organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Methyl­benzyl­­idene)thio­phene-2-carbohydrazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 13 May 2010; accepted 15 May 2010; online 22 May 2010)

In the title compound, C13H12N2OS, the dihedral angle between the aromatic rings is 14.84 (17)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops.

Related literature

For a related structure, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1397.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2OS

  • Mr = 244.31

  • Monoclinic, P 21 /c

  • a = 14.920 (3) Å

  • b = 5.3976 (11) Å

  • c = 15.636 (3) Å

  • β = 105.87 (3)°

  • V = 1211.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 10416 measured reflections

  • 2697 independent reflections

  • 1759 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.275

  • S = 1.08

  • 2697 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.07 2.919 (4) 170
Symmetry code: (i) -x, -y, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure, see: Li & Jian (2010).

Experimental top

A mixture of thiophene-2-carbohydrazide (0.10 mol) and 4-methylbenzaldehyde (0.10 mol) was stirred in refluxing ethanol (10 ml) for 4 h to afford the title compound (0.079 mol, yield 79%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.97 Å; N—H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Structure description top

For a related structure, see: Li & Jian (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
N'-(4-Methylbenzylidene)thiophene-2-carbohydrazide top
Crystal data top
C13H12N2OSF(000) = 512
Mr = 244.31Dx = 1.340 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1759 reflections
a = 14.920 (3) Åθ = 27.5–3.4°
b = 5.3976 (11) ŵ = 0.25 mm1
c = 15.636 (3) ÅT = 293 K
β = 105.87 (3)°Block, colorless
V = 1211.2 (4) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1759 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
phi and ω scansh = 1919
10416 measured reflectionsk = 66
2697 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.275H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1685P)2 + 0.1567P]
where P = (Fo2 + 2Fc2)/3
2697 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C13H12N2OSV = 1211.2 (4) Å3
Mr = 244.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.920 (3) ŵ = 0.25 mm1
b = 5.3976 (11) ÅT = 293 K
c = 15.636 (3) Å0.22 × 0.20 × 0.18 mm
β = 105.87 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1759 reflections with I > 2σ(I)
10416 measured reflectionsRint = 0.051
2697 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.275H-atom parameters constrained
S = 1.08Δρmax = 0.73 e Å3
2697 reflectionsΔρmin = 0.47 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20737 (7)0.6743 (2)0.48624 (6)0.0649 (4)
N10.17714 (18)0.2992 (5)0.59639 (17)0.0481 (7)
N20.09655 (17)0.2160 (6)0.53950 (16)0.0507 (7)
H2A0.06580.10070.55690.061*
O10.00815 (15)0.2169 (5)0.40660 (15)0.0576 (7)
C90.0635 (2)0.3089 (6)0.4567 (2)0.0461 (7)
C80.2059 (2)0.1867 (6)0.6707 (2)0.0506 (8)
H8A0.17130.05640.68410.061*
C50.2924 (2)0.2600 (6)0.7348 (2)0.0476 (7)
C100.11121 (19)0.5146 (6)0.42646 (19)0.0460 (7)
C20.4649 (2)0.3822 (8)0.8565 (2)0.0573 (9)
C120.1361 (2)0.8109 (7)0.3262 (2)0.0607 (10)
H12A0.12760.90210.27410.073*
C70.4251 (2)0.5308 (8)0.7826 (2)0.0636 (10)
H7A0.45620.67320.77320.076*
C110.0757 (2)0.6016 (6)0.3332 (2)0.0506 (8)
H11A0.02610.53750.28890.061*
C30.4150 (3)0.1770 (7)0.8695 (2)0.0665 (10)
H3A0.43880.07660.91880.080*
C60.3420 (3)0.4727 (8)0.7240 (2)0.0598 (9)
H6A0.31760.57650.67580.072*
C40.3296 (3)0.1174 (8)0.8101 (2)0.0631 (10)
H4A0.29690.02030.82110.076*
C130.2054 (2)0.8631 (7)0.4008 (2)0.0582 (9)
H13A0.24770.99160.40410.070*
C10.5603 (3)0.4412 (11)0.9168 (2)0.0842 (14)
H1B0.57640.32170.96400.126*
H1C0.55980.60380.94150.126*
H1D0.60540.43550.88330.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0703 (7)0.0624 (8)0.0608 (6)0.0180 (4)0.0157 (5)0.0037 (4)
N10.0482 (14)0.0436 (16)0.0523 (14)0.0058 (11)0.0134 (11)0.0062 (12)
N20.0476 (14)0.0518 (18)0.0515 (15)0.0119 (12)0.0119 (11)0.0025 (12)
O10.0464 (12)0.0575 (16)0.0636 (14)0.0100 (10)0.0059 (10)0.0006 (12)
C90.0418 (15)0.0428 (19)0.0553 (18)0.0020 (12)0.0160 (13)0.0049 (13)
C80.0563 (18)0.049 (2)0.0486 (17)0.0078 (14)0.0182 (13)0.0002 (14)
C50.0579 (18)0.0424 (19)0.0443 (15)0.0017 (14)0.0170 (13)0.0032 (13)
C100.0402 (15)0.0450 (19)0.0521 (16)0.0006 (12)0.0114 (12)0.0028 (13)
C20.0542 (18)0.071 (3)0.0485 (17)0.0056 (16)0.0169 (14)0.0091 (16)
C120.0487 (18)0.067 (3)0.067 (2)0.0068 (15)0.0157 (15)0.0172 (18)
C70.063 (2)0.070 (3)0.0566 (19)0.0181 (18)0.0147 (15)0.0001 (18)
C110.0444 (16)0.048 (2)0.0649 (19)0.0041 (13)0.0249 (14)0.0159 (15)
C30.077 (2)0.063 (3)0.052 (2)0.0041 (19)0.0038 (16)0.0088 (17)
C60.069 (2)0.055 (2)0.0504 (17)0.0126 (17)0.0085 (15)0.0067 (16)
C40.078 (2)0.053 (2)0.057 (2)0.0079 (18)0.0159 (17)0.0089 (16)
C130.062 (2)0.046 (2)0.065 (2)0.0056 (15)0.0150 (16)0.0037 (16)
C10.058 (2)0.131 (5)0.059 (2)0.001 (2)0.0076 (17)0.013 (3)
Geometric parameters (Å, º) top
S1—C131.673 (3)C2—C11.511 (5)
S1—C101.715 (3)C12—C131.360 (5)
N1—C81.277 (4)C12—C111.468 (5)
N1—N21.362 (3)C12—H12A0.9300
N2—C91.350 (4)C7—C61.362 (5)
N2—H2A0.8600C7—H7A0.9300
O1—C91.242 (4)C11—H11A0.9300
C9—C101.465 (4)C3—C41.394 (5)
C8—C51.455 (4)C3—H3A0.9300
C8—H8A0.9300C6—H6A0.9300
C5—C41.389 (5)C4—H4A0.9300
C5—C61.400 (5)C13—H13A0.9300
C10—C111.486 (4)C1—H1B0.9600
C2—C31.380 (5)C1—H1C0.9600
C2—C71.399 (5)C1—H1D0.9600
C13—S1—C1092.39 (16)C6—C7—H7A119.1
C8—N1—N2117.1 (3)C2—C7—H7A119.1
C9—N2—N1122.0 (3)C12—C11—C10104.7 (3)
C9—N2—H2A119.0C12—C11—H11A127.6
N1—N2—H2A119.0C10—C11—H11A127.6
O1—C9—N2118.8 (3)C2—C3—C4121.3 (3)
O1—C9—C10120.7 (3)C2—C3—H3A119.4
N2—C9—C10120.5 (3)C4—C3—H3A119.4
N1—C8—C5120.8 (3)C7—C6—C5121.5 (3)
N1—C8—H8A119.6C7—C6—H6A119.3
C5—C8—H8A119.6C5—C6—H6A119.3
C4—C5—C6117.0 (3)C5—C4—C3121.2 (4)
C4—C5—C8120.4 (3)C5—C4—H4A119.4
C6—C5—C8122.6 (3)C3—C4—H4A119.4
C9—C10—C11118.8 (3)C12—C13—S1113.7 (3)
C9—C10—S1127.8 (2)C12—C13—H13A123.1
C11—C10—S1113.4 (2)S1—C13—H13A123.1
C3—C2—C7117.2 (3)C2—C1—H1B109.5
C3—C2—C1122.1 (4)C2—C1—H1C109.5
C7—C2—C1120.6 (4)H1B—C1—H1C109.5
C13—C12—C11115.7 (3)C2—C1—H1D109.5
C13—C12—H12A122.1H1B—C1—H1D109.5
C11—C12—H12A122.1H1C—C1—H1D109.5
C6—C7—C2121.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.072.919 (4)170
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H12N2OS
Mr244.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.920 (3), 5.3976 (11), 15.636 (3)
β (°) 105.87 (3)
V3)1211.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10416, 2697, 1759
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.275, 1.08
No. of reflections2697
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.47

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.072.919 (4)170
Symmetry code: (i) x, y, z+1.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds