organic compounds
Redetermnation of lagochiline monohydrate
aNational University of Uzbekistan, The Faculty of Chemistry, Vuzgorodok 174, Tashkent 100174, Uzbekistan, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H. Abdullaev Str. 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: l_izotova@yahoo.com
In the title compound, C20H36O5·H2O, previously studied by film methods [Vorontsova et al. (1975). Izvest. USSR Ser. Chem. 2, 338–343], the H atoms have been located and the (seven stereogenic centres) established. An intramolecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, molecules are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network.
Related literature
For biological and medicinal background to lagochiline [systematic name (6S,2R)-2,12-bis(hydroxymethyl)-12-(2-hydroxyethyl)-2,6,8-trimethylspiro[bicyclo[4.4.0]decane-7,5′-oxolane]-3-ol, see: Abramov et al. (1958); Akopov & Ibragimov (1961); Islamov et al. (1990); Izotova et al. (1997). For the previous see: Vorontsova et al. (1975). For ring conformations, see: Evans & Boeyens (1989).
Experimental
Crystal data
|
Data collection
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810017800/hb5443sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810017800/hb5443Isup2.hkl
The extracting of the lagochiline was preformed according to the method in Abramov et al. (1958). Colourless needles of (I) were grown by slow evaporation of a solution in acetone.
H-atoms bonded to carbon were positioned geometrically and refined using a riding model, with Uiso(H)=1.2 or 1.5 times Ueq(C). The positions of the hydrogen atoms at the hydroxyl groups of the lagochiline molecule and water have been gained from the difference Fourier map
Lagochiline (I, scheme) is a biologically active diterpenoid isolated from plants of the Lagochilus kind (Abramov et al., 1958). It can be used as starting materials for preparing of the important medicinal substances, in particular as high effective hemostatic drug lagochiline (Akopov & Ibragimov,1961) and its synthetic derivative lagodene (Islamov et al., 1990). Lagochiline may be obtained in two crystal forms: as monohydrate at ambient conditions and as anhydrate by crystallization at high temperatures (Izotova et al.,1997). The
of the monohydrate form has been solved 35 years ago (Vorontsova et al., 1975). In this study we report improved structure of the lagochiline monohydrate. Six-membered rings A and B are slightly distorted from the chair form and trans-conjugated, while five-membered ring C is in the half-chair conformation (Evans & Boeyens, 1989).The molecule I has following 7 asymmetric atoms - C3, C4, C5, C8, C9, C10, C13. The value of the Flack parameters 0.2 (2) (Flack, 1983) allows to establish the of the asymmetric centers as: C(3)—S, C(4)—R, C(5)—S, C(8)—R, C(9)—R, C(10)—S, C(13)—S (Spek, 2009). Lagochiline molecule has intramolecular H-bond [H···O 1.87 (4) Å] between O(4)—H and O(5) atoms (Table). Four hydroxyl groups of the molecule (Fig.1), showing protonodonor as well protonoacceptor properties, are involved in the formation of the complicated system of the intermolecular H-bonds in the crystalline state (Table). The water molecule is H-bonded to three molecules of lagochiline: as acceptor (O5—H···O1W) and twice as donors (O1W—H···O4, O1W—H···O3) of protons. In result, three molecules of lagochiline and one water molecule form two-dimensional sheet parallel to the [010]. These sheets are sewed one with another via H-bonds O(3)—H···O(2) and O(2)—H···O(3) into three-dimensional network.(Table)(Fig.2)For biological and medicinal background to lagochiline [systematic name (6S,2R)-2,12-bis(hydroxymethyl)-12-(2-hydroxyethyl)-2,6,8-trimethylspiro[bicyclo[4.4.0]decane-7,5'-oxolane]-3-ol, see: Abramov et al. (1958); Akopov & Ibragimov (1961); Islamov et al. (1990); Izotova et al. (1997). For the previous
see: Vorontsova et al. (1975). For ring conformations, see: Evans & Boeyens (1989).Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. Perspective view of the title compound, showing 30% probability displacement ellipsoids for the non-H atoms. Dashed lines represent hydrogen bonds. | |
Fig. 2. Packing diagram of the title compound (I) viewed down the a axis. H atoms have been ommited for clarity. Hydrogen bonds are shown as dashed lines |
C20H36O5·H2O | F(000) = 824 |
Mr = 374.50 | Dx = 1.193 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1210 reflections |
a = 7.28495 (14) Å | θ = 3.5–72.7° |
b = 12.5933 (3) Å | µ = 0.70 mm−1 |
c = 22.7324 (5) Å | T = 293 K |
V = 2085.51 (7) Å3 | Needle, colourless |
Z = 4 | 0.05 × 0.01 × 0.01 mm |
Oxford Diffraction Xcalibur Ruby diffractometer | 3464 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.036 |
Graphite monochromator | θmax = 75.5°, θmin = 3.9° |
/ω scans | h = −8→5 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | k = −15→9 |
Tmin = 0.899, Tmax = 0.993 | l = −28→27 |
8185 measured reflections | 3 standard reflections every 100 reflections |
4155 independent reflections | intensity decay: 2.6% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0695P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.111 | (Δ/σ)max < 0.001 |
S = 0.98 | Δρmax = 0.31 e Å−3 |
4155 reflections | Δρmin = −0.22 e Å−3 |
258 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0016 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1674 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.2 (2) |
C20H36O5·H2O | V = 2085.51 (7) Å3 |
Mr = 374.50 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 7.28495 (14) Å | µ = 0.70 mm−1 |
b = 12.5933 (3) Å | T = 293 K |
c = 22.7324 (5) Å | 0.05 × 0.01 × 0.01 mm |
Oxford Diffraction Xcalibur Ruby diffractometer | 3464 reflections with I > 2σ(I) |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | Rint = 0.036 |
Tmin = 0.899, Tmax = 0.993 | 3 standard reflections every 100 reflections |
8185 measured reflections | intensity decay: 2.6% |
4155 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.111 | Δρmax = 0.31 e Å−3 |
S = 0.98 | Δρmin = −0.22 e Å−3 |
4155 reflections | Absolute structure: Flack (1983), 1674 Friedel pairs |
258 parameters | Absolute structure parameter: 0.2 (2) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.73266 (16) | 0.98222 (10) | 0.12261 (5) | 0.0312 (3) | |
O2 | 1.0119 (2) | 1.17914 (15) | 0.04457 (8) | 0.0533 (4) | |
O3 | 0.3784 (2) | 1.16130 (15) | 0.02097 (8) | 0.0512 (4) | |
O4 | 0.8884 (3) | 1.03744 (17) | 0.37419 (7) | 0.0586 (5) | |
O5 | 0.5340 (3) | 1.0208 (2) | 0.38640 (8) | 0.0722 (6) | |
C1 | 0.9928 (3) | 0.96481 (16) | 0.21908 (8) | 0.0373 (4) | |
H1A | 1.1088 | 0.9470 | 0.2006 | 0.045* | |
H1B | 0.9504 | 1.0311 | 0.2022 | 0.045* | |
C2 | 1.0239 (3) | 0.98044 (17) | 0.28469 (8) | 0.0402 (4) | |
H2B | 1.0692 | 0.9150 | 0.3019 | 0.048* | |
H2C | 1.1154 | 1.0353 | 0.2909 | 0.048* | |
C3 | 0.8467 (3) | 1.01203 (16) | 0.31406 (8) | 0.0389 (4) | |
H3B | 0.8025 | 1.0769 | 0.2950 | 0.047* | |
C4 | 0.6962 (3) | 0.92706 (16) | 0.30779 (8) | 0.0387 (4) | |
C6 | 0.5214 (3) | 0.82102 (19) | 0.22804 (10) | 0.0495 (5) | |
H5B | 0.5608 | 0.7516 | 0.2415 | 0.059* | |
H5C | 0.4112 | 0.8402 | 0.2495 | 0.059* | |
C7 | 0.4793 (3) | 0.81639 (19) | 0.16225 (10) | 0.0525 (5) | |
H6A | 0.3889 | 0.7613 | 0.1551 | 0.063* | |
H6B | 0.4264 | 0.8835 | 0.1500 | 0.063* | |
C8 | 0.6494 (3) | 0.79387 (16) | 0.12516 (10) | 0.0473 (5) | |
H7A | 0.6976 | 0.7249 | 0.1378 | 0.057* | |
C9 | 0.8019 (3) | 0.87750 (15) | 0.13720 (8) | 0.0355 (4) | |
C10 | 0.8523 (3) | 0.87711 (14) | 0.20524 (8) | 0.0336 (4) | |
C5 | 0.6724 (3) | 0.90276 (14) | 0.24047 (8) | 0.0338 (4) | |
H10A | 0.6268 | 0.9692 | 0.2234 | 0.041* | |
C11 | 0.9684 (3) | 0.86188 (17) | 0.09623 (9) | 0.0451 (5) | |
H11A | 1.0817 | 0.8789 | 0.1166 | 0.054* | |
H11B | 0.9748 | 0.7891 | 0.0824 | 0.054* | |
C12 | 0.9369 (3) | 0.93826 (18) | 0.04478 (9) | 0.0453 (5) | |
H12A | 0.8718 | 0.9033 | 0.0130 | 0.054* | |
H12B | 1.0524 | 0.9656 | 0.0299 | 0.054* | |
C13 | 0.8204 (3) | 1.02751 (15) | 0.07156 (7) | 0.0336 (4) | |
C14 | 0.6692 (3) | 1.06778 (16) | 0.03011 (8) | 0.0369 (4) | |
H14A | 0.7257 | 1.1085 | −0.0013 | 0.044* | |
H14B | 0.6087 | 1.0071 | 0.0123 | 0.044* | |
C15 | 0.5266 (3) | 1.1358 (2) | 0.05985 (9) | 0.0508 (5) | |
H15A | 0.4788 | 1.0985 | 0.0939 | 0.061* | |
H15B | 0.5835 | 1.2010 | 0.0735 | 0.061* | |
C16 | 0.9416 (3) | 1.11968 (17) | 0.09280 (9) | 0.0403 (4) | |
H16A | 0.8700 | 1.1660 | 0.1180 | 0.048* | |
H16B | 1.0428 | 1.0917 | 0.1158 | 0.048* | |
C17 | 0.5903 (5) | 0.7817 (2) | 0.06070 (12) | 0.0669 (7) | |
H17A | 0.4957 | 0.7289 | 0.0579 | 0.100* | |
H17B | 0.6938 | 0.7602 | 0.0374 | 0.100* | |
H17C | 0.5444 | 0.8483 | 0.0464 | 0.100* | |
C18 | 0.5140 (3) | 0.9768 (2) | 0.32897 (10) | 0.0543 (5) | |
H18A | 0.4766 | 1.0320 | 0.3018 | 0.065* | |
H18B | 0.4190 | 0.9228 | 0.3295 | 0.065* | |
C19 | 0.7368 (4) | 0.8292 (2) | 0.34618 (10) | 0.0564 (6) | |
H19A | 0.7492 | 0.8508 | 0.3865 | 0.085* | |
H19B | 0.8488 | 0.7965 | 0.3333 | 0.085* | |
H19C | 0.6378 | 0.7793 | 0.3427 | 0.085* | |
C20 | 0.9383 (3) | 0.76842 (17) | 0.22045 (11) | 0.0516 (6) | |
H20A | 0.9698 | 0.7668 | 0.2614 | 0.077* | |
H20B | 1.0470 | 0.7580 | 0.1973 | 0.077* | |
H20C | 0.8517 | 0.7130 | 0.2121 | 0.077* | |
H2O | 1.112 (5) | 1.176 (2) | 0.0410 (13) | 0.052 (8)* | |
H3O | 0.415 (4) | 1.202 (2) | 0.0029 (13) | 0.044 (7)* | |
H4O | 0.789 (5) | 1.038 (3) | 0.3905 (14) | 0.065 (9)* | |
H5O | 0.443 (7) | 1.011 (4) | 0.4031 (18) | 0.103 (15)* | |
O1W | 0.2045 (3) | 1.0041 (3) | 0.43526 (9) | 0.1024 (11) | |
H1W | 0.195 (7) | 0.939 (4) | 0.459 (2) | 0.123* | |
H2W | 0.099 (8) | 0.999 (4) | 0.412 (2) | 0.123* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0317 (6) | 0.0317 (6) | 0.0301 (5) | 0.0050 (5) | 0.0028 (5) | 0.0027 (5) |
O2 | 0.0319 (8) | 0.0696 (10) | 0.0584 (9) | −0.0018 (7) | 0.0029 (7) | 0.0311 (8) |
O3 | 0.0348 (7) | 0.0619 (10) | 0.0569 (9) | 0.0052 (7) | 0.0039 (7) | 0.0269 (8) |
O4 | 0.0480 (9) | 0.0895 (13) | 0.0381 (8) | −0.0059 (8) | −0.0057 (7) | −0.0100 (8) |
O5 | 0.0485 (10) | 0.1158 (17) | 0.0522 (9) | −0.0073 (11) | 0.0150 (8) | −0.0232 (11) |
C1 | 0.0300 (8) | 0.0431 (9) | 0.0390 (9) | −0.0009 (8) | 0.0012 (8) | 0.0070 (8) |
C2 | 0.0329 (9) | 0.0469 (10) | 0.0407 (9) | −0.0035 (8) | −0.0050 (8) | 0.0078 (8) |
C3 | 0.0391 (10) | 0.0444 (10) | 0.0332 (8) | 0.0022 (8) | −0.0061 (7) | 0.0019 (7) |
C4 | 0.0351 (9) | 0.0455 (10) | 0.0354 (9) | −0.0002 (8) | 0.0015 (8) | 0.0064 (8) |
C6 | 0.0455 (11) | 0.0516 (11) | 0.0515 (11) | −0.0167 (10) | 0.0020 (10) | 0.0032 (10) |
C7 | 0.0499 (13) | 0.0519 (11) | 0.0557 (13) | −0.0209 (10) | −0.0035 (11) | −0.0052 (10) |
C8 | 0.0576 (13) | 0.0356 (10) | 0.0486 (11) | −0.0041 (9) | −0.0036 (10) | −0.0061 (8) |
C9 | 0.0377 (9) | 0.0311 (8) | 0.0378 (9) | 0.0071 (7) | −0.0005 (7) | 0.0001 (7) |
C10 | 0.0355 (9) | 0.0282 (8) | 0.0372 (9) | 0.0053 (7) | 0.0011 (7) | 0.0048 (7) |
C5 | 0.0337 (9) | 0.0324 (8) | 0.0352 (8) | −0.0015 (7) | −0.0021 (7) | 0.0068 (7) |
C11 | 0.0489 (12) | 0.0437 (10) | 0.0426 (10) | 0.0164 (9) | 0.0054 (9) | −0.0039 (8) |
C12 | 0.0468 (11) | 0.0524 (11) | 0.0368 (9) | 0.0135 (9) | 0.0084 (8) | −0.0008 (9) |
C13 | 0.0329 (8) | 0.0395 (9) | 0.0284 (8) | 0.0046 (8) | 0.0030 (7) | 0.0032 (7) |
C14 | 0.0365 (10) | 0.0444 (9) | 0.0297 (8) | 0.0017 (8) | −0.0011 (7) | 0.0026 (7) |
C15 | 0.0469 (11) | 0.0659 (13) | 0.0396 (10) | 0.0200 (11) | 0.0006 (9) | 0.0080 (10) |
C16 | 0.0348 (10) | 0.0479 (10) | 0.0382 (9) | −0.0012 (8) | 0.0010 (7) | 0.0109 (8) |
C17 | 0.0856 (19) | 0.0593 (14) | 0.0558 (14) | −0.0175 (14) | −0.0086 (13) | −0.0154 (12) |
C18 | 0.0393 (11) | 0.0784 (15) | 0.0453 (10) | −0.0003 (11) | 0.0036 (9) | −0.0044 (11) |
C19 | 0.0661 (15) | 0.0584 (13) | 0.0447 (11) | −0.0082 (12) | 0.0003 (11) | 0.0210 (11) |
C20 | 0.0593 (14) | 0.0355 (10) | 0.0600 (13) | 0.0172 (9) | −0.0007 (11) | 0.0073 (9) |
O1W | 0.0453 (10) | 0.200 (3) | 0.0617 (12) | −0.0183 (15) | −0.0003 (9) | 0.0361 (17) |
O1—C13 | 1.442 (2) | C9—C10 | 1.590 (3) |
O1—C9 | 1.450 (2) | C10—C20 | 1.545 (2) |
O2—C16 | 1.423 (2) | C10—C5 | 1.569 (3) |
O2—H2O | 0.74 (3) | C5—H10A | 0.9800 |
O3—C15 | 1.432 (3) | C11—C12 | 1.532 (3) |
O3—H3O | 0.71 (3) | C11—H11A | 0.9700 |
O4—C3 | 1.436 (2) | C11—H11B | 0.9700 |
O4—H4O | 0.81 (4) | C12—C13 | 1.534 (3) |
O5—C18 | 1.426 (3) | C12—H12A | 0.9700 |
O5—H5O | 0.77 (5) | C12—H12B | 0.9700 |
C1—C2 | 1.521 (3) | C13—C14 | 1.536 (3) |
C1—C10 | 1.538 (3) | C13—C16 | 1.536 (3) |
C1—H1A | 0.9700 | C14—C15 | 1.507 (3) |
C1—H1B | 0.9700 | C14—H14A | 0.9700 |
C2—C3 | 1.507 (3) | C14—H14B | 0.9700 |
C2—H2B | 0.9700 | C15—H15A | 0.9700 |
C2—H2C | 0.9700 | C15—H15B | 0.9700 |
C3—C4 | 1.539 (3) | C16—H16A | 0.9700 |
C3—H3B | 0.9800 | C16—H16B | 0.9700 |
C4—C19 | 1.539 (3) | C17—H17A | 0.9600 |
C4—C18 | 1.544 (3) | C17—H17B | 0.9600 |
C4—C5 | 1.570 (3) | C17—H17C | 0.9600 |
C6—C7 | 1.528 (3) | C18—H18A | 0.9700 |
C6—C5 | 1.533 (3) | C18—H18B | 0.9700 |
C6—H5B | 0.9700 | C19—H19A | 0.9600 |
C6—H5C | 0.9700 | C19—H19B | 0.9600 |
C7—C8 | 1.526 (3) | C19—H19C | 0.9600 |
C7—H6A | 0.9700 | C20—H20A | 0.9600 |
C7—H6B | 0.9700 | C20—H20B | 0.9600 |
C8—C17 | 1.535 (3) | C20—H20C | 0.9600 |
C8—C9 | 1.555 (3) | O1W—H1W | 0.98 (5) |
C8—H7A | 0.9800 | O1W—H2W | 0.94 (5) |
C9—C11 | 1.542 (3) | ||
C13—O1—C9 | 112.92 (13) | C10—C5—H10A | 104.9 |
C16—O2—H2O | 114 (2) | C4—C5—H10A | 104.9 |
C15—O3—H3O | 103 (2) | C12—C11—C9 | 105.25 (16) |
C3—O4—H4O | 104 (2) | C12—C11—H11A | 110.7 |
C18—O5—H5O | 108 (3) | C9—C11—H11A | 110.7 |
C2—C1—C10 | 113.10 (15) | C12—C11—H11B | 110.7 |
C2—C1—H1A | 109.0 | C9—C11—H11B | 110.7 |
C10—C1—H1A | 109.0 | H11A—C11—H11B | 108.8 |
C2—C1—H1B | 109.0 | C11—C12—C13 | 103.90 (15) |
C10—C1—H1B | 109.0 | C11—C12—H12A | 111.0 |
H1A—C1—H1B | 107.8 | C13—C12—H12A | 111.0 |
C3—C2—C1 | 109.95 (15) | C11—C12—H12B | 111.0 |
C3—C2—H2B | 109.7 | C13—C12—H12B | 111.0 |
C1—C2—H2B | 109.7 | H12A—C12—H12B | 109.0 |
C3—C2—H2C | 109.7 | O1—C13—C12 | 105.94 (15) |
C1—C2—H2C | 109.7 | O1—C13—C14 | 107.83 (14) |
H2B—C2—H2C | 108.2 | C12—C13—C14 | 113.27 (16) |
O4—C3—C2 | 107.42 (16) | O1—C13—C16 | 107.50 (14) |
O4—C3—C4 | 113.20 (17) | C12—C13—C16 | 111.15 (17) |
C2—C3—C4 | 112.69 (17) | C14—C13—C16 | 110.82 (16) |
O4—C3—H3B | 107.8 | C15—C14—C13 | 114.03 (15) |
C2—C3—H3B | 107.8 | C15—C14—H14A | 108.7 |
C4—C3—H3B | 107.8 | C13—C14—H14A | 108.7 |
C3—C4—C19 | 111.55 (18) | C15—C14—H14B | 108.7 |
C3—C4—C18 | 107.55 (18) | C13—C14—H14B | 108.7 |
C19—C4—C18 | 108.23 (19) | H14A—C14—H14B | 107.6 |
C3—C4—C5 | 107.74 (15) | O3—C15—C14 | 111.75 (18) |
C19—C4—C5 | 114.70 (18) | O3—C15—H15A | 109.3 |
C18—C4—C5 | 106.74 (16) | C14—C15—H15A | 109.3 |
C7—C6—C5 | 110.50 (17) | O3—C15—H15B | 109.3 |
C7—C6—H5B | 109.5 | C14—C15—H15B | 109.3 |
C5—C6—H5B | 109.5 | H15A—C15—H15B | 107.9 |
C7—C6—H5C | 109.5 | O2—C16—C13 | 111.24 (16) |
C5—C6—H5C | 109.5 | O2—C16—H16A | 109.4 |
H5B—C6—H5C | 108.1 | C13—C16—H16A | 109.4 |
C8—C7—C6 | 112.6 (2) | O2—C16—H16B | 109.4 |
C8—C7—H6A | 109.1 | C13—C16—H16B | 109.4 |
C6—C7—H6A | 109.1 | H16A—C16—H16B | 108.0 |
C8—C7—H6B | 109.1 | C8—C17—H17A | 109.5 |
C6—C7—H6B | 109.1 | C8—C17—H17B | 109.5 |
H6A—C7—H6B | 107.8 | H17A—C17—H17B | 109.5 |
C7—C8—C17 | 108.6 (2) | C8—C17—H17C | 109.5 |
C7—C8—C9 | 110.92 (16) | H17A—C17—H17C | 109.5 |
C17—C8—C9 | 115.9 (2) | H17B—C17—H17C | 109.5 |
C7—C8—H7A | 107.0 | O5—C18—C4 | 110.81 (19) |
C17—C8—H7A | 107.0 | O5—C18—H18A | 109.5 |
C9—C8—H7A | 107.0 | C4—C18—H18A | 109.5 |
O1—C9—C11 | 104.56 (15) | O5—C18—H18B | 109.5 |
O1—C9—C8 | 109.09 (15) | C4—C18—H18B | 109.5 |
C11—C9—C8 | 111.67 (17) | H18A—C18—H18B | 108.1 |
O1—C9—C10 | 107.80 (14) | C4—C19—H19A | 109.5 |
C11—C9—C10 | 113.92 (16) | C4—C19—H19B | 109.5 |
C8—C9—C10 | 109.53 (16) | H19A—C19—H19B | 109.5 |
C1—C10—C20 | 108.68 (17) | C4—C19—H19C | 109.5 |
C1—C10—C5 | 107.68 (15) | H19A—C19—H19C | 109.5 |
C20—C10—C5 | 114.02 (16) | H19B—C19—H19C | 109.5 |
C1—C10—C9 | 110.52 (14) | C10—C20—H20A | 109.5 |
C20—C10—C9 | 108.31 (16) | C10—C20—H20B | 109.5 |
C5—C10—C9 | 107.63 (14) | H20A—C20—H20B | 109.5 |
C6—C5—C10 | 111.53 (16) | C10—C20—H20C | 109.5 |
C6—C5—C4 | 112.94 (16) | H20A—C20—H20C | 109.5 |
C10—C5—C4 | 116.43 (15) | H20B—C20—H20C | 109.5 |
C6—C5—H10A | 104.9 | H1W—O1W—H2W | 101 (4) |
C10—C1—C2—C3 | −60.6 (2) | C7—C6—C5—C4 | 169.13 (19) |
C1—C2—C3—O4 | −173.49 (17) | C1—C10—C5—C6 | 178.34 (16) |
C1—C2—C3—C4 | 61.1 (2) | C20—C10—C5—C6 | −61.0 (2) |
O4—C3—C4—C19 | −50.2 (2) | C9—C10—C5—C6 | 59.18 (19) |
C2—C3—C4—C19 | 71.9 (2) | C1—C10—C5—C4 | −50.0 (2) |
O4—C3—C4—C18 | 68.3 (2) | C20—C10—C5—C4 | 70.6 (2) |
C2—C3—C4—C18 | −169.56 (16) | C9—C10—C5—C4 | −169.21 (15) |
O4—C3—C4—C5 | −176.98 (17) | C3—C4—C5—C6 | −178.34 (17) |
C2—C3—C4—C5 | −54.8 (2) | C19—C4—C5—C6 | 56.8 (2) |
C5—C6—C7—C8 | 55.4 (3) | C18—C4—C5—C6 | −63.1 (2) |
C6—C7—C8—C17 | 175.38 (19) | C3—C4—C5—C10 | 50.7 (2) |
C6—C7—C8—C9 | −56.2 (2) | C19—C4—C5—C10 | −74.2 (2) |
C13—O1—C9—C11 | 8.33 (19) | C18—C4—C5—C10 | 165.97 (17) |
C13—O1—C9—C8 | −111.25 (16) | O1—C9—C11—C12 | −22.3 (2) |
C13—O1—C9—C10 | 129.90 (15) | C8—C9—C11—C12 | 95.5 (2) |
C7—C8—C9—O1 | −60.0 (2) | C10—C9—C11—C12 | −139.73 (17) |
C17—C8—C9—O1 | 64.4 (2) | C9—C11—C12—C13 | 27.4 (2) |
C7—C8—C9—C11 | −175.03 (18) | C9—O1—C13—C12 | 9.1 (2) |
C17—C8—C9—C11 | −50.7 (3) | C9—O1—C13—C14 | 130.62 (16) |
C7—C8—C9—C10 | 57.8 (2) | C9—O1—C13—C16 | −109.86 (16) |
C17—C8—C9—C10 | −177.9 (2) | C11—C12—C13—O1 | −22.6 (2) |
C2—C1—C10—C20 | −70.5 (2) | C11—C12—C13—C14 | −140.56 (18) |
C2—C1—C10—C5 | 53.5 (2) | C11—C12—C13—C16 | 93.9 (2) |
C2—C1—C10—C9 | 170.76 (15) | O1—C13—C14—C15 | 49.4 (2) |
O1—C9—C10—C1 | −57.31 (19) | C12—C13—C14—C15 | 166.26 (19) |
C11—C9—C10—C1 | 58.2 (2) | C16—C13—C14—C15 | −68.0 (2) |
C8—C9—C10—C1 | −175.89 (16) | C13—C14—C15—O3 | −173.44 (18) |
O1—C9—C10—C20 | −176.26 (16) | O1—C13—C16—O2 | −171.20 (15) |
C11—C9—C10—C20 | −60.7 (2) | C12—C13—C16—O2 | 73.3 (2) |
C8—C9—C10—C20 | 65.2 (2) | C14—C13—C16—O2 | −53.6 (2) |
O1—C9—C10—C5 | 60.03 (18) | C3—C4—C18—O5 | −53.1 (3) |
C11—C9—C10—C5 | 175.57 (16) | C19—C4—C18—O5 | 67.6 (3) |
C8—C9—C10—C5 | −58.55 (18) | C5—C4—C18—O5 | −168.5 (2) |
C7—C6—C5—C10 | −57.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O5 | 0.81 (4) | 1.87 (4) | 2.605 (3) | 149 (3) |
O5—H5O···O1W | 0.77 (5) | 1.89 (5) | 2.653 (3) | 171 (5) |
O2—H2O···O3i | 0.74 (3) | 2.00 (4) | 2.732 (2) | 173 (3) |
O3—H3O···O2ii | 0.71 (3) | 1.98 (3) | 2.684 (2) | 177 (3) |
O1W—H1W···O3iii | 0.98 (5) | 1.97 (5) | 2.916 (4) | 161 (4) |
O1W—H2W···O4iv | 0.94 (5) | 1.82 (5) | 2.722 (3) | 160 (5) |
Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+5/2, −z; (iii) −x+1/2, −y+2, z+1/2; (iv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C20H36O5·H2O |
Mr | 374.50 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 7.28495 (14), 12.5933 (3), 22.7324 (5) |
V (Å3) | 2085.51 (7) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.70 |
Crystal size (mm) | 0.05 × 0.01 × 0.01 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.899, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8185, 4155, 3464 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.111, 0.98 |
No. of reflections | 4155 |
No. of parameters | 258 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.22 |
Absolute structure | Flack (1983), 1674 Friedel pairs |
Absolute structure parameter | 0.2 (2) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), XP (Siemens, 1994), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O5 | 0.81 (4) | 1.87 (4) | 2.605 (3) | 149 (3) |
O5—H5O···O1W | 0.77 (5) | 1.89 (5) | 2.653 (3) | 171 (5) |
O2—H2O···O3i | 0.74 (3) | 2.00 (4) | 2.732 (2) | 173 (3) |
O3—H3O···O2ii | 0.71 (3) | 1.98 (3) | 2.684 (2) | 177 (3) |
O1W—H1W···O3iii | 0.98 (5) | 1.97 (5) | 2.916 (4) | 161 (4) |
O1W—H2W···O4iv | 0.94 (5) | 1.82 (5) | 2.722 (3) | 160 (5) |
Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+5/2, −z; (iii) −x+1/2, −y+2, z+1/2; (iv) x−1, y, z. |
Acknowledgements
Support of this research by the Uzbek Academy of Sciences (grant Nos. FA-A12-T175 and FA-F3-T141) is gratefully acknowledged
References
Abramov, M. M., Japarova, S. A. & Ikramov, M. I. (1958). Uzb. Biol. Zh. 6, 55–60 Google Scholar
Akopov, I. E. & Ibragimov, I. I. (1961). Pharmacol. Toxicol. 6, 39–40. Google Scholar
Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Islamov, R., Zainutdinov, U. N., Aslanov, Kh. A., Sadykov, A. S., Danil'chuk, D. N., Yankovskiy, B. A. & Zacharov, V. P. (1990). USSR Patent AS 1293990. Google Scholar
Izotova, L. Yu., Beketov, K. M., Talipov, S. A. & Ibragimov, B. T. (1997). Pol. J. Chem. 71, 1037–1044. CAS Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vorontsova, L. G., Tchijov, O. S., Tarnopolsky, B. L. & Andrianov, V. I. (1975). Izv. USSR Ser. Chem. 2, 338–343. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Lagochiline (I, scheme) is a biologically active diterpenoid isolated from plants of the Lagochilus kind (Abramov et al., 1958). It can be used as starting materials for preparing of the important medicinal substances, in particular as high effective hemostatic drug lagochiline (Akopov & Ibragimov,1961) and its synthetic derivative lagodene (Islamov et al., 1990). Lagochiline may be obtained in two crystal forms: as monohydrate at ambient conditions and as anhydrate by crystallization at high temperatures (Izotova et al.,1997). The crystal structure of the monohydrate form has been solved 35 years ago (Vorontsova et al., 1975). In this study we report improved structure of the lagochiline monohydrate. Six-membered rings A and B are slightly distorted from the chair form and trans-conjugated, while five-membered ring C is in the half-chair conformation (Evans & Boeyens, 1989).The molecule I has following 7 asymmetric atoms - C3, C4, C5, C8, C9, C10, C13. The value of the Flack parameters 0.2 (2) (Flack, 1983) allows to establish the absolute configuration of the asymmetric centers as: C(3)—S, C(4)—R, C(5)—S, C(8)—R, C(9)—R, C(10)—S, C(13)—S (Spek, 2009). Lagochiline molecule has intramolecular H-bond [H···O 1.87 (4) Å] between O(4)—H and O(5) atoms (Table). Four hydroxyl groups of the molecule (Fig.1), showing protonodonor as well protonoacceptor properties, are involved in the formation of the complicated system of the intermolecular H-bonds in the crystalline state (Table). The water molecule is H-bonded to three molecules of lagochiline: as acceptor (O5—H···O1W) and twice as donors (O1W—H···O4, O1W—H···O3) of protons. In result, three molecules of lagochiline and one water molecule form two-dimensional sheet parallel to the [010]. These sheets are sewed one with another via H-bonds O(3)—H···O(2) and O(2)—H···O(3) into three-dimensional network.(Table)(Fig.2)