metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ1,1-azido-bis­­[(2-{1-[2-(iso­propyl­amino)ethyl­imino]eth­yl}phenolato)copper(II)]

aDepartment of Chemistry and Life Sciences, Xiangnan University, Chenzhou 423000, People's Republic of China
*Correspondence e-mail: lihebing07@163.com

(Received 10 May 2010; accepted 11 May 2010; online 15 May 2010)

In the centrosymmetric binuclear title complex, [Cu2(C13H19N2O)2(N3)2], the CuII atom adopts an elongated CuON4 square-based pyramidal coordination geometry, arising from the N,N′,O-tridentate ligand and two bridging end-on azide anions. The O atom is in the basal plane, one of the azide N atoms is in the apical site and the Cu⋯Cu separation is 3.2365 (3) Å. A pair of intra­molecular N—H⋯O hydrogen bonds helps to establish the mol­ecular conformation.

Related literature

For background to polynuclear complexes, see: Massoud et al. (2007[Massoud, S. S., Mautner, F. A., Vicente, R., Gallo, A. A. & Ducasse, E. (2007). Eur. J. Inorg. Chem. pp. 1091-1102.]); Lisnard et al. (2007[Lisnard, L., Mialane, P., Dolbecq, A., Marrot, J., Clemente-Juan, J. M., Coronado, E., Keita, B., de Oliveira, P., Nadjo, L. & Sécheresse, F. (2007). Chem. Eur. J. 13, 3525-3536.]); Sarkar et al. (2004[Sarkar, S., Mondal, A., Ribas, J., Drew, M. G. B., Pramanik, K. & Rajak, K. K. (2004). Eur. J. Inorg. Chem. pp. 4633-4639.]); Escuer & Aromí (2006[Escuer, A. & Aromí, G. (2006). Eur. J. Inorg. Chem. pp. 4721-4736.]); Goher et al. (2001[Goher, M. A. S., Escuer, A., Mautner, F. A. & Al-Salem, N. A. (2001). Polyhedron, 20, 2971-2977.]); Colacio et al. (2005[Colacio, E., Costes, J.-P., Domínguez-Vera, J. M., Maimoun, I. B. & Suárez-Varela, J. (2005). Chem. Commun. pp. 534-536.]); Sailaja et al. (2003[Sailaja, S., Reddy, K. R., Rajasekharan, M. V., Hureau, C., Riviŕe, E., Cano, J. & Girerd, J.-J. (2003). Inorg. Chem. 42, 180-186.]); Cheng et al. (2006[Cheng, K., Zhu, H.-L. & Gao, Y.-H. (2006). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 36, 477-480.]); Meyer et al. (2005[Meyer, F., Demeshko, S., Leibeling, G., Kersting, B., Kaifer, E. & Pritzkow, H. (2005). Chem. Eur. J. 11, 1518-1526.]); Sharma (1990[Sharma, S. B. (1990). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 20, 223-241.]); Ko et al. (2006[Ko, H. H., Lim, J. H., Kim, H. C. & Hong, C. S. (2006). Inorg. Chem. 45, 8847-8849.]); Escuer et al. (1998[Escuer, A., Vicente, R., Goher, M. A. S. & Mautner, F. A. (1998). Inorg. Chem. 37, 782-787.]). For azido-bridged copper(II) complexes, see: Triki et al. (2005[Triki, S., Gómez-García, C. J., Ruiz, E. & Sala-Pala, J. (2005). Inorg. Chem. 44, 5501-5508.]); Gao et al. (2005[Gao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z. & Yan, C.-H. (2005). Cryst. Growth Des. 5, 1119-1124.]); Zhang et al. (2001[Zhang, L., Tang, L.-F., Wang, Z.-H., Du, M., Julve, M., Lloret, F. & Wang, J.-T. (2001). Inorg. Chem. 40, 3619-3622.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C13H19N2O)2(N3)2]

  • Mr = 649.74

  • Monoclinic, P 21 /c

  • a = 9.6558 (3) Å

  • b = 15.3021 (5) Å

  • c = 10.6549 (3) Å

  • β = 115.174 (1)°

  • V = 1424.78 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.27 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.656, Tmax = 0.682

  • 8486 measured reflections

  • 3205 independent reflections

  • 2700 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.05

  • 3205 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.8786 (13)
Cu1—N1 1.9604 (14)
Cu1—N3 2.0067 (15)
Cu1—N2 2.0369 (14)
Cu1—N3i 2.4175 (16)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.91 2.45 3.293 (2) 155
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polynuclear complexes containing bridging groups are of great interest because of their versatile molecular structures and applications (Massoud et al., 2007; Lisnard et al., 2007; Sarkar et al., 2004). In the last few years chemists have dedicated their efforts to the study of molecular-based magnetic materials. One strategy for the design of molecular based magnets involves assembling of paramagnetic metal ions in one-, two- and three-dimensional networks using suitable bridging ligands (Escuer & Aromí, 2006; Goher et al., 2001; Colacio et al., 2005; Sailaja et al., 2003). The azide ligands have been widely used because of their diverse binding modes that yield different types of molecules such as dimmers, tetramers, one-, two-, or three-dimensional arrays (Cheng et al., 2006; Meyer et al., 2005; Sharma, 1990; Ko et al., 2006; Escuer et al., 1998). In the present work, the title new end-on azido-bridged dinuclear copper(II) complex, (I), containing the deprotonated form of 2-[1-(2-isopropylaminoethylimino)ethyl]phenol), HL, has been prepared and structural characterized.

The structure of the complex is shown in Fig. 1. There are two unique units [CuL] linked by double end-on azido bridging groups with an inversion center at the midpoint of the two Cu atoms. Each Cu atom in the complex is in a square pyramidal environment consisting of the NNO donor set from one Schiff base ligand and two N atoms from two bridging azido groups. The Cu···Cu distance is 3.236 (1) Å. The Cu—O and Cu—N bond lengths are comparable to the corresponding values observed in other similar copper(II) complexes with azido bridges (Triki et al., 2005; Gao et al., 2005; Zhang et al., 2001). There are two N—H···O hydrogen bonds (Table 1) between the two symmetry-related two CuL units (Fig. 2).

Related literature top

For background to polynuclear complexes, see: Massoud et al. (2007); Lisnard et al. (2007); Sarkar et al. (2004); Escuer & Aromí (2006); Goher et al. (2001); Colacio et al. (2005); Sailaja et al. (2003); Cheng et al. (2006); Meyer et al. (2005); Sharma (1990); Ko et al. (2006); Escuer et al. (1998). For azido-bridged copper(II) complexes, see: Triki et al. (2005); Gao et al. (2005); Zhang et al. (2001).

Experimental top

A mixture of NaN3 (0.065 g, 1 mmol) and Cu(NO3)2.3H2O (0.241 g, 1 mmol) in 50 ml methanol was stirred for half an hour with heating, then HL (0.220 g, 1 mmol) was added to the solution and the reaction continued to stirred for 1 h. After filtration, the blue filtrate was allowed to stand at room temperature for a week to deposit blue blocks of (I) in 54% yield.

Refinement top

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H = 0.93-0.98 Å, N—H = 0.91 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Structure description top

Polynuclear complexes containing bridging groups are of great interest because of their versatile molecular structures and applications (Massoud et al., 2007; Lisnard et al., 2007; Sarkar et al., 2004). In the last few years chemists have dedicated their efforts to the study of molecular-based magnetic materials. One strategy for the design of molecular based magnets involves assembling of paramagnetic metal ions in one-, two- and three-dimensional networks using suitable bridging ligands (Escuer & Aromí, 2006; Goher et al., 2001; Colacio et al., 2005; Sailaja et al., 2003). The azide ligands have been widely used because of their diverse binding modes that yield different types of molecules such as dimmers, tetramers, one-, two-, or three-dimensional arrays (Cheng et al., 2006; Meyer et al., 2005; Sharma, 1990; Ko et al., 2006; Escuer et al., 1998). In the present work, the title new end-on azido-bridged dinuclear copper(II) complex, (I), containing the deprotonated form of 2-[1-(2-isopropylaminoethylimino)ethyl]phenol), HL, has been prepared and structural characterized.

The structure of the complex is shown in Fig. 1. There are two unique units [CuL] linked by double end-on azido bridging groups with an inversion center at the midpoint of the two Cu atoms. Each Cu atom in the complex is in a square pyramidal environment consisting of the NNO donor set from one Schiff base ligand and two N atoms from two bridging azido groups. The Cu···Cu distance is 3.236 (1) Å. The Cu—O and Cu—N bond lengths are comparable to the corresponding values observed in other similar copper(II) complexes with azido bridges (Triki et al., 2005; Gao et al., 2005; Zhang et al., 2001). There are two N—H···O hydrogen bonds (Table 1) between the two symmetry-related two CuL units (Fig. 2).

For background to polynuclear complexes, see: Massoud et al. (2007); Lisnard et al. (2007); Sarkar et al. (2004); Escuer & Aromí (2006); Goher et al. (2001); Colacio et al. (2005); Sailaja et al. (2003); Cheng et al. (2006); Meyer et al. (2005); Sharma (1990); Ko et al. (2006); Escuer et al. (1998). For azido-bridged copper(II) complexes, see: Triki et al. (2005); Gao et al. (2005); Zhang et al. (2001).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. The dashed lines indicate the N—H···O hydrogen bonds. Unlabelled atoms are generated by (1–x, –y, 1–z).
[Figure 2] Fig. 2. The packing diagram for (I).
Di-µ1,1-azido-bis[(2-{1-[2- (isopropylamino)ethylimino]ethyl}phenolato)copper(II)] top
Crystal data top
[Cu2(C13H19N2O)2(N3)2]F(000) = 676
Mr = 649.74Dx = 1.515 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4033 reflections
a = 9.6558 (3) Åθ = 2.5–28.4°
b = 15.3021 (5) ŵ = 1.54 mm1
c = 10.6549 (3) ÅT = 298 K
β = 115.174 (1)°Block, blue
V = 1424.78 (8) Å30.30 × 0.28 × 0.27 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
3205 independent reflections
Radiation source: fine-focus sealed tube2700 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.656, Tmax = 0.682k = 1915
8486 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.2887P]
where P = (Fo2 + 2Fc2)/3
3205 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu2(C13H19N2O)2(N3)2]V = 1424.78 (8) Å3
Mr = 649.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.6558 (3) ŵ = 1.54 mm1
b = 15.3021 (5) ÅT = 298 K
c = 10.6549 (3) Å0.30 × 0.28 × 0.27 mm
β = 115.174 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3205 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2700 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.682Rint = 0.022
8486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
3205 reflectionsΔρmin = 0.33 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.59044 (2)0.085868 (13)0.58341 (2)0.02936 (8)
N10.79784 (16)0.13417 (9)0.67367 (16)0.0338 (3)
N20.58778 (17)0.13250 (10)0.40334 (15)0.0342 (3)
H2A0.54300.09050.33800.041*
N30.36638 (17)0.05814 (10)0.48628 (16)0.0365 (3)
N40.27481 (17)0.08176 (10)0.52619 (17)0.0381 (4)
N50.1825 (3)0.10262 (14)0.5608 (3)0.0738 (7)
O10.59002 (15)0.04762 (10)0.75079 (13)0.0455 (3)
C10.7028 (2)0.05405 (13)0.87468 (19)0.0389 (4)
C20.6797 (3)0.01235 (15)0.9831 (2)0.0524 (5)
H20.58970.01880.96150.063*
C30.7854 (3)0.01630 (16)1.1183 (2)0.0628 (7)
H30.76620.01101.18730.075*
C40.9211 (4)0.06119 (17)1.1520 (2)0.0704 (8)
H40.99340.06431.24370.084*
C50.9482 (3)0.10079 (15)1.0498 (2)0.0559 (6)
H51.04080.12971.07410.067*
C60.8418 (2)0.09990 (12)0.9086 (2)0.0386 (4)
C70.8821 (2)0.14202 (12)0.8055 (2)0.0373 (4)
C81.0266 (2)0.19634 (16)0.8554 (3)0.0606 (6)
H8A1.11150.15960.86630.091*
H8B1.04490.22270.94290.091*
H8C1.01500.24120.78870.091*
C90.8460 (2)0.17343 (14)0.5724 (2)0.0443 (5)
H9A0.95380.16200.59960.053*
H9B0.83100.23620.56910.053*
C100.7519 (2)0.13412 (13)0.4315 (2)0.0433 (5)
H10A0.76520.16830.36080.052*
H10B0.78680.07510.42830.052*
C110.5038 (2)0.21591 (13)0.3447 (2)0.0434 (5)
H110.56000.24790.30140.052*
C120.4930 (3)0.27349 (15)0.4550 (3)0.0587 (6)
H12A0.43410.24440.49590.088*
H12B0.44420.32750.41410.088*
H12C0.59390.28520.52530.088*
C130.3461 (3)0.19476 (17)0.2336 (2)0.0636 (6)
H13A0.35550.15800.16460.095*
H13B0.29480.24790.19110.095*
H13C0.28800.16490.27450.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02708 (12)0.03103 (13)0.03107 (13)0.00587 (8)0.01341 (9)0.00101 (9)
N10.0281 (7)0.0312 (8)0.0426 (9)0.0043 (6)0.0154 (7)0.0021 (7)
N20.0403 (8)0.0307 (8)0.0337 (8)0.0058 (6)0.0177 (7)0.0011 (6)
N30.0299 (8)0.0390 (8)0.0417 (9)0.0062 (6)0.0163 (7)0.0048 (7)
N40.0319 (8)0.0322 (8)0.0478 (9)0.0015 (6)0.0147 (7)0.0014 (7)
N50.0586 (13)0.0661 (14)0.117 (2)0.0054 (10)0.0569 (14)0.0125 (13)
O10.0376 (7)0.0671 (9)0.0331 (7)0.0116 (7)0.0163 (6)0.0023 (7)
C10.0445 (10)0.0405 (10)0.0342 (10)0.0072 (8)0.0194 (8)0.0030 (8)
C20.0688 (14)0.0548 (13)0.0416 (12)0.0089 (11)0.0312 (11)0.0021 (10)
C30.098 (2)0.0558 (14)0.0383 (12)0.0221 (14)0.0321 (13)0.0041 (11)
C40.096 (2)0.0579 (15)0.0327 (12)0.0248 (15)0.0037 (12)0.0022 (11)
C50.0571 (13)0.0470 (13)0.0443 (12)0.0090 (10)0.0031 (10)0.0091 (10)
C60.0387 (10)0.0325 (10)0.0367 (10)0.0073 (8)0.0085 (8)0.0078 (8)
C70.0292 (9)0.0293 (9)0.0470 (11)0.0014 (7)0.0100 (8)0.0078 (8)
C80.0366 (11)0.0606 (15)0.0692 (15)0.0137 (10)0.0077 (10)0.0124 (13)
C90.0340 (10)0.0451 (11)0.0589 (13)0.0066 (8)0.0248 (9)0.0039 (10)
C100.0486 (11)0.0415 (11)0.0541 (12)0.0014 (9)0.0356 (10)0.0051 (9)
C110.0492 (11)0.0359 (10)0.0447 (11)0.0013 (8)0.0195 (9)0.0110 (9)
C120.0685 (15)0.0389 (12)0.0668 (15)0.0079 (11)0.0272 (13)0.0025 (11)
C130.0588 (14)0.0623 (16)0.0517 (14)0.0021 (12)0.0062 (11)0.0125 (12)
Geometric parameters (Å, º) top
Cu1—O11.8786 (13)C5—C61.416 (3)
Cu1—N11.9604 (14)C5—H50.9300
Cu1—N32.0067 (15)C6—C71.462 (3)
Cu1—N22.0369 (14)C7—C81.513 (3)
Cu1—N3i2.4175 (16)C8—H8A0.9600
N1—C71.295 (2)C8—H8B0.9600
N1—C91.473 (2)C8—H8C0.9600
N2—C101.482 (2)C9—C101.510 (3)
N2—C111.499 (2)C9—H9A0.9700
N2—H2A0.9100C9—H9B0.9700
N3—N41.189 (2)C10—H10A0.9700
N3—Cu1i2.4175 (16)C10—H10B0.9700
N4—N51.145 (2)C11—C121.507 (3)
O1—C11.310 (2)C11—C131.514 (3)
C1—C21.417 (3)C11—H110.9800
C1—C61.418 (3)C12—H12A0.9600
C2—C31.368 (3)C12—H12B0.9600
C2—H20.9300C12—H12C0.9600
C3—C41.384 (4)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.364 (4)C13—H13C0.9600
C4—H40.9300
O1—Cu1—N193.78 (6)C1—C6—C7123.53 (17)
O1—Cu1—N389.23 (6)N1—C7—C6121.92 (16)
N1—Cu1—N3170.06 (6)N1—C7—C8119.49 (18)
O1—Cu1—N2177.52 (6)C6—C7—C8118.59 (18)
N1—Cu1—N286.04 (6)C7—C8—H8A109.5
N3—Cu1—N290.54 (6)C7—C8—H8B109.5
O1—Cu1—N3i94.47 (6)H8A—C8—H8B109.5
N1—Cu1—N3i102.75 (5)C7—C8—H8C109.5
N3—Cu1—N3i86.43 (6)H8A—C8—H8C109.5
N2—Cu1—N3i87.98 (6)H8B—C8—H8C109.5
C7—N1—C9120.54 (15)N1—C9—C10108.74 (15)
C7—N1—Cu1127.34 (13)N1—C9—H9A109.9
C9—N1—Cu1111.69 (12)C10—C9—H9A109.9
C10—N2—C11114.37 (14)N1—C9—H9B109.9
C10—N2—Cu1103.35 (11)C10—C9—H9B109.9
C11—N2—Cu1118.59 (11)H9A—C9—H9B108.3
C10—N2—H2A106.6N2—C10—C9110.37 (15)
C11—N2—H2A106.6N2—C10—H10A109.6
Cu1—N2—H2A106.6C9—C10—H10A109.6
N4—N3—Cu1123.64 (13)N2—C10—H10B109.6
N4—N3—Cu1i129.69 (12)C9—C10—H10B109.6
Cu1—N3—Cu1i93.57 (6)H10A—C10—H10B108.1
N5—N4—N3177.4 (2)N2—C11—C12112.19 (16)
C1—O1—Cu1126.66 (12)N2—C11—C13109.26 (17)
O1—C1—C2115.87 (18)C12—C11—C13110.81 (19)
O1—C1—C6125.78 (17)N2—C11—H11108.2
C2—C1—C6118.34 (19)C12—C11—H11108.2
C3—C2—C1122.2 (2)C13—C11—H11108.2
C3—C2—H2118.9C11—C12—H12A109.5
C1—C2—H2118.9C11—C12—H12B109.5
C2—C3—C4119.6 (2)H12A—C12—H12B109.5
C2—C3—H3120.2C11—C12—H12C109.5
C4—C3—H3120.2H12A—C12—H12C109.5
C5—C4—C3119.7 (2)H12B—C12—H12C109.5
C5—C4—H4120.2C11—C13—H13A109.5
C3—C4—H4120.2C11—C13—H13B109.5
C4—C5—C6123.0 (2)H13A—C13—H13B109.5
C4—C5—H5118.5C11—C13—H13C109.5
C6—C5—H5118.5H13A—C13—H13C109.5
C5—C6—C1117.1 (2)H13B—C13—H13C109.5
C5—C6—C7119.31 (19)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.912.453.293 (2)155
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C13H19N2O)2(N3)2]
Mr649.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.6558 (3), 15.3021 (5), 10.6549 (3)
β (°) 115.174 (1)
V3)1424.78 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.30 × 0.28 × 0.27
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.656, 0.682
No. of measured, independent and
observed [I > 2σ(I)] reflections
8486, 3205, 2700
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.05
No. of reflections3205
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.33

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.8786 (13)Cu1—N22.0369 (14)
Cu1—N11.9604 (14)Cu1—N3i2.4175 (16)
Cu1—N32.0067 (15)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.912.453.293 (2)155
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The author acknowledges a research grant from Xiangnan University.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, K., Zhu, H.-L. & Gao, Y.-H. (2006). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 36, 477–480.  CAS Google Scholar
First citationColacio, E., Costes, J.-P., Domínguez-Vera, J. M., Maimoun, I. B. & Suárez-Varela, J. (2005). Chem. Commun. pp. 534–536.  Web of Science CSD CrossRef Google Scholar
First citationEscuer, A. & Aromí, G. (2006). Eur. J. Inorg. Chem. pp. 4721–4736.  Web of Science CrossRef Google Scholar
First citationEscuer, A., Vicente, R., Goher, M. A. S. & Mautner, F. A. (1998). Inorg. Chem. 37, 782–787.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z. & Yan, C.-H. (2005). Cryst. Growth Des. 5, 1119–1124.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoher, M. A. S., Escuer, A., Mautner, F. A. & Al-Salem, N. A. (2001). Polyhedron, 20, 2971–2977.  Web of Science CSD CrossRef CAS Google Scholar
First citationKo, H. H., Lim, J. H., Kim, H. C. & Hong, C. S. (2006). Inorg. Chem. 45, 8847–8849.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLisnard, L., Mialane, P., Dolbecq, A., Marrot, J., Clemente-Juan, J. M., Coronado, E., Keita, B., de Oliveira, P., Nadjo, L. & Sécheresse, F. (2007). Chem. Eur. J. 13, 3525–3536.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMassoud, S. S., Mautner, F. A., Vicente, R., Gallo, A. A. & Ducasse, E. (2007). Eur. J. Inorg. Chem. pp. 1091–1102.  Web of Science CSD CrossRef Google Scholar
First citationMeyer, F., Demeshko, S., Leibeling, G., Kersting, B., Kaifer, E. & Pritzkow, H. (2005). Chem. Eur. J. 11, 1518–1526.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSailaja, S., Reddy, K. R., Rajasekharan, M. V., Hureau, C., Riviŕe, E., Cano, J. & Girerd, J.-J. (2003). Inorg. Chem. 42, 180–186.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSarkar, S., Mondal, A., Ribas, J., Drew, M. G. B., Pramanik, K. & Rajak, K. K. (2004). Eur. J. Inorg. Chem. pp. 4633–4639.  Web of Science CSD CrossRef Google Scholar
First citationSharma, S. B. (1990). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 20, 223–241.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTriki, S., Gómez-García, C. J., Ruiz, E. & Sala-Pala, J. (2005). Inorg. Chem. 44, 5501–5508.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, L., Tang, L.-F., Wang, Z.-H., Du, M., Julve, M., Lloret, F. & Wang, J.-T. (2001). Inorg. Chem. 40, 3619–3622.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds