organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-(Di­methyl­amino)benzyl­­idene]-4-methyl­thio­semicarbazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 13 May 2010; accepted 18 May 2010; online 22 May 2010)

In the title compound, C11H16N4S, an intra­molecular N—H⋯N hydrogen bond generates an S(5) ring. In the crystal, inversion dimers linked by pairs of N—H⋯S bonds occur, generating an R22(8) loop.

Related literature

For a related structure, see: Girgis (2006[Girgis, A. S. (2006). J. Chem. Res. pp. 81-85.]).

[Scheme 1]

Experimental

Crystal data
  • C11H16N4S

  • Mr = 236.34

  • Monoclinic, P 21 /n

  • a = 10.517 (2) Å

  • b = 12.873 (3) Å

  • c = 10.552 (2) Å

  • β = 119.19 (3)°

  • V = 1247.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 11842 measured reflections

  • 2847 independent reflections

  • 2391 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.178

  • S = 1.12

  • 2847 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N2 0.86 2.22 2.613 (2) 108
N3—H3A⋯S1i 0.86 2.59 3.3890 (16) 155
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure, see: Girgis (2006).

Experimental top

A mixture of 4-(dimethylamino)benzaldehyde (0.10 mol), and 4-methylthiosemicarbazide (0.10 mol) was stirred in refluxing ethanol (10 ml) for 4 h to afford the title compound (0.083 mol, yield 83%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.97 Å; N—H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Structure description top

For a related structure, see: Girgis (2006).

Computing details top

Data collection: SMART (Bruker 1997); cell refinement: SAINT (Bruker 1997); data reduction: SAINT (Bruker 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
1-(4-(Dimethylamino)benzylidene)-4-methylthiosemicarbazide top
Crystal data top
C11H16N4SF(000) = 504
Mr = 236.34Dx = 1.259 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2391 reflections
a = 10.517 (2) Åθ = 3.2–27.5°
b = 12.873 (3) ŵ = 0.24 mm1
c = 10.552 (2) ÅT = 293 K
β = 119.19 (3)°Block, colorless
V = 1247.3 (4) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2391 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
phi and ω scansh = 1311
11842 measured reflectionsk = 1516
2847 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1186P)2 + 0.111P]
where P = (Fo2 + 2Fc2)/3
2847 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H16N4SV = 1247.3 (4) Å3
Mr = 236.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.517 (2) ŵ = 0.24 mm1
b = 12.873 (3) ÅT = 293 K
c = 10.552 (2) Å0.22 × 0.20 × 0.18 mm
β = 119.19 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2391 reflections with I > 2σ(I)
11842 measured reflectionsRint = 0.031
2847 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.12Δρmax = 0.43 e Å3
2847 reflectionsΔρmin = 0.26 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60342 (4)0.15360 (4)0.05021 (6)0.0595 (2)
N20.17952 (14)0.12707 (11)0.13146 (16)0.0468 (3)
N30.32723 (14)0.10421 (10)0.05970 (16)0.0491 (4)
H3A0.35690.04260.02720.059*
C60.06129 (17)0.06639 (12)0.20701 (17)0.0435 (4)
N40.36809 (16)0.27166 (11)0.09695 (18)0.0537 (4)
H4A0.27490.27720.14630.064*
C30.36590 (17)0.09210 (14)0.32393 (17)0.0481 (4)
C70.13111 (19)0.15789 (12)0.2769 (2)0.0495 (4)
H7A0.07630.21160.28480.059*
C100.42361 (17)0.17963 (13)0.04141 (17)0.0433 (4)
C90.09536 (17)0.05248 (12)0.13907 (18)0.0448 (4)
H9A0.13550.01190.10020.054*
C50.14729 (19)0.01233 (13)0.1990 (2)0.0501 (4)
H5A0.10360.07460.15430.060*
C80.27852 (19)0.17078 (14)0.3344 (2)0.0537 (4)
H8A0.32150.23270.38120.064*
C40.29596 (19)0.00089 (14)0.2553 (2)0.0529 (4)
H4B0.35020.05520.24780.063*
N10.51338 (16)0.10490 (14)0.38125 (18)0.0634 (4)
C20.5998 (2)0.0282 (2)0.3574 (3)0.0758 (6)
H2B0.54230.03290.31520.114*
H2C0.68340.01070.44840.114*
H2D0.63130.05600.29290.114*
C110.4544 (2)0.36333 (16)0.0797 (3)0.0730 (6)
H12A0.39120.42070.12930.109*
H12B0.51740.35070.12010.109*
H12C0.51200.37950.02160.109*
C10.5822 (2)0.2016 (2)0.4442 (3)0.0929 (8)
H1A0.51420.24600.45410.139*
H1B0.61380.23450.38280.139*
H1C0.66470.18930.53810.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0340 (3)0.0526 (3)0.0744 (4)0.00233 (15)0.0127 (2)0.00072 (19)
N20.0336 (7)0.0484 (7)0.0547 (8)0.0008 (5)0.0187 (6)0.0001 (6)
N30.0335 (6)0.0439 (7)0.0637 (8)0.0010 (5)0.0188 (6)0.0032 (6)
C60.0375 (8)0.0465 (8)0.0464 (8)0.0018 (6)0.0205 (6)0.0026 (6)
N40.0395 (7)0.0477 (8)0.0626 (9)0.0017 (5)0.0160 (6)0.0071 (6)
C30.0382 (8)0.0593 (10)0.0458 (8)0.0015 (6)0.0197 (6)0.0050 (7)
C70.0438 (9)0.0455 (9)0.0594 (10)0.0032 (6)0.0253 (8)0.0021 (7)
C100.0382 (7)0.0455 (8)0.0436 (8)0.0027 (6)0.0180 (6)0.0032 (6)
C90.0391 (8)0.0437 (8)0.0504 (8)0.0006 (6)0.0210 (6)0.0012 (6)
C50.0446 (9)0.0455 (8)0.0572 (10)0.0021 (6)0.0226 (8)0.0055 (7)
C80.0447 (9)0.0481 (9)0.0653 (11)0.0052 (7)0.0245 (8)0.0049 (7)
C40.0433 (9)0.0567 (9)0.0582 (10)0.0095 (7)0.0245 (8)0.0025 (7)
N10.0370 (8)0.0805 (11)0.0677 (10)0.0010 (7)0.0218 (7)0.0000 (8)
C20.0468 (10)0.1131 (18)0.0689 (12)0.0167 (11)0.0293 (9)0.0044 (12)
C110.0597 (12)0.0529 (10)0.0951 (16)0.0073 (9)0.0289 (11)0.0121 (10)
C10.0477 (11)0.0861 (17)0.128 (2)0.0166 (11)0.0301 (13)0.0016 (16)
Geometric parameters (Å, º) top
S1—C101.6852 (17)C9—H9A0.9300
N2—C91.282 (2)C5—C41.383 (3)
N2—N31.3877 (19)C5—H5A0.9300
N3—C101.348 (2)C8—H8A0.9300
N3—H3A0.8600C4—H4B0.9300
C6—C51.388 (2)N1—C11.431 (3)
C6—C71.394 (2)N1—C21.444 (3)
C6—C91.452 (2)C2—H2B0.9600
N4—C101.325 (2)C2—H2C0.9600
N4—C111.445 (2)C2—H2D0.9600
N4—H4A0.8600C11—H12A0.9600
C3—N11.372 (2)C11—H12B0.9600
C3—C41.407 (2)C11—H12C0.9600
C3—C81.408 (2)C1—H1A0.9600
C7—C81.372 (2)C1—H1B0.9600
C7—H7A0.9300C1—H1C0.9600
C9—N2—N3115.50 (14)C7—C8—H8A119.4
C10—N3—N2119.27 (14)C3—C8—H8A119.4
C10—N3—H3A120.4C5—C4—C3120.64 (15)
N2—N3—H3A120.4C5—C4—H4B119.7
C5—C6—C7117.29 (14)C3—C4—H4B119.7
C5—C6—C9119.74 (14)C3—N1—C1121.07 (17)
C7—C6—C9122.92 (14)C3—N1—C2120.89 (18)
C10—N4—C11124.08 (16)C1—N1—C2117.18 (18)
C10—N4—H4A118.0N1—C2—H2B109.5
C11—N4—H4A118.0N1—C2—H2C109.5
N1—C3—C4121.59 (16)H2B—C2—H2C109.5
N1—C3—C8121.31 (16)N1—C2—H2D109.5
C4—C3—C8117.07 (14)H2B—C2—H2D109.5
C8—C7—C6121.76 (15)H2C—C2—H2D109.5
C8—C7—H7A119.1N4—C11—H12A109.5
C6—C7—H7A119.1N4—C11—H12B109.5
N4—C10—N3116.27 (14)H12A—C11—H12B109.5
N4—C10—S1124.11 (13)N4—C11—H12C109.5
N3—C10—S1119.61 (13)H12A—C11—H12C109.5
N2—C9—C6121.42 (15)H12B—C11—H12C109.5
N2—C9—H9A119.3N1—C1—H1A109.5
C6—C9—H9A119.3N1—C1—H1B109.5
C4—C5—C6121.98 (15)H1A—C1—H1B109.5
C4—C5—H5A119.0N1—C1—H1C109.5
C6—C5—H5A119.0H1A—C1—H1C109.5
C7—C8—C3121.23 (16)H1B—C1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N20.862.222.613 (2)108
N3—H3A···S1i0.862.593.3890 (16)155
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H16N4S
Mr236.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.517 (2), 12.873 (3), 10.552 (2)
β (°) 119.19 (3)
V3)1247.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11842, 2847, 2391
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.178, 1.12
No. of reflections2847
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.26

Computer programs: SMART (Bruker 1997), SAINT (Bruker 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N20.862.222.613 (2)108
N3—H3A···S1i0.862.593.3890 (16)155
Symmetry code: (i) x+1, y, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGirgis, A. S. (2006). J. Chem. Res. pp. 81–85.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds