metal-organic compounds
Di-μ1,1-azido-bis[(2-{1-[2-(isopropylamino)ethylimino]ethyl}phenolato)copper(II)]
aDepartment of Chemistry and Life Sciences, Xiangnan University, Chenzhou 423000, People's Republic of China
*Correspondence e-mail: lihebing07@163.com
In the centrosymmetric binuclear title complex, [Cu2(C13H19N2O)2(N3)2], the CuII atom adopts an elongated CuON4 square-based pyramidal coordination geometry, arising from the N,N′,O-tridentate ligand and two bridging end-on azide anions. The O atom is in the basal plane, one of the azide N atoms is in the apical site and the Cu⋯Cu separation is 3.2365 (3) Å. A pair of intramolecular N—H⋯O hydrogen bonds helps to establish the molecular conformation.
Related literature
For background to polynuclear complexes, see: Massoud et al. (2007); Lisnard et al. (2007); Sarkar et al. (2004); Escuer & Aromí (2006); Goher et al. (2001); Colacio et al. (2005); Sailaja et al. (2003); Cheng et al. (2006); Meyer et al. (2005); Sharma (1990); Ko et al. (2006); Escuer et al. (1998). For azido-bridged copper(II) complexes, see: Triki et al. (2005); Gao et al. (2005); Zhang et al. (2001).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810017174/hb5441sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810017174/hb5441Isup2.hkl
A mixture of NaN3 (0.065 g, 1 mmol) and Cu(NO3)2.3H2O (0.241 g, 1 mmol) in 50 ml methanol was stirred for half an hour with heating, then HL (0.220 g, 1 mmol) was added to the solution and the reaction continued to stirred for 1 h. After filtration, the blue filtrate was allowed to stand at room temperature for a week to deposit blue blocks of (I) in 54% yield.
H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H = 0.93-0.98 Å, N—H = 0.91 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).
Polynuclear complexes containing bridging groups are of great interest because of their versatile molecular structures and applications (Massoud et al., 2007; Lisnard et al., 2007; Sarkar et al., 2004). In the last few years chemists have dedicated their efforts to the study of molecular-based magnetic materials. One strategy for the design of molecular based magnets involves assembling of paramagnetic metal ions in one-, two- and three-dimensional networks using suitable bridging ligands (Escuer & Aromí, 2006; Goher et al., 2001; Colacio et al., 2005; Sailaja et al., 2003). The azide ligands have been widely used because of their diverse binding modes that yield different types of molecules such as dimmers, tetramers, one-, two-, or three-dimensional arrays (Cheng et al., 2006; Meyer et al., 2005; Sharma, 1990; Ko et al., 2006; Escuer et al., 1998). In the present work, the title new end-on azido-bridged dinuclear copper(II) complex, (I), containing the deprotonated form of 2-[1-(2-isopropylaminoethylimino)ethyl]phenol), HL, has been prepared and structural characterized.
The structure of the complex is shown in Fig. 1. There are two unique units [CuL] linked by double end-on azido bridging groups with an inversion center at the midpoint of the two Cu atoms. Each Cu atom in the complex is in a square pyramidal environment consisting of the NNO donor set from one Schiff base ligand and two N atoms from two bridging azido groups. The Cu···Cu distance is 3.236 (1) Å. The Cu—O and Cu—N bond lengths are comparable to the corresponding values observed in other similar copper(II) complexes with azido bridges (Triki et al., 2005; Gao et al., 2005; Zhang et al., 2001). There are two N—H···O hydrogen bonds (Table 1) between the two symmetry-related two CuL units (Fig. 2).
For background to polynuclear complexes, see: Massoud et al. (2007); Lisnard et al. (2007); Sarkar et al. (2004); Escuer & Aromí (2006); Goher et al. (2001); Colacio et al. (2005); Sailaja et al. (2003); Cheng et al. (2006); Meyer et al. (2005); Sharma (1990); Ko et al. (2006); Escuer et al. (1998). For azido-bridged copper(II) complexes, see: Triki et al. (2005); Gao et al. (2005); Zhang et al. (2001).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(C13H19N2O)2(N3)2] | F(000) = 676 |
Mr = 649.74 | Dx = 1.515 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4033 reflections |
a = 9.6558 (3) Å | θ = 2.5–28.4° |
b = 15.3021 (5) Å | µ = 1.54 mm−1 |
c = 10.6549 (3) Å | T = 298 K |
β = 115.174 (1)° | Block, blue |
V = 1424.78 (8) Å3 | 0.30 × 0.28 × 0.27 mm |
Z = 2 |
Bruker SMART CCD diffractometer | 3205 independent reflections |
Radiation source: fine-focus sealed tube | 2700 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω scans | θmax = 27.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −12→12 |
Tmin = 0.656, Tmax = 0.682 | k = −19→15 |
8486 measured reflections | l = −13→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0336P)2 + 0.2887P] where P = (Fo2 + 2Fc2)/3 |
3205 reflections | (Δ/σ)max = 0.001 |
184 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
[Cu2(C13H19N2O)2(N3)2] | V = 1424.78 (8) Å3 |
Mr = 649.74 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.6558 (3) Å | µ = 1.54 mm−1 |
b = 15.3021 (5) Å | T = 298 K |
c = 10.6549 (3) Å | 0.30 × 0.28 × 0.27 mm |
β = 115.174 (1)° |
Bruker SMART CCD diffractometer | 3205 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 2700 reflections with I > 2σ(I) |
Tmin = 0.656, Tmax = 0.682 | Rint = 0.022 |
8486 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.21 e Å−3 |
3205 reflections | Δρmin = −0.33 e Å−3 |
184 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.59044 (2) | 0.085868 (13) | 0.58341 (2) | 0.02936 (8) | |
N1 | 0.79784 (16) | 0.13417 (9) | 0.67367 (16) | 0.0338 (3) | |
N2 | 0.58778 (17) | 0.13250 (10) | 0.40334 (15) | 0.0342 (3) | |
H2A | 0.5430 | 0.0905 | 0.3380 | 0.041* | |
N3 | 0.36638 (17) | 0.05814 (10) | 0.48628 (16) | 0.0365 (3) | |
N4 | 0.27481 (17) | 0.08176 (10) | 0.52619 (17) | 0.0381 (4) | |
N5 | 0.1825 (3) | 0.10262 (14) | 0.5608 (3) | 0.0738 (7) | |
O1 | 0.59002 (15) | 0.04762 (10) | 0.75079 (13) | 0.0455 (3) | |
C1 | 0.7028 (2) | 0.05405 (13) | 0.87468 (19) | 0.0389 (4) | |
C2 | 0.6797 (3) | 0.01235 (15) | 0.9831 (2) | 0.0524 (5) | |
H2 | 0.5897 | −0.0188 | 0.9615 | 0.063* | |
C3 | 0.7854 (3) | 0.01630 (16) | 1.1183 (2) | 0.0628 (7) | |
H3 | 0.7662 | −0.0110 | 1.1873 | 0.075* | |
C4 | 0.9211 (4) | 0.06119 (17) | 1.1520 (2) | 0.0704 (8) | |
H4 | 0.9934 | 0.0643 | 1.2437 | 0.084* | |
C5 | 0.9482 (3) | 0.10079 (15) | 1.0498 (2) | 0.0559 (6) | |
H5 | 1.0408 | 0.1297 | 1.0741 | 0.067* | |
C6 | 0.8418 (2) | 0.09990 (12) | 0.9086 (2) | 0.0386 (4) | |
C7 | 0.8821 (2) | 0.14202 (12) | 0.8055 (2) | 0.0373 (4) | |
C8 | 1.0266 (2) | 0.19634 (16) | 0.8554 (3) | 0.0606 (6) | |
H8A | 1.1115 | 0.1596 | 0.8663 | 0.091* | |
H8B | 1.0449 | 0.2227 | 0.9429 | 0.091* | |
H8C | 1.0150 | 0.2412 | 0.7887 | 0.091* | |
C9 | 0.8460 (2) | 0.17343 (14) | 0.5724 (2) | 0.0443 (5) | |
H9A | 0.9538 | 0.1620 | 0.5996 | 0.053* | |
H9B | 0.8310 | 0.2362 | 0.5691 | 0.053* | |
C10 | 0.7519 (2) | 0.13412 (13) | 0.4315 (2) | 0.0433 (5) | |
H10A | 0.7652 | 0.1683 | 0.3608 | 0.052* | |
H10B | 0.7868 | 0.0751 | 0.4283 | 0.052* | |
C11 | 0.5038 (2) | 0.21591 (13) | 0.3447 (2) | 0.0434 (5) | |
H11 | 0.5600 | 0.2479 | 0.3014 | 0.052* | |
C12 | 0.4930 (3) | 0.27349 (15) | 0.4550 (3) | 0.0587 (6) | |
H12A | 0.4341 | 0.2444 | 0.4959 | 0.088* | |
H12B | 0.4442 | 0.3275 | 0.4141 | 0.088* | |
H12C | 0.5939 | 0.2852 | 0.5253 | 0.088* | |
C13 | 0.3461 (3) | 0.19476 (17) | 0.2336 (2) | 0.0636 (6) | |
H13A | 0.3555 | 0.1580 | 0.1646 | 0.095* | |
H13B | 0.2948 | 0.2479 | 0.1911 | 0.095* | |
H13C | 0.2880 | 0.1649 | 0.2745 | 0.095* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02708 (12) | 0.03103 (13) | 0.03107 (13) | −0.00587 (8) | 0.01341 (9) | −0.00101 (9) |
N1 | 0.0281 (7) | 0.0312 (8) | 0.0426 (9) | −0.0043 (6) | 0.0154 (7) | −0.0021 (7) |
N2 | 0.0403 (8) | 0.0307 (8) | 0.0337 (8) | −0.0058 (6) | 0.0177 (7) | −0.0011 (6) |
N3 | 0.0299 (8) | 0.0390 (8) | 0.0417 (9) | −0.0062 (6) | 0.0163 (7) | −0.0048 (7) |
N4 | 0.0319 (8) | 0.0322 (8) | 0.0478 (9) | −0.0015 (6) | 0.0147 (7) | 0.0014 (7) |
N5 | 0.0586 (13) | 0.0661 (14) | 0.117 (2) | 0.0054 (10) | 0.0569 (14) | −0.0125 (13) |
O1 | 0.0376 (7) | 0.0671 (9) | 0.0331 (7) | −0.0116 (7) | 0.0163 (6) | 0.0023 (7) |
C1 | 0.0445 (10) | 0.0405 (10) | 0.0342 (10) | 0.0072 (8) | 0.0194 (8) | −0.0030 (8) |
C2 | 0.0688 (14) | 0.0548 (13) | 0.0416 (12) | 0.0089 (11) | 0.0312 (11) | 0.0021 (10) |
C3 | 0.098 (2) | 0.0558 (14) | 0.0383 (12) | 0.0221 (14) | 0.0321 (13) | 0.0041 (11) |
C4 | 0.096 (2) | 0.0579 (15) | 0.0327 (12) | 0.0248 (15) | 0.0037 (12) | −0.0022 (11) |
C5 | 0.0571 (13) | 0.0470 (13) | 0.0443 (12) | 0.0090 (10) | 0.0031 (10) | −0.0091 (10) |
C6 | 0.0387 (10) | 0.0325 (10) | 0.0367 (10) | 0.0073 (8) | 0.0085 (8) | −0.0078 (8) |
C7 | 0.0292 (9) | 0.0293 (9) | 0.0470 (11) | 0.0014 (7) | 0.0100 (8) | −0.0078 (8) |
C8 | 0.0366 (11) | 0.0606 (15) | 0.0692 (15) | −0.0137 (10) | 0.0077 (10) | −0.0124 (13) |
C9 | 0.0340 (10) | 0.0451 (11) | 0.0589 (13) | −0.0066 (8) | 0.0248 (9) | 0.0039 (10) |
C10 | 0.0486 (11) | 0.0415 (11) | 0.0541 (12) | −0.0014 (9) | 0.0356 (10) | 0.0051 (9) |
C11 | 0.0492 (11) | 0.0359 (10) | 0.0447 (11) | −0.0013 (8) | 0.0195 (9) | 0.0110 (9) |
C12 | 0.0685 (15) | 0.0389 (12) | 0.0668 (15) | 0.0079 (11) | 0.0272 (13) | −0.0025 (11) |
C13 | 0.0588 (14) | 0.0623 (16) | 0.0517 (14) | 0.0021 (12) | 0.0062 (11) | 0.0125 (12) |
Cu1—O1 | 1.8786 (13) | C5—C6 | 1.416 (3) |
Cu1—N1 | 1.9604 (14) | C5—H5 | 0.9300 |
Cu1—N3 | 2.0067 (15) | C6—C7 | 1.462 (3) |
Cu1—N2 | 2.0369 (14) | C7—C8 | 1.513 (3) |
Cu1—N3i | 2.4175 (16) | C8—H8A | 0.9600 |
N1—C7 | 1.295 (2) | C8—H8B | 0.9600 |
N1—C9 | 1.473 (2) | C8—H8C | 0.9600 |
N2—C10 | 1.482 (2) | C9—C10 | 1.510 (3) |
N2—C11 | 1.499 (2) | C9—H9A | 0.9700 |
N2—H2A | 0.9100 | C9—H9B | 0.9700 |
N3—N4 | 1.189 (2) | C10—H10A | 0.9700 |
N3—Cu1i | 2.4175 (16) | C10—H10B | 0.9700 |
N4—N5 | 1.145 (2) | C11—C12 | 1.507 (3) |
O1—C1 | 1.310 (2) | C11—C13 | 1.514 (3) |
C1—C2 | 1.417 (3) | C11—H11 | 0.9800 |
C1—C6 | 1.418 (3) | C12—H12A | 0.9600 |
C2—C3 | 1.368 (3) | C12—H12B | 0.9600 |
C2—H2 | 0.9300 | C12—H12C | 0.9600 |
C3—C4 | 1.384 (4) | C13—H13A | 0.9600 |
C3—H3 | 0.9300 | C13—H13B | 0.9600 |
C4—C5 | 1.364 (4) | C13—H13C | 0.9600 |
C4—H4 | 0.9300 | ||
O1—Cu1—N1 | 93.78 (6) | C1—C6—C7 | 123.53 (17) |
O1—Cu1—N3 | 89.23 (6) | N1—C7—C6 | 121.92 (16) |
N1—Cu1—N3 | 170.06 (6) | N1—C7—C8 | 119.49 (18) |
O1—Cu1—N2 | 177.52 (6) | C6—C7—C8 | 118.59 (18) |
N1—Cu1—N2 | 86.04 (6) | C7—C8—H8A | 109.5 |
N3—Cu1—N2 | 90.54 (6) | C7—C8—H8B | 109.5 |
O1—Cu1—N3i | 94.47 (6) | H8A—C8—H8B | 109.5 |
N1—Cu1—N3i | 102.75 (5) | C7—C8—H8C | 109.5 |
N3—Cu1—N3i | 86.43 (6) | H8A—C8—H8C | 109.5 |
N2—Cu1—N3i | 87.98 (6) | H8B—C8—H8C | 109.5 |
C7—N1—C9 | 120.54 (15) | N1—C9—C10 | 108.74 (15) |
C7—N1—Cu1 | 127.34 (13) | N1—C9—H9A | 109.9 |
C9—N1—Cu1 | 111.69 (12) | C10—C9—H9A | 109.9 |
C10—N2—C11 | 114.37 (14) | N1—C9—H9B | 109.9 |
C10—N2—Cu1 | 103.35 (11) | C10—C9—H9B | 109.9 |
C11—N2—Cu1 | 118.59 (11) | H9A—C9—H9B | 108.3 |
C10—N2—H2A | 106.6 | N2—C10—C9 | 110.37 (15) |
C11—N2—H2A | 106.6 | N2—C10—H10A | 109.6 |
Cu1—N2—H2A | 106.6 | C9—C10—H10A | 109.6 |
N4—N3—Cu1 | 123.64 (13) | N2—C10—H10B | 109.6 |
N4—N3—Cu1i | 129.69 (12) | C9—C10—H10B | 109.6 |
Cu1—N3—Cu1i | 93.57 (6) | H10A—C10—H10B | 108.1 |
N5—N4—N3 | 177.4 (2) | N2—C11—C12 | 112.19 (16) |
C1—O1—Cu1 | 126.66 (12) | N2—C11—C13 | 109.26 (17) |
O1—C1—C2 | 115.87 (18) | C12—C11—C13 | 110.81 (19) |
O1—C1—C6 | 125.78 (17) | N2—C11—H11 | 108.2 |
C2—C1—C6 | 118.34 (19) | C12—C11—H11 | 108.2 |
C3—C2—C1 | 122.2 (2) | C13—C11—H11 | 108.2 |
C3—C2—H2 | 118.9 | C11—C12—H12A | 109.5 |
C1—C2—H2 | 118.9 | C11—C12—H12B | 109.5 |
C2—C3—C4 | 119.6 (2) | H12A—C12—H12B | 109.5 |
C2—C3—H3 | 120.2 | C11—C12—H12C | 109.5 |
C4—C3—H3 | 120.2 | H12A—C12—H12C | 109.5 |
C5—C4—C3 | 119.7 (2) | H12B—C12—H12C | 109.5 |
C5—C4—H4 | 120.2 | C11—C13—H13A | 109.5 |
C3—C4—H4 | 120.2 | C11—C13—H13B | 109.5 |
C4—C5—C6 | 123.0 (2) | H13A—C13—H13B | 109.5 |
C4—C5—H5 | 118.5 | C11—C13—H13C | 109.5 |
C6—C5—H5 | 118.5 | H13A—C13—H13C | 109.5 |
C5—C6—C1 | 117.1 (2) | H13B—C13—H13C | 109.5 |
C5—C6—C7 | 119.31 (19) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1i | 0.91 | 2.45 | 3.293 (2) | 155 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C13H19N2O)2(N3)2] |
Mr | 649.74 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 9.6558 (3), 15.3021 (5), 10.6549 (3) |
β (°) | 115.174 (1) |
V (Å3) | 1424.78 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.54 |
Crystal size (mm) | 0.30 × 0.28 × 0.27 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.656, 0.682 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8486, 3205, 2700 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.068, 1.05 |
No. of reflections | 3205 |
No. of parameters | 184 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.33 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O1 | 1.8786 (13) | Cu1—N2 | 2.0369 (14) |
Cu1—N1 | 1.9604 (14) | Cu1—N3i | 2.4175 (16) |
Cu1—N3 | 2.0067 (15) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1i | 0.91 | 2.45 | 3.293 (2) | 155 |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
The author acknowledges a research grant from Xiangnan University.
References
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheng, K., Zhu, H.-L. & Gao, Y.-H. (2006). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 36, 477–480. CAS Google Scholar
Colacio, E., Costes, J.-P., Domínguez-Vera, J. M., Maimoun, I. B. & Suárez-Varela, J. (2005). Chem. Commun. pp. 534–536. Web of Science CSD CrossRef Google Scholar
Escuer, A. & Aromí, G. (2006). Eur. J. Inorg. Chem. pp. 4721–4736. Web of Science CrossRef Google Scholar
Escuer, A., Vicente, R., Goher, M. A. S. & Mautner, F. A. (1998). Inorg. Chem. 37, 782–787. Web of Science CSD CrossRef CAS Google Scholar
Gao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z. & Yan, C.-H. (2005). Cryst. Growth Des. 5, 1119–1124. Web of Science CSD CrossRef CAS Google Scholar
Goher, M. A. S., Escuer, A., Mautner, F. A. & Al-Salem, N. A. (2001). Polyhedron, 20, 2971–2977. Web of Science CSD CrossRef CAS Google Scholar
Ko, H. H., Lim, J. H., Kim, H. C. & Hong, C. S. (2006). Inorg. Chem. 45, 8847–8849. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lisnard, L., Mialane, P., Dolbecq, A., Marrot, J., Clemente-Juan, J. M., Coronado, E., Keita, B., de Oliveira, P., Nadjo, L. & Sécheresse, F. (2007). Chem. Eur. J. 13, 3525–3536. Web of Science CSD CrossRef PubMed CAS Google Scholar
Massoud, S. S., Mautner, F. A., Vicente, R., Gallo, A. A. & Ducasse, E. (2007). Eur. J. Inorg. Chem. pp. 1091–1102. Web of Science CSD CrossRef Google Scholar
Meyer, F., Demeshko, S., Leibeling, G., Kersting, B., Kaifer, E. & Pritzkow, H. (2005). Chem. Eur. J. 11, 1518–1526. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sailaja, S., Reddy, K. R., Rajasekharan, M. V., Hureau, C., Riviŕe, E., Cano, J. & Girerd, J.-J. (2003). Inorg. Chem. 42, 180–186. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sarkar, S., Mondal, A., Ribas, J., Drew, M. G. B., Pramanik, K. & Rajak, K. K. (2004). Eur. J. Inorg. Chem. pp. 4633–4639. Web of Science CSD CrossRef Google Scholar
Sharma, S. B. (1990). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 20, 223–241. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Triki, S., Gómez-García, C. J., Ruiz, E. & Sala-Pala, J. (2005). Inorg. Chem. 44, 5501–5508. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, L., Tang, L.-F., Wang, Z.-H., Du, M., Julve, M., Lloret, F. & Wang, J.-T. (2001). Inorg. Chem. 40, 3619–3622. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polynuclear complexes containing bridging groups are of great interest because of their versatile molecular structures and applications (Massoud et al., 2007; Lisnard et al., 2007; Sarkar et al., 2004). In the last few years chemists have dedicated their efforts to the study of molecular-based magnetic materials. One strategy for the design of molecular based magnets involves assembling of paramagnetic metal ions in one-, two- and three-dimensional networks using suitable bridging ligands (Escuer & Aromí, 2006; Goher et al., 2001; Colacio et al., 2005; Sailaja et al., 2003). The azide ligands have been widely used because of their diverse binding modes that yield different types of molecules such as dimmers, tetramers, one-, two-, or three-dimensional arrays (Cheng et al., 2006; Meyer et al., 2005; Sharma, 1990; Ko et al., 2006; Escuer et al., 1998). In the present work, the title new end-on azido-bridged dinuclear copper(II) complex, (I), containing the deprotonated form of 2-[1-(2-isopropylaminoethylimino)ethyl]phenol), HL, has been prepared and structural characterized.
The structure of the complex is shown in Fig. 1. There are two unique units [CuL] linked by double end-on azido bridging groups with an inversion center at the midpoint of the two Cu atoms. Each Cu atom in the complex is in a square pyramidal environment consisting of the NNO donor set from one Schiff base ligand and two N atoms from two bridging azido groups. The Cu···Cu distance is 3.236 (1) Å. The Cu—O and Cu—N bond lengths are comparable to the corresponding values observed in other similar copper(II) complexes with azido bridges (Triki et al., 2005; Gao et al., 2005; Zhang et al., 2001). There are two N—H···O hydrogen bonds (Table 1) between the two symmetry-related two CuL units (Fig. 2).