organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(4-bromo­phen­yl)imidazolium chloride dihydrate

aInstituto de Química, Departamento de Quimica Orgânica, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CT, Bloco A, Rio de Janeiro 21949-900, RJ, Brazil, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and eDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 May 2010; accepted 19 May 2010; online 22 May 2010)

In the title hydrated salt, C15H11Br2N2+·Cl·2H2O, the complete imidazolium cation is generated by a crystallographic twofold axis, with one C atom lying on the axis. The chloride ion and both water mol­ecules of crystallization also lie on a crystallographic twofold axis of symmetry. The cation is non-planar, the dihedral angle formed between the central imidazolium and benzene rings being 12.9 (3)°; the dihedral angle between the symmetry-related benzene rings is 25.60 (13)°. In the crystal, O—H⋯Cl hydrogen bonds result in supra­molecular chains along c mediated by eight-membered {⋯HOH⋯Cl}2 synthons. These are consolidated by C—H⋯O and ππ [centroid–centroid distance = 3.687 (3) Å] inter­actions.

Related literature

For the preparation of imidazolyl­idene carbenes, see: Nolan (2006[Nolan, S. P. (2006). N-Heterocyclic Carbenes in Synthesis, pp. 1-304. Weinheim: Wiley-VCH.]); Diez-Gonzalez & Nolan (2007[Diez-Gonzalez, S. & Nolan, S. P. (2007). Coord. Chem. Rev. 251, 874-883.]); Glorius (2007[Glorius, F. (2007). N-Heterocyclic Carbenes in Transition Metal Catalysis. In Topics Organometallic Chemistry, Vol. 21, pp. 1-218. Berlin: Springer.]); Leuthaeusser et al. (2007[Leuthaeusser, S., Schwarz, D. & Plenio, H. (2007). Chem. Eur. J. 13, 7195-7203.]); Alcarazo et al. (2010[Alcarazo, M., Stork, T., Anoop, A., Thiel, W. & Fürstner, A. (2010). Angew. Chem. Int. Ed. 49, 2542-2546.]). For related structures, see: Luger & Ruban (1975[Luger, P. & Ruban, G. (1975). Z. Kristallogr. 142, 177-185.]); Cole & Junk (2004[Cole, M. L. & Junk, P. C. (2004). CrystEngComm, 6, 173-176.]); Wan et al. (2008[Wan, Y., Xin, H., Chen, X., Xu, H. & Wu, H. (2008). Acta Cryst. E64, o2159.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11Br2N2+·Cl·2H2O

  • Mr = 450.56

  • Tetragonal, P 42 21 2

  • a = 17.8377 (7) Å

  • c = 5.1270 (1) Å

  • V = 1631.33 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.14 mm−1

  • T = 120 K

  • 0.40 × 0.03 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.665, Tmax = 1.000

  • 13675 measured reflections

  • 1885 independent reflections

  • 1654 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.075

  • S = 1.06

  • 1885 reflections

  • 108 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.69 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 742 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯Cl1i 0.84 (6) 2.28 (6) 3.1116 (19) 170 (8)
O2—H2o⋯Cl1 0.87 (6) 2.40 (6) 3.211 (3) 157 (7)
C1—H1⋯O1 0.95 2.09 3.042 (5) 180
C2—H2⋯O2ii 0.95 2.40 3.302 (7) 159
Symmetry codes: (i) x, y, z+1; (ii) [-y+{\script{1\over 2}}, x+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The deprotonation of N,N-disubstituted imidazolium salts has been extensively used to generate imidazolylidene carbenes for use as ligands for metals or their salts in homogeneous catalysis (Nolan, 2006; Glorius, 2007). The structural motif can be readily varied so as to modify the electronic properties of the carbene and their complexes (Alcarazo et al., 2010; Leuthaeusser et al., 2007; Diez-Gonzalez & Nolan, 2007). Whereas structural studies are available for a number of derivatives (Luger & Ruban, 1975; Cole & Junk, 2004; Wan et al., 2008), little is known about simple 1,3-diphenyl derivatives that do not posses substituents in the 2,6-positions of the phenyl rings. As part of a study into structural effects of these carbenes, we have been able to prepare and crystallize for the first time the salt 1,3-di-(4-bromophenyl)imidazolium chloride, isolated as a dihydrate, (I).

The crystallographic asymmetric unit of (I) comprises half a 1,3-di-(4-bromophenyl)imidazolium cation, Fig. 1, half a chloride, and two half water molecules, as each of the aforementioned species lies on a two-fold axis of symmetry. The cation is non-planar with the dihedral angle formed between the central imidazolium ring [r.m.s. deviation = 0.005 Å] and the benzene ring (C3–C8) being 12.9 (3) °; the dihedral angle formed between the symmetry related benzene rings is 25.60 (13) °. The twists between the rings allows for the close approach of a water molecule allowing the formation of a C1—H···O1 interaction, Table 1. This O1-water molecule also forms O–H···Cl interactions with the chloride which in turn is connected to the second water molecule leading to eight-membered {···HOH···Cl}2 synthons aligned along the c axis, Fig. 2 and Table 1. The three-dimensional packing is consolidated by further C–H···O2 interactions, Fig. 3, as well as ππ contacts (along c) between the imidazolium and between rings [ring centroid···ring centroid distance = 3.687 (3) Å, angle of inclination = 12.9 (3) ° for i: x, y, 1+z].

Related literature top

For the preparation of imidazolylidene carbenes, see: Nolan (2006); Diez-Gonzalez & Nolan (2007); Glorius (2007); Leuthaeusser et al. (2007); Alcarazo et al. (2010). For related structures, see: Luger & Ruban (1975); Cole & Junk (2004); Wan et al. (2008).

Experimental top

p-Bromoaniline (50 mmol) was solubilised in AcOH/H2O (3:1 V/V, 40 ml). Aqueous formaldehyde (37%, 2 ml) was added to the solution resulting in the precipitation of a solid. Following this, aqueous glyoxal (40%, 3 ml) was added and the reaction mixture was subsequently warmed (333 K) for 30 minutes. Finally, aqueous HCl (3M, 10 ml) was added resulting in the formation of a homogeneous solution. Heating was continued for a further 30 min. The crude product was precipitated from the reaction by diluting with water. The solid was isolated by filtration and allowed to air dry. The product was recrystallized from 2-propanol to generate colourless needles of (I). Melting point 581–583 K; 83% yield. 1H NMR (DMSO-d6/CDCl3): δ 10.48 [1H, s]; 8.55 [2H, s]; 7.90 [4H, s] p.p.m. 13C NMR (DMSO-d6/CDCl3): δ 122.1; 123.2; 124.3; 133.2; 134.0; 135.0 p.p.m. IR (cm-1): 3365, 3092, 3048, 1556, 1488, 1309, 1259, 1075, 1008, 824.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The water-bound H atoms were refined with O–H = 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Structure description top

The deprotonation of N,N-disubstituted imidazolium salts has been extensively used to generate imidazolylidene carbenes for use as ligands for metals or their salts in homogeneous catalysis (Nolan, 2006; Glorius, 2007). The structural motif can be readily varied so as to modify the electronic properties of the carbene and their complexes (Alcarazo et al., 2010; Leuthaeusser et al., 2007; Diez-Gonzalez & Nolan, 2007). Whereas structural studies are available for a number of derivatives (Luger & Ruban, 1975; Cole & Junk, 2004; Wan et al., 2008), little is known about simple 1,3-diphenyl derivatives that do not posses substituents in the 2,6-positions of the phenyl rings. As part of a study into structural effects of these carbenes, we have been able to prepare and crystallize for the first time the salt 1,3-di-(4-bromophenyl)imidazolium chloride, isolated as a dihydrate, (I).

The crystallographic asymmetric unit of (I) comprises half a 1,3-di-(4-bromophenyl)imidazolium cation, Fig. 1, half a chloride, and two half water molecules, as each of the aforementioned species lies on a two-fold axis of symmetry. The cation is non-planar with the dihedral angle formed between the central imidazolium ring [r.m.s. deviation = 0.005 Å] and the benzene ring (C3–C8) being 12.9 (3) °; the dihedral angle formed between the symmetry related benzene rings is 25.60 (13) °. The twists between the rings allows for the close approach of a water molecule allowing the formation of a C1—H···O1 interaction, Table 1. This O1-water molecule also forms O–H···Cl interactions with the chloride which in turn is connected to the second water molecule leading to eight-membered {···HOH···Cl}2 synthons aligned along the c axis, Fig. 2 and Table 1. The three-dimensional packing is consolidated by further C–H···O2 interactions, Fig. 3, as well as ππ contacts (along c) between the imidazolium and between rings [ring centroid···ring centroid distance = 3.687 (3) Å, angle of inclination = 12.9 (3) ° for i: x, y, 1+z].

For the preparation of imidazolylidene carbenes, see: Nolan (2006); Diez-Gonzalez & Nolan (2007); Glorius (2007); Leuthaeusser et al. (2007); Alcarazo et al. (2010). For related structures, see: Luger & Ruban (1975); Cole & Junk (2004); Wan et al. (2008).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in (I) showing displacement ellipsoids at the 50% probability level. The C1 atom lies on a two-fold axis. Symmetry operation i: y, x, 2-z.
[Figure 2] Fig. 2. A view highlighting the eight-membered {···HOH···Cl}2 synthons aligned along the c axis in (I). The O–H···O hydrogen bonding and C–H···O interactions are shown as orange and blue dashed lines, respectively. Colour code: Br, olive; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view in projection down the c axis of the crystal packing in (I). The O–H···O hydrogen bonding and C–H···O interactions are shown as orange and blue dashed lines, respectively. Colour code: Br, olive; O, red; N, blue; C, grey; and H, green.
1,3-Bis(4-bromophenyl)imidazolium chloride dihydrate top
Crystal data top
C15H11Br2N2+·Cl·2H2ODx = 1.835 Mg m3
Mr = 450.56Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42212Cell parameters from 2084 reflections
Hall symbol: P 4n 2nθ = 2.9–27.5°
a = 17.8377 (7) ŵ = 5.14 mm1
c = 5.1270 (1) ÅT = 120 K
V = 1631.33 (10) Å3Needle, colourless
Z = 40.40 × 0.03 × 0.02 mm
F(000) = 888
Data collection top
Nonius KappaCCD
diffractometer
1885 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1654 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
φ and ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1423
Tmin = 0.665, Tmax = 1.000l = 66
13675 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0285P)2 + 2.7306P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1885 reflectionsΔρmax = 0.40 e Å3
108 parametersΔρmin = 0.69 e Å3
2 restraintsAbsolute structure: Flack (1983), 742 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C15H11Br2N2+·Cl·2H2OZ = 4
Mr = 450.56Mo Kα radiation
Tetragonal, P42212µ = 5.14 mm1
a = 17.8377 (7) ÅT = 120 K
c = 5.1270 (1) Å0.40 × 0.03 × 0.02 mm
V = 1631.33 (10) Å3
Data collection top
Nonius KappaCCD
diffractometer
1885 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1654 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 1.000Rint = 0.048
13675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.40 e Å3
S = 1.06Δρmin = 0.69 e Å3
1885 reflectionsAbsolute structure: Flack (1983), 742 Friedel pairs
108 parametersAbsolute structure parameter: 0.01 (2)
2 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.100493 (18)0.463088 (18)0.00124 (12)0.02761 (11)
Cl10.13502 (7)0.13502 (7)0.50000.0552 (4)
O10.20493 (17)0.20493 (17)1.00000.0681 (15)
H1O0.186 (5)0.181 (5)1.125 (8)0.102*
O20.0584 (3)0.0584 (3)1.00000.0794 (16)
H2O0.067 (5)0.087 (4)0.867 (10)0.119*
N10.32639 (19)0.38584 (18)0.8472 (7)0.0274 (7)
C10.32553 (19)0.32553 (19)1.00000.0270 (9)
H10.28790.28791.00000.032*
C20.3893 (3)0.4253 (3)0.9090 (14)0.083 (3)
H20.40440.47140.83220.100*
C30.2714 (2)0.4041 (2)0.6525 (7)0.0252 (8)
C40.2720 (2)0.4748 (2)0.5411 (11)0.0382 (13)
H40.30750.51110.59740.046*
C50.2207 (3)0.4925 (3)0.3464 (9)0.0369 (10)
H50.22090.54080.26850.044*
C60.1696 (2)0.4391 (2)0.2680 (7)0.0267 (9)
C70.1683 (2)0.3694 (2)0.3799 (8)0.0265 (9)
H70.13250.33340.32410.032*
C80.2194 (2)0.3512 (2)0.5749 (8)0.0289 (10)
H80.21850.30300.65360.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02725 (18)0.0350 (2)0.02061 (17)0.00424 (13)0.0019 (3)0.0025 (3)
Cl10.0652 (6)0.0652 (6)0.0352 (8)0.0031 (8)0.0037 (10)0.0037 (10)
O10.079 (2)0.079 (2)0.046 (3)0.049 (3)0.009 (4)0.009 (4)
O20.080 (2)0.080 (2)0.078 (4)0.008 (3)0.018 (4)0.018 (4)
N10.0252 (17)0.0274 (18)0.0296 (19)0.0075 (14)0.0003 (15)0.0059 (15)
C10.0298 (14)0.0298 (14)0.021 (2)0.0017 (19)0.005 (3)0.005 (3)
C20.056 (3)0.061 (3)0.132 (7)0.030 (3)0.064 (4)0.064 (4)
C30.0245 (19)0.030 (2)0.021 (2)0.0066 (16)0.0005 (15)0.0017 (16)
C40.038 (2)0.033 (2)0.044 (4)0.0073 (16)0.011 (2)0.011 (2)
C50.038 (2)0.033 (2)0.039 (3)0.0040 (19)0.013 (2)0.014 (2)
C60.0221 (19)0.036 (2)0.0219 (19)0.0067 (16)0.0002 (15)0.0025 (16)
C70.0219 (19)0.027 (2)0.030 (2)0.0039 (16)0.0048 (17)0.0021 (17)
C80.026 (2)0.029 (2)0.032 (3)0.0052 (16)0.0026 (15)0.0037 (15)
Geometric parameters (Å, º) top
Br1—C61.890 (4)C3—C81.383 (6)
O1—H1O0.84 (6)C3—C41.383 (6)
O2—H2O0.87 (6)C4—C51.391 (6)
N1—C11.331 (4)C4—H40.9500
N1—C21.362 (6)C5—C61.378 (6)
N1—C31.437 (5)C5—H50.9500
C1—N1i1.331 (4)C6—C71.370 (6)
C1—H10.9500C7—C81.391 (6)
C2—C2i1.303 (10)C7—H70.9500
C2—H20.9500C8—H80.9500
C1—N1—C2106.9 (4)C5—C4—H4120.1
C1—N1—C3125.8 (4)C6—C5—C4119.2 (4)
C2—N1—C3127.3 (4)C6—C5—H5120.4
N1—C1—N1i109.1 (5)C4—C5—H5120.4
N1—C1—H1125.4C7—C6—C5121.1 (4)
N1i—C1—H1125.4C7—C6—Br1119.8 (3)
C2i—C2—N1108.5 (3)C5—C6—Br1119.1 (3)
C2i—C2—H2125.7C6—C7—C8120.2 (4)
N1—C2—H2125.7C6—C7—H7119.9
C8—C3—C4120.6 (4)C8—C7—H7119.9
C8—C3—N1120.2 (4)C3—C8—C7119.1 (4)
C4—C3—N1119.2 (4)C3—C8—H8120.5
C3—C4—C5119.9 (4)C7—C8—H8120.5
C3—C4—H4120.1
C2—N1—C1—N1i0.2 (4)N1—C3—C4—C5177.9 (4)
C3—N1—C1—N1i178.9 (4)C3—C4—C5—C60.2 (7)
C1—N1—C2—C2i0.7 (10)C4—C5—C6—C70.5 (7)
C3—N1—C2—C2i178.4 (6)C4—C5—C6—Br1179.4 (4)
C1—N1—C3—C812.5 (5)C5—C6—C7—C80.4 (6)
C2—N1—C3—C8166.4 (5)Br1—C6—C7—C8179.5 (3)
C1—N1—C3—C4168.5 (4)C4—C3—C8—C71.0 (6)
C2—N1—C3—C412.5 (7)N1—C3—C8—C7177.9 (3)
C8—C3—C4—C51.0 (7)C6—C7—C8—C30.3 (6)
Symmetry code: (i) y, x, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···Cl1ii0.84 (6)2.28 (6)3.1116 (19)170 (8)
O2—H2o···Cl10.87 (6)2.40 (6)3.211 (3)157 (7)
C1—H1···O10.952.093.042 (5)180
C2—H2···O2iii0.952.403.302 (7)159
Symmetry codes: (ii) x, y, z+1; (iii) y+1/2, x+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H11Br2N2+·Cl·2H2O
Mr450.56
Crystal system, space groupTetragonal, P42212
Temperature (K)120
a, c (Å)17.8377 (7), 5.1270 (1)
V3)1631.33 (10)
Z4
Radiation typeMo Kα
µ (mm1)5.14
Crystal size (mm)0.40 × 0.03 × 0.02
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.665, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13675, 1885, 1654
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 1.06
No. of reflections1885
No. of parameters108
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.69
Absolute structureFlack (1983), 742 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···Cl1i0.84 (6)2.28 (6)3.1116 (19)170 (8)
O2—H2o···Cl10.87 (6)2.40 (6)3.211 (3)157 (7)
C1—H1···O10.952.093.042 (5)180
C2—H2···O2ii0.952.403.302 (7)159
Symmetry codes: (i) x, y, z+1; (ii) y+1/2, x+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. SJG thanks CNPq and FAPERJ for financial support. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationAlcarazo, M., Stork, T., Anoop, A., Thiel, W. & Fürstner, A. (2010). Angew. Chem. Int. Ed. 49, 2542–2546.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCole, M. L. & Junk, P. C. (2004). CrystEngComm, 6, 173–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationDiez-Gonzalez, S. & Nolan, S. P. (2007). Coord. Chem. Rev. 251, 874–883.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlorius, F. (2007). N-Heterocyclic Carbenes in Transition Metal Catalysis. In Topics Organometallic Chemistry, Vol. 21, pp. 1–218. Berlin: Springer.  Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLeuthaeusser, S., Schwarz, D. & Plenio, H. (2007). Chem. Eur. J. 13, 7195–7203.  PubMed CAS Google Scholar
First citationLuger, P. & Ruban, G. (1975). Z. Kristallogr. 142, 177–185.  CrossRef CAS Google Scholar
First citationNolan, S. P. (2006). N-Heterocyclic Carbenes in Synthesis, pp. 1–304. Weinheim: Wiley–VCH.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, Y., Xin, H., Chen, X., Xu, H. & Wu, H. (2008). Acta Cryst. E64, o2159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds