was separated and recrystallized from methanol to give corresponding hydrazide.

A mixture of the hydrazide (0.01 mol), KOH (0.01 mol), CS2 (0.05 mol), and ethanol (70 ml) was heated under reflux with stirring for 12 h. Ethanol was distilled off under reduced pressure and the residue was dissolved in water and then acidified with 10% HCl. The resulting precipitate was filtered, washed with water, and recrystallized from ethanol. Colourless blocks of (I) precipitated after several days.

Refinement top

H atoms were positioned geometrically and refined using a riding model using SHELXL97 default values (Uiso(H) = 1.2 Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 Ueq(C) for CH3).

Structure description top

The present oxadiazole derivate is in continuation to our previous work of the thiadiazole scaffold compounds and their biological activity (Tu et al., 2008). The title compound (Figure 1) was synthesized according to literature procedures (Ginzel et al., 1989; Boland et al., 2006; Havaldar & Patil 2009). Here, we report the structure of the title compound.

The oxadiazole ring is essentially planar and is inclined at 67.1 (1)° with respect to the p-cholobenzene ring. The N2=C2 and S1=C1 double bonds agree with the corresponding distances in three structures containing similar systems (Du et al., 2004; Ziyaev et al., 1992; Zareef et al., 2006). The conformations of the N—H and C=O bonds are anti with respect to each other. The structure is stabilized by a network of intermolecular hydrogen bonds of the type N—H···S (Table 1, Figure 2).

For the biological properties of thiadiazoles, see: Tu et al. (2008). For details of the synthesis, see: Ginzel et al. (1989); Boland et al. (2006); Havaldar & Patil (2009). For related structures, see: Du et al. (2004); Ziyaev et al. (1992); Zareef et al. (2006). For related literature [on what subject?], see: Shriner & Furrow (1955).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis with hydrogen bonds drawn as dashed lines.
4-Chloro-N-[3-methyl-1-(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2- yl)butyl]benzamide top
Crystal data top
C14H16ClN3O2SF(000) = 680
Mr = 325.81Dx = 1.294 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2117 reflections
a = 6.0171 (6) Åθ = 2.6–21.7°
b = 15.3120 (15) ŵ = 0.36 mm1
c = 18.1493 (17) ÅT = 298 K
V = 1672.2 (3) Å3Block, colourless
Z = 40.42 × 0.22 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2951 independent reflections
Radiation source: fine-focus sealed tube1447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.864, Tmax = 0.938k = 1811
7892 measured reflectionsl = 2116
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0147P)2 + 1.0529P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.31 e Å3
2951 reflectionsΔρmin = 0.32 e Å3
193 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0034 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1219 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.09 (14)
Crystal data top
C14H16ClN3O2SV = 1672.2 (3) Å3
Mr = 325.81Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0171 (6) ŵ = 0.36 mm1
b = 15.3120 (15) ÅT = 298 K
c = 18.1493 (17) Å0.42 × 0.22 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2951 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1447 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.938Rint = 0.056
7892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.31 e Å3
S = 1.10Δρmin = 0.32 e Å3
2951 reflectionsAbsolute structure: Flack (1983), 1219 Friedel pairs
193 parametersAbsolute structure parameter: 0.09 (14)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.2875 (3)0.07537 (10)0.04447 (8)0.1082 (7)
N10.4961 (8)0.5638 (3)0.2486 (2)0.0653 (12)
H10.45530.61750.25150.078*
N20.6705 (8)0.5299 (2)0.2891 (2)0.0679 (12)
N30.9177 (6)0.3351 (2)0.22952 (19)0.0530 (10)
H31.03230.35770.20860.064*
O10.5141 (6)0.4303 (2)0.21792 (16)0.0650 (10)
O20.6632 (6)0.22820 (19)0.23058 (17)0.0672 (10)
S10.1860 (3)0.51382 (10)0.14928 (8)0.0902 (5)
C10.3976 (8)0.5066 (3)0.2049 (2)0.0601 (13)
C20.6745 (10)0.4498 (3)0.2683 (2)0.0555 (13)
C30.8216 (9)0.3780 (3)0.2935 (2)0.0572 (13)
H3A0.72950.33520.31950.069*
C40.9999 (9)0.4102 (3)0.3469 (2)0.0628 (14)
H4A1.08270.45670.32330.075*
H4B0.92710.43480.38980.075*
C51.1631 (10)0.3406 (3)0.3725 (3)0.0793 (17)
H51.24520.32060.32900.095*
C61.3329 (10)0.3803 (4)0.4260 (3)0.097 (2)
H6A1.26040.39480.47150.145*
H6B1.39550.43210.40460.145*
H6C1.44900.33870.43530.145*
C71.0511 (12)0.2623 (4)0.4053 (3)0.129 (3)
H7A0.96450.27990.44710.193*
H7B1.16150.22080.42050.193*
H7C0.95570.23600.36920.193*
C80.8305 (9)0.2601 (3)0.2021 (2)0.0520 (12)
C90.9491 (9)0.2185 (3)0.1398 (3)0.0518 (13)
C100.8393 (9)0.1520 (3)0.1025 (2)0.0575 (13)
H100.69660.13590.11680.069*
C110.9413 (10)0.1093 (3)0.0440 (3)0.0673 (15)
H110.86610.06600.01810.081*
C121.1541 (11)0.1319 (3)0.0247 (3)0.0663 (15)
C131.2613 (9)0.1986 (3)0.0598 (3)0.0681 (15)
H131.40270.21530.04460.082*
C141.1604 (9)0.2411 (3)0.1174 (3)0.0639 (14)
H141.23550.28580.14160.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1383 (16)0.0987 (12)0.0876 (10)0.0156 (12)0.0383 (11)0.0126 (9)
N10.069 (3)0.046 (3)0.081 (3)0.002 (3)0.002 (3)0.005 (2)
N20.078 (3)0.047 (3)0.079 (3)0.005 (3)0.012 (3)0.004 (2)
N30.050 (3)0.044 (2)0.066 (3)0.006 (2)0.007 (2)0.0108 (19)
O10.079 (3)0.045 (2)0.071 (2)0.002 (2)0.019 (2)0.0068 (17)
O20.069 (3)0.046 (2)0.086 (2)0.004 (2)0.016 (2)0.0039 (17)
S10.0914 (12)0.0756 (10)0.1037 (11)0.0050 (10)0.0315 (10)0.0091 (9)
C10.064 (4)0.058 (3)0.058 (3)0.009 (3)0.004 (3)0.002 (3)
C20.074 (4)0.037 (3)0.056 (3)0.004 (3)0.001 (3)0.005 (2)
C30.072 (4)0.046 (3)0.053 (3)0.001 (3)0.009 (3)0.002 (2)
C40.074 (4)0.056 (3)0.058 (3)0.001 (3)0.007 (3)0.004 (3)
C50.088 (5)0.075 (4)0.074 (4)0.001 (4)0.015 (4)0.007 (3)
C60.094 (5)0.109 (5)0.088 (4)0.010 (4)0.017 (4)0.003 (3)
C70.140 (7)0.092 (5)0.154 (6)0.018 (5)0.040 (5)0.056 (5)
C80.056 (3)0.043 (3)0.057 (3)0.000 (3)0.000 (3)0.001 (2)
C90.057 (3)0.037 (3)0.062 (3)0.002 (3)0.006 (3)0.003 (2)
C100.062 (4)0.044 (3)0.067 (3)0.004 (3)0.001 (3)0.002 (2)
C110.097 (5)0.048 (3)0.056 (3)0.001 (3)0.001 (3)0.001 (3)
C120.084 (5)0.055 (3)0.059 (3)0.011 (4)0.007 (3)0.005 (3)
C130.063 (4)0.068 (4)0.074 (3)0.005 (3)0.014 (3)0.006 (3)
C140.067 (4)0.051 (3)0.074 (3)0.003 (3)0.002 (3)0.000 (3)
Geometric parameters (Å, º) top
Cl1—C121.723 (5)C5—C61.535 (7)
N1—C11.321 (5)C5—H50.9800
N1—N21.382 (5)C6—H6A0.9600
N1—H10.8600C6—H6B0.9600
N2—C21.283 (5)C6—H6C0.9600
N3—C81.357 (5)C7—H7A0.9600
N3—C31.454 (5)C7—H7B0.9600
N3—H30.8600C7—H7C0.9600
O1—C21.363 (5)C8—C91.481 (6)
O1—C11.382 (5)C9—C141.379 (6)
O2—C81.232 (5)C9—C101.390 (6)
S1—C11.629 (5)C10—C111.390 (6)
C2—C31.483 (6)C10—H100.9300
C3—C41.527 (6)C11—C121.372 (7)
C3—H3A0.9800C11—H110.9300
C4—C51.522 (6)C12—C131.366 (6)
C4—H4A0.9700C13—C141.373 (6)
C4—H4B0.9700C13—H130.9300
C5—C71.498 (7)C14—H140.9300
C1—N1—N2114.3 (4)C5—C6—H6B109.5
C1—N1—H1122.9H6A—C6—H6B109.5
N2—N1—H1122.9C5—C6—H6C109.5
C2—N2—N1102.5 (4)H6A—C6—H6C109.5
C8—N3—C3121.5 (4)H6B—C6—H6C109.5
C8—N3—H3119.3C5—C7—H7A109.5
C3—N3—H3119.3C5—C7—H7B109.5
C2—O1—C1106.8 (3)H7A—C7—H7B109.5
N1—C1—O1103.3 (4)C5—C7—H7C109.5
N1—C1—S1132.6 (4)H7A—C7—H7C109.5
O1—C1—S1124.0 (4)H7B—C7—H7C109.5
N2—C2—O1113.1 (5)O2—C8—N3119.8 (4)
N2—C2—C3128.9 (5)O2—C8—C9122.9 (4)
O1—C2—C3117.9 (4)N3—C8—C9117.2 (4)
N3—C3—C2109.0 (3)C14—C9—C10118.6 (5)
N3—C3—C4111.9 (4)C14—C9—C8124.2 (4)
C2—C3—C4112.1 (4)C10—C9—C8117.3 (5)
N3—C3—H3A107.9C11—C10—C9120.4 (5)
C2—C3—H3A107.9C11—C10—H10119.8
C4—C3—H3A107.9C9—C10—H10119.8
C5—C4—C3114.9 (4)C12—C11—C10119.3 (5)
C5—C4—H4A108.5C12—C11—H11120.4
C3—C4—H4A108.5C10—C11—H11120.4
C5—C4—H4B108.5C13—C12—C11120.7 (5)
C3—C4—H4B108.5C13—C12—Cl1119.7 (5)
H4A—C4—H4B107.5C11—C12—Cl1119.6 (5)
C7—C5—C4113.0 (5)C12—C13—C14120.1 (5)
C7—C5—C6111.4 (5)C12—C13—H13120.0
C4—C5—C6110.2 (4)C14—C13—H13120.0
C7—C5—H5107.3C13—C14—C9120.9 (5)
C4—C5—H5107.3C13—C14—H14119.6
C6—C5—H5107.3C9—C14—H14119.6
C5—C6—H6A109.5
C1—N1—N2—C20.1 (6)C3—C4—C5—C6179.7 (4)
N2—N1—C1—O10.3 (5)C3—N3—C8—O21.7 (7)
N2—N1—C1—S1178.2 (4)C3—N3—C8—C9176.2 (4)
C2—O1—C1—N10.5 (5)O2—C8—C9—C14165.1 (4)
C2—O1—C1—S1178.7 (3)N3—C8—C9—C1412.7 (7)
N1—N2—C2—O10.5 (5)O2—C8—C9—C1014.3 (7)
N1—N2—C2—C3178.1 (5)N3—C8—C9—C10167.9 (4)
C1—O1—C2—N20.7 (5)C14—C9—C10—C110.1 (7)
C1—O1—C2—C3178.6 (4)C8—C9—C10—C11179.3 (4)
C8—N3—C3—C298.1 (5)C9—C10—C11—C121.8 (7)
C8—N3—C3—C4137.4 (4)C10—C11—C12—C133.5 (7)
N2—C2—C3—N3129.7 (5)C10—C11—C12—Cl1176.5 (3)
O1—C2—C3—N352.8 (6)C11—C12—C13—C143.2 (8)
N2—C2—C3—C45.2 (8)Cl1—C12—C13—C14176.7 (4)
O1—C2—C3—C4177.2 (4)C12—C13—C14—C91.2 (7)
N3—C3—C4—C554.7 (6)C10—C9—C14—C130.4 (7)
C2—C3—C4—C5177.5 (4)C8—C9—C14—C13178.9 (4)
C3—C4—C5—C754.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.872.720 (6)171
N3—H3···S1ii0.862.783.495 (4)142
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H16ClN3O2S
Mr325.81
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.0171 (6), 15.3120 (15), 18.1493 (17)
V3)1672.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.42 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.864, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
7892, 2951, 1447
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.108, 1.10
No. of reflections2951
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.32
Absolute structureFlack (1983), 1219 Friedel pairs
Absolute structure parameter0.09 (14)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.872.720 (6)171
N3—H3···S1ii0.862.783.495 (4)142
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The work was supported by the Key Technologies R & D Program of JiangXi (grant No. 20061B0100400), the Key Science & Technology Program of JiangXi (grant No. 2009BSA14100) and the Scientific Research Fund of NanChang University.

References

First citationBoland, Y., Hertsens, P., Marchand-Brynaert, J. & Garcia, Y. (2006). Synthesis, pp. 1504–1512.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M., Zhao, X.-J. & Guo, J.-H. (2004). Acta Cryst. E60, o327–o328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGinzel, K. D., Brungs, P. & Steckhan, E. (1989). Tetrahedron, 45, 1691–1701.  CrossRef CAS Web of Science Google Scholar
First citationHavaldar, F. H. & Patil, A. R. (2009). Asian J. Chem. 21, 5267–5272.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShriner, R. L. & Furrow, C. L. (1955). Org. Synth. 35, 49–50.  CAS Google Scholar
First citationTu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 6663–6668.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationZareef, M., Iqbal, R., Zaidi, J. H., Arfan, M. & Parvez, M. (2006). Acta Cryst. E62, o2481–o2483.  CSD CrossRef IUCr Journals Google Scholar
First citationZiyaev, A. A., Galust'yan, G. G., Sabirov, K., Nasirov, S., Tashkhodzhaev, B. & Yag'budaev, M. R. (1992). Zh. Org. Khim. 28, 1538–1543.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds