organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermnation of lagochiline monohydrate

aNational University of Uzbekistan, The Faculty of Chemistry, Vuzgorodok 174, Tashkent 100174, Uzbekistan, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H. Abdullaev Str. 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: l_izotova@yahoo.com

(Received 11 May 2010; accepted 14 May 2010; online 19 May 2010)

In the title compound, C20H36O5·H2O, previously studied by film methods [Vorontsova et al. (1975[Vorontsova, L. G., Tchijov, O. S., Tarnopolsky, B. L. & Andrianov, V. I. (1975). Izv. USSR Ser. Chem. 2, 338-343.]). Izvest. USSR Ser. Chem. 2, 338–343], the H atoms have been located and the absolute structure (seven stereogenic centres) established. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For biological and medicinal background to lagochiline [systematic name (6S,2R)-2,12-bis­(hydroxy­meth­yl)-12-(2-hydroxy­ethyl)-2,6,8-trimethyl­spiro­[bicyclo­[4.4.0]decane-7,5′-oxolane]-3-ol, see: Abramov et al. (1958[Abramov, M. M., Japarova, S. A. & Ikramov, M. I. (1958). Uzb. Biol. Zh. 6, 55-60]); Akopov & Ibragimov (1961[Akopov, I. E. & Ibragimov, I. I. (1961). Pharmacol. Toxicol. 6, 39-40.]); Islamov et al. (1990[Islamov, R., Zainutdinov, U. N., Aslanov, Kh. A., Sadykov, A. S., Danil'chuk, D. N., Yankovskiy, B. A. & Zacharov, V. P. (1990). USSR Patent AS 1293990.]); Izotova et al. (1997[Izotova, L. Yu., Beketov, K. M., Talipov, S. A. & Ibragimov, B. T. (1997). Pol. J. Chem. 71, 1037-1044.]). For the previous structure determination, see: Vorontsova et al. (1975[Vorontsova, L. G., Tchijov, O. S., Tarnopolsky, B. L. & Andrianov, V. I. (1975). Izv. USSR Ser. Chem. 2, 338-343.]). For ring conformations, see: Evans & Boeyens (1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]).

[Scheme 1]

Experimental

Crystal data
  • C20H36O5·H2O

  • Mr = 374.50

  • Orthorhombic, P 21 21 21

  • a = 7.28495 (14) Å

  • b = 12.5933 (3) Å

  • c = 22.7324 (5) Å

  • V = 2085.51 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 293 K

  • 0.05 × 0.01 × 0.01 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.899, Tmax = 0.993

  • 8185 measured reflections

  • 4155 independent reflections

  • 3464 reflections with I > 2σ(I)

  • Rint = 0.036

  • 3 standard reflections every 100 reflections intensity decay: 2.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 0.98

  • 4155 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1674 Friedel pairs

  • Flack parameter: 0.2 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O5 0.81 (4) 1.87 (4) 2.605 (3) 149 (3)
O5—H5O⋯O1W 0.77 (5) 1.89 (5) 2.653 (3) 171 (5)
O2—H2O⋯O3i 0.74 (3) 2.00 (4) 2.732 (2) 173 (3)
O3—H3O⋯O2ii 0.71 (3) 1.98 (3) 2.684 (2) 177 (3)
O1W—H1W⋯O3iii 0.98 (5) 1.97 (5) 2.916 (4) 161 (4)
O1W—H2W⋯O4iv 0.94 (5) 1.82 (5) 2.722 (3) 160 (5)
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (iii) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (iv) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Lagochiline (I, scheme) is a biologically active diterpenoid isolated from plants of the Lagochilus kind (Abramov et al., 1958). It can be used as starting materials for preparing of the important medicinal substances, in particular as high effective hemostatic drug lagochiline (Akopov & Ibragimov,1961) and its synthetic derivative lagodene (Islamov et al., 1990). Lagochiline may be obtained in two crystal forms: as monohydrate at ambient conditions and as anhydrate by crystallization at high temperatures (Izotova et al.,1997). The crystal structure of the monohydrate form has been solved 35 years ago (Vorontsova et al., 1975). In this study we report improved structure of the lagochiline monohydrate. Six-membered rings A and B are slightly distorted from the chair form and trans-conjugated, while five-membered ring C is in the half-chair conformation (Evans & Boeyens, 1989).The molecule I has following 7 asymmetric atoms - C3, C4, C5, C8, C9, C10, C13. The value of the Flack parameters 0.2 (2) (Flack, 1983) allows to establish the absolute configuration of the asymmetric centers as: C(3)—S, C(4)—R, C(5)—S, C(8)—R, C(9)—R, C(10)—S, C(13)—S (Spek, 2009). Lagochiline molecule has intramolecular H-bond [H···O 1.87 (4) Å] between O(4)—H and O(5) atoms (Table). Four hydroxyl groups of the molecule (Fig.1), showing protonodonor as well protonoacceptor properties, are involved in the formation of the complicated system of the intermolecular H-bonds in the crystalline state (Table). The water molecule is H-bonded to three molecules of lagochiline: as acceptor (O5—H···O1W) and twice as donors (O1W—H···O4, O1W—H···O3) of protons. In result, three molecules of lagochiline and one water molecule form two-dimensional sheet parallel to the [010]. These sheets are sewed one with another via H-bonds O(3)—H···O(2) and O(2)—H···O(3) into three-dimensional network.(Table)(Fig.2)

Related literature top

For biological and medicinal background to lagochiline [systematic name (6S,2R)-2,12-bis(hydroxymethyl)-12-(2-hydroxyethyl)-2,6,8-trimethylspiro[bicyclo[4.4.0]decane-7,5'-oxolane]-3-ol, see: Abramov et al. (1958); Akopov & Ibragimov (1961); Islamov et al. (1990); Izotova et al. (1997). For the previous structure determination, see: Vorontsova et al. (1975). For ring conformations, see: Evans & Boeyens (1989).

Experimental top

The extracting of the lagochiline was preformed according to the method in Abramov et al. (1958). Colourless needles of (I) were grown by slow evaporation of a solution in acetone.

Refinement top

H-atoms bonded to carbon were positioned geometrically and refined using a riding model, with Uiso(H)=1.2 or 1.5 times Ueq(C). The positions of the hydrogen atoms at the hydroxyl groups of the lagochiline molecule and water have been gained from the difference Fourier map

Structure description top

Lagochiline (I, scheme) is a biologically active diterpenoid isolated from plants of the Lagochilus kind (Abramov et al., 1958). It can be used as starting materials for preparing of the important medicinal substances, in particular as high effective hemostatic drug lagochiline (Akopov & Ibragimov,1961) and its synthetic derivative lagodene (Islamov et al., 1990). Lagochiline may be obtained in two crystal forms: as monohydrate at ambient conditions and as anhydrate by crystallization at high temperatures (Izotova et al.,1997). The crystal structure of the monohydrate form has been solved 35 years ago (Vorontsova et al., 1975). In this study we report improved structure of the lagochiline monohydrate. Six-membered rings A and B are slightly distorted from the chair form and trans-conjugated, while five-membered ring C is in the half-chair conformation (Evans & Boeyens, 1989).The molecule I has following 7 asymmetric atoms - C3, C4, C5, C8, C9, C10, C13. The value of the Flack parameters 0.2 (2) (Flack, 1983) allows to establish the absolute configuration of the asymmetric centers as: C(3)—S, C(4)—R, C(5)—S, C(8)—R, C(9)—R, C(10)—S, C(13)—S (Spek, 2009). Lagochiline molecule has intramolecular H-bond [H···O 1.87 (4) Å] between O(4)—H and O(5) atoms (Table). Four hydroxyl groups of the molecule (Fig.1), showing protonodonor as well protonoacceptor properties, are involved in the formation of the complicated system of the intermolecular H-bonds in the crystalline state (Table). The water molecule is H-bonded to three molecules of lagochiline: as acceptor (O5—H···O1W) and twice as donors (O1W—H···O4, O1W—H···O3) of protons. In result, three molecules of lagochiline and one water molecule form two-dimensional sheet parallel to the [010]. These sheets are sewed one with another via H-bonds O(3)—H···O(2) and O(2)—H···O(3) into three-dimensional network.(Table)(Fig.2)

For biological and medicinal background to lagochiline [systematic name (6S,2R)-2,12-bis(hydroxymethyl)-12-(2-hydroxyethyl)-2,6,8-trimethylspiro[bicyclo[4.4.0]decane-7,5'-oxolane]-3-ol, see: Abramov et al. (1958); Akopov & Ibragimov (1961); Islamov et al. (1990); Izotova et al. (1997). For the previous structure determination, see: Vorontsova et al. (1975). For ring conformations, see: Evans & Boeyens (1989).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, showing 30% probability displacement ellipsoids for the non-H atoms. Dashed lines represent hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of the title compound (I) viewed down the a axis. H atoms have been ommited for clarity. Hydrogen bonds are shown as dashed lines
lagochiline monohydrate top
Crystal data top
C20H36O5·H2OF(000) = 824
Mr = 374.50Dx = 1.193 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 1210 reflections
a = 7.28495 (14) Åθ = 3.5–72.7°
b = 12.5933 (3) ŵ = 0.70 mm1
c = 22.7324 (5) ÅT = 293 K
V = 2085.51 (7) Å3Needle, colourless
Z = 40.05 × 0.01 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3464 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 75.5°, θmin = 3.9°
/ω scansh = 85
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 159
Tmin = 0.899, Tmax = 0.993l = 2827
8185 measured reflections3 standard reflections every 100 reflections
4155 independent reflections intensity decay: 2.6%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0695P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.31 e Å3
4155 reflectionsΔρmin = 0.22 e Å3
258 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0016 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1674 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.2 (2)
Crystal data top
C20H36O5·H2OV = 2085.51 (7) Å3
Mr = 374.50Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.28495 (14) ŵ = 0.70 mm1
b = 12.5933 (3) ÅT = 293 K
c = 22.7324 (5) Å0.05 × 0.01 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3464 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Rint = 0.036
Tmin = 0.899, Tmax = 0.9933 standard reflections every 100 reflections
8185 measured reflections intensity decay: 2.6%
4155 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111Δρmax = 0.31 e Å3
S = 0.98Δρmin = 0.22 e Å3
4155 reflectionsAbsolute structure: Flack (1983), 1674 Friedel pairs
258 parametersAbsolute structure parameter: 0.2 (2)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73266 (16)0.98222 (10)0.12261 (5)0.0312 (3)
O21.0119 (2)1.17914 (15)0.04457 (8)0.0533 (4)
O30.3784 (2)1.16130 (15)0.02097 (8)0.0512 (4)
O40.8884 (3)1.03744 (17)0.37419 (7)0.0586 (5)
O50.5340 (3)1.0208 (2)0.38640 (8)0.0722 (6)
C10.9928 (3)0.96481 (16)0.21908 (8)0.0373 (4)
H1A1.10880.94700.20060.045*
H1B0.95041.03110.20220.045*
C21.0239 (3)0.98044 (17)0.28469 (8)0.0402 (4)
H2B1.06920.91500.30190.048*
H2C1.11541.03530.29090.048*
C30.8467 (3)1.01203 (16)0.31406 (8)0.0389 (4)
H3B0.80251.07690.29500.047*
C40.6962 (3)0.92706 (16)0.30779 (8)0.0387 (4)
C60.5214 (3)0.82102 (19)0.22804 (10)0.0495 (5)
H5B0.56080.75160.24150.059*
H5C0.41120.84020.24950.059*
C70.4793 (3)0.81639 (19)0.16225 (10)0.0525 (5)
H6A0.38890.76130.15510.063*
H6B0.42640.88350.15000.063*
C80.6494 (3)0.79387 (16)0.12516 (10)0.0473 (5)
H7A0.69760.72490.13780.057*
C90.8019 (3)0.87750 (15)0.13720 (8)0.0355 (4)
C100.8523 (3)0.87711 (14)0.20524 (8)0.0336 (4)
C50.6724 (3)0.90276 (14)0.24047 (8)0.0338 (4)
H10A0.62680.96920.22340.041*
C110.9684 (3)0.86188 (17)0.09623 (9)0.0451 (5)
H11A1.08170.87890.11660.054*
H11B0.97480.78910.08240.054*
C120.9369 (3)0.93826 (18)0.04478 (9)0.0453 (5)
H12A0.87180.90330.01300.054*
H12B1.05240.96560.02990.054*
C130.8204 (3)1.02751 (15)0.07156 (7)0.0336 (4)
C140.6692 (3)1.06778 (16)0.03011 (8)0.0369 (4)
H14A0.72571.10850.00130.044*
H14B0.60871.00710.01230.044*
C150.5266 (3)1.1358 (2)0.05985 (9)0.0508 (5)
H15A0.47881.09850.09390.061*
H15B0.58351.20100.07350.061*
C160.9416 (3)1.11968 (17)0.09280 (9)0.0403 (4)
H16A0.87001.16600.11800.048*
H16B1.04281.09170.11580.048*
C170.5903 (5)0.7817 (2)0.06070 (12)0.0669 (7)
H17A0.49570.72890.05790.100*
H17B0.69380.76020.03740.100*
H17C0.54440.84830.04640.100*
C180.5140 (3)0.9768 (2)0.32897 (10)0.0543 (5)
H18A0.47661.03200.30180.065*
H18B0.41900.92280.32950.065*
C190.7368 (4)0.8292 (2)0.34618 (10)0.0564 (6)
H19A0.74920.85080.38650.085*
H19B0.84880.79650.33330.085*
H19C0.63780.77930.34270.085*
C200.9383 (3)0.76842 (17)0.22045 (11)0.0516 (6)
H20A0.96980.76680.26140.077*
H20B1.04700.75800.19730.077*
H20C0.85170.71300.21210.077*
H2O1.112 (5)1.176 (2)0.0410 (13)0.052 (8)*
H3O0.415 (4)1.202 (2)0.0029 (13)0.044 (7)*
H4O0.789 (5)1.038 (3)0.3905 (14)0.065 (9)*
H5O0.443 (7)1.011 (4)0.4031 (18)0.103 (15)*
O1W0.2045 (3)1.0041 (3)0.43526 (9)0.1024 (11)
H1W0.195 (7)0.939 (4)0.459 (2)0.123*
H2W0.099 (8)0.999 (4)0.412 (2)0.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0317 (6)0.0317 (6)0.0301 (5)0.0050 (5)0.0028 (5)0.0027 (5)
O20.0319 (8)0.0696 (10)0.0584 (9)0.0018 (7)0.0029 (7)0.0311 (8)
O30.0348 (7)0.0619 (10)0.0569 (9)0.0052 (7)0.0039 (7)0.0269 (8)
O40.0480 (9)0.0895 (13)0.0381 (8)0.0059 (8)0.0057 (7)0.0100 (8)
O50.0485 (10)0.1158 (17)0.0522 (9)0.0073 (11)0.0150 (8)0.0232 (11)
C10.0300 (8)0.0431 (9)0.0390 (9)0.0009 (8)0.0012 (8)0.0070 (8)
C20.0329 (9)0.0469 (10)0.0407 (9)0.0035 (8)0.0050 (8)0.0078 (8)
C30.0391 (10)0.0444 (10)0.0332 (8)0.0022 (8)0.0061 (7)0.0019 (7)
C40.0351 (9)0.0455 (10)0.0354 (9)0.0002 (8)0.0015 (8)0.0064 (8)
C60.0455 (11)0.0516 (11)0.0515 (11)0.0167 (10)0.0020 (10)0.0032 (10)
C70.0499 (13)0.0519 (11)0.0557 (13)0.0209 (10)0.0035 (11)0.0052 (10)
C80.0576 (13)0.0356 (10)0.0486 (11)0.0041 (9)0.0036 (10)0.0061 (8)
C90.0377 (9)0.0311 (8)0.0378 (9)0.0071 (7)0.0005 (7)0.0001 (7)
C100.0355 (9)0.0282 (8)0.0372 (9)0.0053 (7)0.0011 (7)0.0048 (7)
C50.0337 (9)0.0324 (8)0.0352 (8)0.0015 (7)0.0021 (7)0.0068 (7)
C110.0489 (12)0.0437 (10)0.0426 (10)0.0164 (9)0.0054 (9)0.0039 (8)
C120.0468 (11)0.0524 (11)0.0368 (9)0.0135 (9)0.0084 (8)0.0008 (9)
C130.0329 (8)0.0395 (9)0.0284 (8)0.0046 (8)0.0030 (7)0.0032 (7)
C140.0365 (10)0.0444 (9)0.0297 (8)0.0017 (8)0.0011 (7)0.0026 (7)
C150.0469 (11)0.0659 (13)0.0396 (10)0.0200 (11)0.0006 (9)0.0080 (10)
C160.0348 (10)0.0479 (10)0.0382 (9)0.0012 (8)0.0010 (7)0.0109 (8)
C170.0856 (19)0.0593 (14)0.0558 (14)0.0175 (14)0.0086 (13)0.0154 (12)
C180.0393 (11)0.0784 (15)0.0453 (10)0.0003 (11)0.0036 (9)0.0044 (11)
C190.0661 (15)0.0584 (13)0.0447 (11)0.0082 (12)0.0003 (11)0.0210 (11)
C200.0593 (14)0.0355 (10)0.0600 (13)0.0172 (9)0.0007 (11)0.0073 (9)
O1W0.0453 (10)0.200 (3)0.0617 (12)0.0183 (15)0.0003 (9)0.0361 (17)
Geometric parameters (Å, º) top
O1—C131.442 (2)C9—C101.590 (3)
O1—C91.450 (2)C10—C201.545 (2)
O2—C161.423 (2)C10—C51.569 (3)
O2—H2O0.74 (3)C5—H10A0.9800
O3—C151.432 (3)C11—C121.532 (3)
O3—H3O0.71 (3)C11—H11A0.9700
O4—C31.436 (2)C11—H11B0.9700
O4—H4O0.81 (4)C12—C131.534 (3)
O5—C181.426 (3)C12—H12A0.9700
O5—H5O0.77 (5)C12—H12B0.9700
C1—C21.521 (3)C13—C141.536 (3)
C1—C101.538 (3)C13—C161.536 (3)
C1—H1A0.9700C14—C151.507 (3)
C1—H1B0.9700C14—H14A0.9700
C2—C31.507 (3)C14—H14B0.9700
C2—H2B0.9700C15—H15A0.9700
C2—H2C0.9700C15—H15B0.9700
C3—C41.539 (3)C16—H16A0.9700
C3—H3B0.9800C16—H16B0.9700
C4—C191.539 (3)C17—H17A0.9600
C4—C181.544 (3)C17—H17B0.9600
C4—C51.570 (3)C17—H17C0.9600
C6—C71.528 (3)C18—H18A0.9700
C6—C51.533 (3)C18—H18B0.9700
C6—H5B0.9700C19—H19A0.9600
C6—H5C0.9700C19—H19B0.9600
C7—C81.526 (3)C19—H19C0.9600
C7—H6A0.9700C20—H20A0.9600
C7—H6B0.9700C20—H20B0.9600
C8—C171.535 (3)C20—H20C0.9600
C8—C91.555 (3)O1W—H1W0.98 (5)
C8—H7A0.9800O1W—H2W0.94 (5)
C9—C111.542 (3)
C13—O1—C9112.92 (13)C10—C5—H10A104.9
C16—O2—H2O114 (2)C4—C5—H10A104.9
C15—O3—H3O103 (2)C12—C11—C9105.25 (16)
C3—O4—H4O104 (2)C12—C11—H11A110.7
C18—O5—H5O108 (3)C9—C11—H11A110.7
C2—C1—C10113.10 (15)C12—C11—H11B110.7
C2—C1—H1A109.0C9—C11—H11B110.7
C10—C1—H1A109.0H11A—C11—H11B108.8
C2—C1—H1B109.0C11—C12—C13103.90 (15)
C10—C1—H1B109.0C11—C12—H12A111.0
H1A—C1—H1B107.8C13—C12—H12A111.0
C3—C2—C1109.95 (15)C11—C12—H12B111.0
C3—C2—H2B109.7C13—C12—H12B111.0
C1—C2—H2B109.7H12A—C12—H12B109.0
C3—C2—H2C109.7O1—C13—C12105.94 (15)
C1—C2—H2C109.7O1—C13—C14107.83 (14)
H2B—C2—H2C108.2C12—C13—C14113.27 (16)
O4—C3—C2107.42 (16)O1—C13—C16107.50 (14)
O4—C3—C4113.20 (17)C12—C13—C16111.15 (17)
C2—C3—C4112.69 (17)C14—C13—C16110.82 (16)
O4—C3—H3B107.8C15—C14—C13114.03 (15)
C2—C3—H3B107.8C15—C14—H14A108.7
C4—C3—H3B107.8C13—C14—H14A108.7
C3—C4—C19111.55 (18)C15—C14—H14B108.7
C3—C4—C18107.55 (18)C13—C14—H14B108.7
C19—C4—C18108.23 (19)H14A—C14—H14B107.6
C3—C4—C5107.74 (15)O3—C15—C14111.75 (18)
C19—C4—C5114.70 (18)O3—C15—H15A109.3
C18—C4—C5106.74 (16)C14—C15—H15A109.3
C7—C6—C5110.50 (17)O3—C15—H15B109.3
C7—C6—H5B109.5C14—C15—H15B109.3
C5—C6—H5B109.5H15A—C15—H15B107.9
C7—C6—H5C109.5O2—C16—C13111.24 (16)
C5—C6—H5C109.5O2—C16—H16A109.4
H5B—C6—H5C108.1C13—C16—H16A109.4
C8—C7—C6112.6 (2)O2—C16—H16B109.4
C8—C7—H6A109.1C13—C16—H16B109.4
C6—C7—H6A109.1H16A—C16—H16B108.0
C8—C7—H6B109.1C8—C17—H17A109.5
C6—C7—H6B109.1C8—C17—H17B109.5
H6A—C7—H6B107.8H17A—C17—H17B109.5
C7—C8—C17108.6 (2)C8—C17—H17C109.5
C7—C8—C9110.92 (16)H17A—C17—H17C109.5
C17—C8—C9115.9 (2)H17B—C17—H17C109.5
C7—C8—H7A107.0O5—C18—C4110.81 (19)
C17—C8—H7A107.0O5—C18—H18A109.5
C9—C8—H7A107.0C4—C18—H18A109.5
O1—C9—C11104.56 (15)O5—C18—H18B109.5
O1—C9—C8109.09 (15)C4—C18—H18B109.5
C11—C9—C8111.67 (17)H18A—C18—H18B108.1
O1—C9—C10107.80 (14)C4—C19—H19A109.5
C11—C9—C10113.92 (16)C4—C19—H19B109.5
C8—C9—C10109.53 (16)H19A—C19—H19B109.5
C1—C10—C20108.68 (17)C4—C19—H19C109.5
C1—C10—C5107.68 (15)H19A—C19—H19C109.5
C20—C10—C5114.02 (16)H19B—C19—H19C109.5
C1—C10—C9110.52 (14)C10—C20—H20A109.5
C20—C10—C9108.31 (16)C10—C20—H20B109.5
C5—C10—C9107.63 (14)H20A—C20—H20B109.5
C6—C5—C10111.53 (16)C10—C20—H20C109.5
C6—C5—C4112.94 (16)H20A—C20—H20C109.5
C10—C5—C4116.43 (15)H20B—C20—H20C109.5
C6—C5—H10A104.9H1W—O1W—H2W101 (4)
C10—C1—C2—C360.6 (2)C7—C6—C5—C4169.13 (19)
C1—C2—C3—O4173.49 (17)C1—C10—C5—C6178.34 (16)
C1—C2—C3—C461.1 (2)C20—C10—C5—C661.0 (2)
O4—C3—C4—C1950.2 (2)C9—C10—C5—C659.18 (19)
C2—C3—C4—C1971.9 (2)C1—C10—C5—C450.0 (2)
O4—C3—C4—C1868.3 (2)C20—C10—C5—C470.6 (2)
C2—C3—C4—C18169.56 (16)C9—C10—C5—C4169.21 (15)
O4—C3—C4—C5176.98 (17)C3—C4—C5—C6178.34 (17)
C2—C3—C4—C554.8 (2)C19—C4—C5—C656.8 (2)
C5—C6—C7—C855.4 (3)C18—C4—C5—C663.1 (2)
C6—C7—C8—C17175.38 (19)C3—C4—C5—C1050.7 (2)
C6—C7—C8—C956.2 (2)C19—C4—C5—C1074.2 (2)
C13—O1—C9—C118.33 (19)C18—C4—C5—C10165.97 (17)
C13—O1—C9—C8111.25 (16)O1—C9—C11—C1222.3 (2)
C13—O1—C9—C10129.90 (15)C8—C9—C11—C1295.5 (2)
C7—C8—C9—O160.0 (2)C10—C9—C11—C12139.73 (17)
C17—C8—C9—O164.4 (2)C9—C11—C12—C1327.4 (2)
C7—C8—C9—C11175.03 (18)C9—O1—C13—C129.1 (2)
C17—C8—C9—C1150.7 (3)C9—O1—C13—C14130.62 (16)
C7—C8—C9—C1057.8 (2)C9—O1—C13—C16109.86 (16)
C17—C8—C9—C10177.9 (2)C11—C12—C13—O122.6 (2)
C2—C1—C10—C2070.5 (2)C11—C12—C13—C14140.56 (18)
C2—C1—C10—C553.5 (2)C11—C12—C13—C1693.9 (2)
C2—C1—C10—C9170.76 (15)O1—C13—C14—C1549.4 (2)
O1—C9—C10—C157.31 (19)C12—C13—C14—C15166.26 (19)
C11—C9—C10—C158.2 (2)C16—C13—C14—C1568.0 (2)
C8—C9—C10—C1175.89 (16)C13—C14—C15—O3173.44 (18)
O1—C9—C10—C20176.26 (16)O1—C13—C16—O2171.20 (15)
C11—C9—C10—C2060.7 (2)C12—C13—C16—O273.3 (2)
C8—C9—C10—C2065.2 (2)C14—C13—C16—O253.6 (2)
O1—C9—C10—C560.03 (18)C3—C4—C18—O553.1 (3)
C11—C9—C10—C5175.57 (16)C19—C4—C18—O567.6 (3)
C8—C9—C10—C558.55 (18)C5—C4—C18—O5168.5 (2)
C7—C6—C5—C1057.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O50.81 (4)1.87 (4)2.605 (3)149 (3)
O5—H5O···O1W0.77 (5)1.89 (5)2.653 (3)171 (5)
O2—H2O···O3i0.74 (3)2.00 (4)2.732 (2)173 (3)
O3—H3O···O2ii0.71 (3)1.98 (3)2.684 (2)177 (3)
O1W—H1W···O3iii0.98 (5)1.97 (5)2.916 (4)161 (4)
O1W—H2W···O4iv0.94 (5)1.82 (5)2.722 (3)160 (5)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+5/2, z; (iii) x+1/2, y+2, z+1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H36O5·H2O
Mr374.50
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.28495 (14), 12.5933 (3), 22.7324 (5)
V3)2085.51 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.05 × 0.01 × 0.01
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.899, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8185, 4155, 3464
Rint0.036
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 0.98
No. of reflections4155
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.22
Absolute structureFlack (1983), 1674 Friedel pairs
Absolute structure parameter0.2 (2)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), XP (Siemens, 1994), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O50.81 (4)1.87 (4)2.605 (3)149 (3)
O5—H5O···O1W0.77 (5)1.89 (5)2.653 (3)171 (5)
O2—H2O···O3i0.74 (3)2.00 (4)2.732 (2)173 (3)
O3—H3O···O2ii0.71 (3)1.98 (3)2.684 (2)177 (3)
O1W—H1W···O3iii0.98 (5)1.97 (5)2.916 (4)161 (4)
O1W—H2W···O4iv0.94 (5)1.82 (5)2.722 (3)160 (5)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+5/2, z; (iii) x+1/2, y+2, z+1/2; (iv) x1, y, z.
 

Acknowledgements

Support of this research by the Uzbek Academy of Sciences (grant Nos. FA-A12-T175 and FA-F3-T141) is gratefully acknowledged

References

First citationAbramov, M. M., Japarova, S. A. & Ikramov, M. I. (1958). Uzb. Biol. Zh. 6, 55–60  Google Scholar
First citationAkopov, I. E. & Ibragimov, I. I. (1961). Pharmacol. Toxicol. 6, 39–40.  Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIslamov, R., Zainutdinov, U. N., Aslanov, Kh. A., Sadykov, A. S., Danil'chuk, D. N., Yankovskiy, B. A. & Zacharov, V. P. (1990). USSR Patent AS 1293990.  Google Scholar
First citationIzotova, L. Yu., Beketov, K. M., Talipov, S. A. & Ibragimov, B. T. (1997). Pol. J. Chem. 71, 1037–1044.  CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVorontsova, L. G., Tchijov, O. S., Tarnopolsky, B. L. & Andrianov, V. I. (1975). Izv. USSR Ser. Chem. 2, 338–343.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds