organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Methacryloyl-4-(piperidin-1-yl)-1,8-naphthalimide

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 20 May 2010; accepted 20 May 2010; online 29 May 2010)

In the title compound, C21H20N2O3, the naphthalimide unit is almost planar (r.m.s. deviation for the 15 non-H atoms = 0.059 Å). The carboximide N atom and the five C atoms of the 2-methyl­prop-2-enoyl substituent also lie in a plane (r.m.s. deviation = 0.009 Å), which subtends an angle of 84.34 (7)° to the naphthalamide plane. This orients the =CH2 group of the vinyl fragment towards the naphthalimide rings, giving the mol­ecule an extended configuration. The piperidine ring adopts a chair conformation and there is evidence for some delocalization between the naphthalene and piperidine units, the C—Npip bond length being 1.404 (4) Å. In the crystal structure, ππ contacts with centroid–centroid distances of 3.5351 (18) and 3.7794 (18) Å supported by C—H⋯O hydrogen bonds link adjacent mol­ecules in a head-to-tail fashion, forming dimers. These are further stabilized by other C—H⋯O contacts of varying strength, which stack the mol­ecules down the b axis.

Related literature

For background to the applications of 1,8-naphthalamides, see: McAdam et al. (2003[McAdam, C. J., Morgan, J. L., Robinson, B. H., Simpson, J., Rieger, P. H. & Rieger, A. L. (2003). Organometallics, 22, 5126- 5136.], 2010[McAdam, C. J., Robinson, B. H., Simpson, J. & Tagg, T. (2010). Organometallics, doi: 10.1021/om1000452.]); Flood et al. (2007[Flood, A. H., McAdam, C. J., Gordon, K. C., Kjaergaard, H. G., Manning, A. R., Robinson, B. H. & Simpson, J. (2007). Polyhedron, 26, 448-455.]). For their incorporation into polymer systems, see: Dana et al. (2007[Dana, B. H., McAdam, C. J., Robinson, B. H., Simpson, J. & Wang, H. (2007). J. Inorg. Organomet. Polym. Mater. 17, 547-559.]); Munro et al. (2008[Munro, N. H., Hanton, L. R., Robinson, B. H. & Simpson, J. (2008). React. Funct. Polym. 68 671-678 .]). For related structures, see: McAdam et al. (2003[McAdam, C. J., Morgan, J. L., Robinson, B. H., Simpson, J., Rieger, P. H. & Rieger, A. L. (2003). Organometallics, 22, 5126- 5136.]); Easton et al. (1992[Easton, C. J., Gulbis, J. M., Hoskins, B. F., Scharfbillig, I. M. & Tiekink, E. R. T. (1992). Z. Kristallogr. 199, 249-254.]); Batchelor et al. (1997[Batchelor, R. A., Hunter, C. A. & Simpson, J. (1997). Acta Cryst. C53, 1117-1119.]); Tagg et al. (2008[Tagg, T., McAdam, C. J., Robinson, B. H. & Simpson, J. (2008). Acta Cryst. C64, o388-o391.]). For comparative bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20N2O3

  • Mr = 348.39

  • Monoclinic, C 2/c

  • a = 29.049 (3) Å

  • b = 6.9852 (7) Å

  • c = 17.1503 (17) Å

  • β = 102.013 (6)°

  • V = 3403.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.65 × 0.11 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.838, Tmax = 1.000

  • 12211 measured reflections

  • 1843 independent reflections

  • 1440 reflections with I > 2σ(I)

  • Rint = 0.075

  • θmax = 21.2°

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.152

  • S = 1.12

  • 1843 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21B⋯O12i 0.99 2.54 3.485 (4) 160
C24—H24A⋯O12ii 0.99 2.67 3.365 (4) 127
C21—H21A⋯O11iii 0.99 2.36 3.258 (4) 150
C25—H25B⋯O11iv 0.99 2.72 3.278 (4) 117
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

We have recently been interested in naphthalimide derivatives as components of donor-acceptor arrays because, as good acceptors, they often exhibit strong fluorescence together with redox triggered LMCT transitions in the near-IR (McAdam et al. 2003, 2010; Flood et al. 2007). We have also incorporated fluorescent naphthalimides into polymer systems (Dana et al., 2007; Munro et al., 2008). Methacrylate derivatives are polymer precursors and the title compound, I, Fig 1, was synthesised to further scope the possibilities of incorporating fluorescent naphthalimide derivatives into polymers.

The title compound comprises a 1,8-naphthalimide ring system with a piperidino ring at the C4 position of the naphthalene ring and a 2-methyl-prop-2-en-1-one substituent on the N1 atom of the dicarboxamide ring. The naphthalimide unit is planar with an rms deviation from the best fit meanplane through all 15 non-hydrogen atoms of 0.0494 Å. The C13 atom of the propenone headgroup and the N2 atom of the piperidine ring are both displaced slightly from this plane with deviations 0.170 (4) and 0.004 (3) Å respectively both in the same direction. Bond lengths within the dicarboxamide ring are normal (Allen et al., 1987) and consistent with a degree of delocalisation in the naphthalimide system. In keeping with previous observations (Easton et al., 1992; Batchelor et al., 1997; Tagg et al., 2008) the N1—C13 bond is relatively long, 1.486 (4) Å, suggesting that there is a node at the N1 atom. In contrast the C4—N2 bond is short, 1.404 (4) Å, indicating a degree of delocalisation between the naphthalene and piperidine units. The piperidine ring adopts a classical chair conformation with Cremer-Pople puckering parameters [Q(2) = 0.005 (4) Å, φ(2) = 154 (5)° and Q(3) = -0.575 (43) Å (Cremer & Pople, 1975). The N1, C13, (O1), C14, C15, C16 segment of the propenone is also planar (rms deviation 0.0920 Å) and subtends an angle of 84.44 (7)° to the naphthalimide plane. This orients the =C15H2 of the vinyl fragment towards the naphthalimide rings.

In the crystal structure intermolecular ππ contacts occur between the unsubstituted C5···C8, C9, C10 naphthalene ring of one molecule and the C1, C8, C9, C11, C12, N1 carboxamide and substituted C1···C4, C9, C10 rings of an adjacent molecule to form head to tail dimers, with centroid to centroid distances of 3.5351 (18) and 3.7794 (18) Å respectively, Fig 2. These contacts are supported by weak C25–H25B···O11 hydrogen bonds. The dimers are further aggregated by a range of additional C—H···O contacts, Table 2, to give an extensive three dimensional network structure with molecules stacked down the b axis, Fig. 3.

Related literature top

For background to the applications of 1,8-naphthalamides, see: McAdam et al. (2003, 2010); Flood et al. (2007). For their incorporation into polymer systems, see: Dana et al. (2007); Munro et al. (2008). For related structures, see: McAdam et al. (2003); Easton et al. (1992); Batchelor et al. (1997); Tagg et al. (2008). For comparative bond-length data, see: Allen et al. (1987) and for ring conformations, see: Cremer & Pople (1975).

Experimental top

4-Piperidine-1,8-naphthalic amide (200 mg, 0.72 mmol) was dissolved in distilled dichloromethane (DCM) (30 ml) under N2, triethylamine (3 ml) and methylacryoyl chloride (0.18 ml, 1.4 mmol) were added sequentially by syringe at 273 K. The mixture was stirred overnight. The mixture was then washed with distilled water (3 times) and the organic phase dried over MgSO4. The solvent was evaporated under reduced pressure and the crude product purified by silica gel column chromatography with hexane-ethyl acetate (50:50, v/v) to give an orange solid (168.3 mg, 0.48 mmol); yield of 67.2%. The compound was recrystallised by the slow diffusion of hexane into a concentrated solution of I in DCM to give very thin orange blades/needles of (I).

Refinement top

All H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic, 0.99 Å, Uiso=1.2Ueq (C) for CH2 and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms. Crystals were very thin and weakly diffracting and measurable reflection data could not be observed beyond θ = 21.2 °. This results in both low data resolution and a poor data/parameter ratio.

Structure description top

We have recently been interested in naphthalimide derivatives as components of donor-acceptor arrays because, as good acceptors, they often exhibit strong fluorescence together with redox triggered LMCT transitions in the near-IR (McAdam et al. 2003, 2010; Flood et al. 2007). We have also incorporated fluorescent naphthalimides into polymer systems (Dana et al., 2007; Munro et al., 2008). Methacrylate derivatives are polymer precursors and the title compound, I, Fig 1, was synthesised to further scope the possibilities of incorporating fluorescent naphthalimide derivatives into polymers.

The title compound comprises a 1,8-naphthalimide ring system with a piperidino ring at the C4 position of the naphthalene ring and a 2-methyl-prop-2-en-1-one substituent on the N1 atom of the dicarboxamide ring. The naphthalimide unit is planar with an rms deviation from the best fit meanplane through all 15 non-hydrogen atoms of 0.0494 Å. The C13 atom of the propenone headgroup and the N2 atom of the piperidine ring are both displaced slightly from this plane with deviations 0.170 (4) and 0.004 (3) Å respectively both in the same direction. Bond lengths within the dicarboxamide ring are normal (Allen et al., 1987) and consistent with a degree of delocalisation in the naphthalimide system. In keeping with previous observations (Easton et al., 1992; Batchelor et al., 1997; Tagg et al., 2008) the N1—C13 bond is relatively long, 1.486 (4) Å, suggesting that there is a node at the N1 atom. In contrast the C4—N2 bond is short, 1.404 (4) Å, indicating a degree of delocalisation between the naphthalene and piperidine units. The piperidine ring adopts a classical chair conformation with Cremer-Pople puckering parameters [Q(2) = 0.005 (4) Å, φ(2) = 154 (5)° and Q(3) = -0.575 (43) Å (Cremer & Pople, 1975). The N1, C13, (O1), C14, C15, C16 segment of the propenone is also planar (rms deviation 0.0920 Å) and subtends an angle of 84.44 (7)° to the naphthalimide plane. This orients the =C15H2 of the vinyl fragment towards the naphthalimide rings.

In the crystal structure intermolecular ππ contacts occur between the unsubstituted C5···C8, C9, C10 naphthalene ring of one molecule and the C1, C8, C9, C11, C12, N1 carboxamide and substituted C1···C4, C9, C10 rings of an adjacent molecule to form head to tail dimers, with centroid to centroid distances of 3.5351 (18) and 3.7794 (18) Å respectively, Fig 2. These contacts are supported by weak C25–H25B···O11 hydrogen bonds. The dimers are further aggregated by a range of additional C—H···O contacts, Table 2, to give an extensive three dimensional network structure with molecules stacked down the b axis, Fig. 3.

For background to the applications of 1,8-naphthalamides, see: McAdam et al. (2003, 2010); Flood et al. (2007). For their incorporation into polymer systems, see: Dana et al. (2007); Munro et al. (2008). For related structures, see: McAdam et al. (2003); Easton et al. (1992); Batchelor et al. (1997); Tagg et al. (2008). For comparative bond-length data, see: Allen et al. (1987) and for ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Head to tail dimers of (I) formed by ππ contacts (black dotted lines) augmented by C—-H···O hydrogen bonds (blue dashed lines). The blue sphere represents the centroid of the the C5···C8,C9,C10 ring, the red and green spheres those of the C1, C8, C9, C11, C12, N1 and C1···C4, C9, C10 rings respectively of an adjacent molecule. The symmetry operation linking the two molecules is 3/2-x, 3/2-y, 1-z.
[Figure 3] Fig. 3. The crystal packing of (I) viewed down the b axis with hydrogen bonds drawn as blue dashed lines.
N-Methacryloyl-4-(piperidin-1-yl)naphthalene-1,8-dicarboximide top
Crystal data top
C21H20N2O3F(000) = 1472
Mr = 348.39Dx = 1.360 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2032 reflections
a = 29.049 (3) Åθ = 2.4–21.1°
b = 6.9852 (7) ŵ = 0.09 mm1
c = 17.1503 (17) ÅT = 90 K
β = 102.013 (6)°Blade, orange
V = 3403.7 (6) Å30.65 × 0.11 × 0.04 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
1843 independent reflections
Radiation source: fine-focus sealed tube1440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 21.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2929
Tmin = 0.838, Tmax = 1.000k = 76
12211 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0822P)2]
where P = (Fo2 + 2Fc2)/3
1843 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H20N2O3V = 3403.7 (6) Å3
Mr = 348.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.049 (3) ŵ = 0.09 mm1
b = 6.9852 (7) ÅT = 90 K
c = 17.1503 (17) Å0.65 × 0.11 × 0.04 mm
β = 102.013 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
1843 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1440 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 1.000Rint = 0.075
12211 measured reflectionsθmax = 21.2°
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.12Δρmax = 0.20 e Å3
1843 reflectionsΔρmin = 0.21 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70398 (11)0.5991 (4)0.6119 (2)0.0221 (9)
C20.72082 (12)0.6631 (5)0.6879 (2)0.0237 (9)
H20.69910.70170.71930.028*
C30.76855 (12)0.6733 (5)0.7204 (2)0.0242 (9)
H30.77880.72120.77300.029*
C40.80161 (12)0.6150 (4)0.6777 (2)0.0217 (9)
C50.81694 (12)0.5175 (4)0.5443 (2)0.0227 (9)
H50.84990.52700.56400.027*
C60.80025 (12)0.4695 (4)0.4661 (2)0.0255 (9)
H60.82190.44500.43260.031*
C70.75190 (12)0.4560 (4)0.4347 (2)0.0225 (9)
H70.74080.42070.38050.027*
C80.72057 (12)0.4939 (4)0.4825 (2)0.0217 (9)
C90.73615 (12)0.5448 (4)0.5643 (2)0.0201 (9)
C100.78588 (12)0.5534 (4)0.5964 (2)0.0218 (9)
C110.66975 (13)0.4926 (4)0.4468 (2)0.0236 (9)
C120.65327 (13)0.5993 (5)0.5773 (2)0.0236 (9)
C130.58901 (13)0.5604 (5)0.4598 (2)0.0303 (10)
C140.56012 (12)0.3865 (5)0.4482 (2)0.0294 (10)
C150.57626 (13)0.2257 (5)0.4834 (2)0.0351 (10)
H15A0.60680.22170.51660.042*
H15B0.55740.11350.47570.042*
C160.51218 (13)0.4093 (6)0.3979 (3)0.0469 (12)
H16A0.49530.28710.39510.070*
H16B0.51470.44890.34410.070*
H16C0.49490.50680.42130.070*
C210.87594 (12)0.4410 (5)0.7217 (2)0.0300 (10)
H21A0.86470.35620.67540.036*
H21B0.86940.37700.76970.036*
C220.92823 (12)0.4714 (5)0.7318 (2)0.0346 (10)
H22A0.93520.52480.68210.041*
H22B0.94470.34710.74240.041*
C230.94596 (13)0.6084 (5)0.8008 (2)0.0380 (11)
H23A0.94240.54910.85160.046*
H23B0.97980.63600.80430.046*
C240.91787 (12)0.7929 (5)0.7872 (2)0.0350 (10)
H24A0.92810.87900.83340.042*
H24B0.92420.85800.73920.042*
C250.86568 (12)0.7558 (5)0.7762 (2)0.0300 (9)
H25A0.85880.69910.82540.036*
H25B0.84830.87810.76580.036*
N10.63959 (9)0.5398 (4)0.49807 (17)0.0237 (8)
N20.85019 (10)0.6250 (4)0.70929 (16)0.0262 (8)
O10.57432 (8)0.7182 (4)0.43997 (15)0.0387 (7)
O110.65310 (8)0.4540 (3)0.37740 (14)0.0293 (7)
O120.62306 (9)0.6481 (3)0.61341 (15)0.0331 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.020 (2)0.018 (2)0.026 (2)0.0025 (15)0.0009 (18)0.0004 (16)
C20.028 (2)0.021 (2)0.024 (2)0.0006 (16)0.0074 (19)0.0028 (16)
C30.024 (2)0.024 (2)0.024 (2)0.0007 (16)0.0020 (18)0.0024 (16)
C40.021 (2)0.0138 (19)0.029 (2)0.0024 (15)0.0029 (19)0.0030 (15)
C50.021 (2)0.0160 (19)0.031 (2)0.0053 (15)0.0041 (18)0.0035 (16)
C60.029 (2)0.022 (2)0.027 (2)0.0027 (16)0.0106 (19)0.0023 (16)
C70.027 (2)0.0163 (19)0.022 (2)0.0003 (15)0.0016 (18)0.0002 (15)
C80.028 (2)0.0070 (19)0.029 (2)0.0007 (15)0.0031 (19)0.0015 (15)
C90.021 (2)0.0130 (19)0.026 (2)0.0017 (15)0.0034 (18)0.0024 (16)
C100.028 (2)0.0116 (18)0.024 (2)0.0012 (15)0.0005 (18)0.0025 (15)
C110.029 (2)0.016 (2)0.025 (2)0.0004 (16)0.003 (2)0.0036 (16)
C120.026 (2)0.020 (2)0.025 (2)0.0007 (17)0.008 (2)0.0005 (17)
C130.029 (2)0.028 (3)0.031 (2)0.0066 (19)0.0008 (19)0.0009 (18)
C140.027 (2)0.031 (3)0.028 (2)0.0014 (19)0.0020 (18)0.0012 (18)
C150.029 (2)0.032 (3)0.042 (3)0.0043 (19)0.002 (2)0.003 (2)
C160.030 (2)0.050 (3)0.053 (3)0.002 (2)0.011 (2)0.001 (2)
C210.027 (2)0.024 (2)0.036 (2)0.0026 (16)0.0004 (19)0.0035 (17)
C220.030 (2)0.037 (2)0.035 (2)0.0060 (18)0.0037 (19)0.0006 (18)
C230.024 (2)0.050 (3)0.038 (3)0.0006 (19)0.0013 (19)0.008 (2)
C240.028 (2)0.042 (3)0.033 (2)0.0062 (18)0.0034 (19)0.0139 (18)
C250.026 (2)0.034 (2)0.028 (2)0.0011 (17)0.0019 (18)0.0093 (18)
N10.0192 (18)0.0226 (17)0.0269 (19)0.0013 (13)0.0011 (15)0.0011 (13)
N20.0242 (19)0.0272 (18)0.0248 (18)0.0010 (14)0.0007 (14)0.0044 (14)
O10.0375 (17)0.0292 (17)0.0462 (18)0.0089 (13)0.0015 (14)0.0043 (13)
O110.0325 (17)0.0280 (15)0.0238 (16)0.0017 (11)0.0024 (13)0.0014 (11)
O120.0269 (16)0.0365 (16)0.0349 (17)0.0011 (12)0.0043 (14)0.0032 (12)
Geometric parameters (Å, º) top
C1—C21.368 (5)C13—N11.486 (4)
C1—C91.415 (5)C14—C151.315 (5)
C1—C121.469 (5)C14—C161.486 (5)
C2—C31.384 (5)C15—H15A0.9500
C2—H20.9500C15—H15B0.9500
C3—C41.385 (5)C16—H16A0.9800
C3—H30.9500C16—H16B0.9800
C4—N21.404 (4)C16—H16C0.9800
C4—C101.440 (5)C21—N21.480 (4)
C5—C61.370 (4)C21—C221.508 (5)
C5—C101.418 (5)C21—H21A0.9900
C5—H50.9500C21—H21B0.9900
C6—C71.399 (5)C22—C231.525 (5)
C6—H60.9500C22—H22A0.9900
C7—C81.372 (5)C22—H22B0.9900
C7—H70.9500C23—C241.517 (5)
C8—C91.426 (5)C23—H23A0.9900
C8—C111.476 (5)C23—H23B0.9900
C9—C101.436 (5)C24—C251.511 (5)
C11—O111.218 (4)C24—H24A0.9900
C11—N11.403 (4)C24—H24B0.9900
C12—O121.223 (4)C25—N21.462 (4)
C12—N11.397 (4)C25—H25A0.9900
C13—O11.205 (4)C25—H25B0.9900
C13—C141.466 (5)
C2—C1—C9119.3 (3)H15A—C15—H15B120.0
C2—C1—C12121.0 (3)C14—C16—H16A109.5
C9—C1—C12119.6 (3)C14—C16—H16B109.5
C1—C2—C3122.0 (3)H16A—C16—H16B109.5
C1—C2—H2119.0C14—C16—H16C109.5
C3—C2—H2119.0H16A—C16—H16C109.5
C2—C3—C4121.2 (3)H16B—C16—H16C109.5
C2—C3—H3119.4N2—C21—C22111.2 (3)
C4—C3—H3119.4N2—C21—H21A109.4
C3—C4—N2122.2 (3)C22—C21—H21A109.4
C3—C4—C10119.0 (3)N2—C21—H21B109.4
N2—C4—C10118.7 (3)C22—C21—H21B109.4
C6—C5—C10121.2 (3)H21A—C21—H21B108.0
C6—C5—H5119.4C21—C22—C23110.3 (3)
C10—C5—H5119.4C21—C22—H22A109.6
C5—C6—C7121.0 (3)C23—C22—H22A109.6
C5—C6—H6119.5C21—C22—H22B109.6
C7—C6—H6119.5C23—C22—H22B109.6
C8—C7—C6119.7 (3)H22A—C22—H22B108.1
C8—C7—H7120.2C24—C23—C22109.3 (3)
C6—C7—H7120.2C24—C23—H23A109.8
C7—C8—C9121.4 (3)C22—C23—H23A109.8
C7—C8—C11118.8 (3)C24—C23—H23B109.8
C9—C8—C11119.6 (3)C22—C23—H23B109.8
C1—C9—C8121.5 (3)H23A—C23—H23B108.3
C1—C9—C10120.0 (3)C25—C24—C23111.5 (3)
C8—C9—C10118.4 (3)C25—C24—H24A109.3
C5—C10—C9118.2 (3)C23—C24—H24A109.3
C5—C10—C4123.2 (3)C25—C24—H24B109.3
C9—C10—C4118.4 (3)C23—C24—H24B109.3
O11—C11—N1119.4 (3)H24A—C24—H24B108.0
O11—C11—C8124.5 (3)N2—C25—C24110.0 (3)
N1—C11—C8116.1 (3)N2—C25—H25A109.7
O12—C12—N1119.1 (3)C24—C25—H25A109.7
O12—C12—C1124.1 (3)N2—C25—H25B109.7
N1—C12—C1116.8 (3)C24—C25—H25B109.7
O1—C13—C14124.1 (3)H25A—C25—H25B108.2
O1—C13—N1118.2 (3)C12—N1—C11126.2 (3)
C14—C13—N1117.7 (3)C12—N1—C13117.1 (3)
C15—C14—C13120.4 (3)C11—N1—C13115.8 (3)
C15—C14—C16124.0 (3)C4—N2—C25117.0 (3)
C13—C14—C16115.5 (3)C4—N2—C21116.7 (2)
C14—C15—H15A120.0C25—N2—C21111.5 (3)
C14—C15—H15B120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···O12i0.992.543.485 (4)160
C24—H24A···O12ii0.992.673.365 (4)127
C21—H21A···O11iii0.992.363.258 (4)150
C25—H25B···O11iv0.992.723.278 (4)117
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+3/2, y+1/2, z+1; (iv) x+3/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H20N2O3
Mr348.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)29.049 (3), 6.9852 (7), 17.1503 (17)
β (°) 102.013 (6)
V3)3403.7 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.65 × 0.11 × 0.04
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.838, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12211, 1843, 1440
Rint0.075
θmax (°)21.2
(sin θ/λ)max1)0.509
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.152, 1.12
No. of reflections1843
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···O12i0.992.543.485 (4)160
C24—H24A···O12ii0.992.673.365 (4)127
C21—H21A···O11iii0.992.363.258 (4)150
C25—H25B···O11iv0.992.723.278 (4)117
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+3/2, y+1/2, z+1; (iv) x+3/2, y+3/2, z+1.
 

Acknowledgements

We thank the New Economy Research Fund; grant No. UOO-X0808 for support of this work and the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBatchelor, R. A., Hunter, C. A. & Simpson, J. (1997). Acta Cryst. C53, 1117–1119.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDana, B. H., McAdam, C. J., Robinson, B. H., Simpson, J. & Wang, H. (2007). J. Inorg. Organomet. Polym. Mater. 17, 547–559.  Web of Science CrossRef CAS Google Scholar
First citationEaston, C. J., Gulbis, J. M., Hoskins, B. F., Scharfbillig, I. M. & Tiekink, E. R. T. (1992). Z. Kristallogr. 199, 249–254.  CrossRef CAS Google Scholar
First citationFlood, A. H., McAdam, C. J., Gordon, K. C., Kjaergaard, H. G., Manning, A. R., Robinson, B. H. & Simpson, J. (2007). Polyhedron, 26, 448–455.  Web of Science CrossRef CAS Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcAdam, C. J., Morgan, J. L., Robinson, B. H., Simpson, J., Rieger, P. H. & Rieger, A. L. (2003). Organometallics, 22, 5126– 5136.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcAdam, C. J., Robinson, B. H., Simpson, J. & Tagg, T. (2010). Organometallics, doi: 10.1021/om1000452.  Google Scholar
First citationMunro, N. H., Hanton, L. R., Robinson, B. H. & Simpson, J. (2008). React. Funct. Polym. 68 671–678 .  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTagg, T., McAdam, C. J., Robinson, B. H. & Simpson, J. (2008). Acta Cryst. C64, o388–o391.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds