metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{deca­carbonyl­bis­­[μ-2,2′-(phenyl­imino)­di­ethano­lato]ditin(II)ditungsten(0)(2 Sn—W)} hexa­carbonyl­tungsten(0)

aFakultät Chemie, Technische Universität Dortmund, 44221 Dortmund, Germany, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com, klaus.jurkschat@tu-dortmund.de

(Received 21 May 2010; accepted 24 May 2010; online 29 May 2010)

In the title 2:1 adduct, [Sn2W2(C10H13NO2)2(CO)10]2[W(CO)6], the complete hexa­carbonyl­tungsten mol­ecule is generated by a crystallographic inversion centre. The heterometallic mol­ecule features a central Sn2O2 core with essentially equal Sn—Oeth­oxy bond lengths. The second eth­oxy O and amine N atoms of each N,O,O′-tridentate ligand coordinate to one Sn atom only. The NO3 donor atoms occupy basal positions and the W atom the apical position in a distorted square-pyramidal geometry for each Sn atom. The W atoms are approximately syn to each other but the central metal core is non-planar [W—Sn⋯Sn—W pseudo-torsion angle = 43.573 (16)°]. One of the carbonyl ligands in the heterometallic mol­ecule is disordered over two orientations with equal occupancies. In the crystal, the heterometallic mol­ecules associate via C—H⋯O inter­actions, forming supra­molecular layers with undulating topology in the ab plane. These stack along the c axis, defining voids which are occupied by the W(CO)6 mol­ecules.

Related literature

For synthetic background, see: Zeldin & Gsell (1976[Zeldin, M. & Gsell, R. (1976). Synth. React. Inorg. Metallorg. Chem. 6, 11.]); Zschunke et al. (1983[Zschunke, A., Mügge, C., Scheer, M., Jurkschat, K. & Tzschach, A. (1983). J. Crystallogr. Spectrosc. Res. 13, 201-210.], 1986[Zschunke, A., Scheer, M., Völzke, M., Jurkschat, K. & Tzschach, A. (1986). J. Organomet. Chem. 308, 325-334.]). For related structures, see: Berends et al. (2009[Berends, T., Iovkova, L., Bradtmöller, G., Oppel, I., Schürmann, M. & Jurkschat, K. (2009). Z. Anorg. Allg. Chem. 635, 369-374.]). For additional geometric analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2W2(C10H13NO2)2(CO)10]2[W(CO)6]

  • Mr = 2839.15

  • Triclinic, [P \overline 1]

  • a = 11.3547 (5) Å

  • b = 12.5454 (5) Å

  • c = 16.8187 (7) Å

  • α = 108.715 (4)°

  • β = 92.758 (4)°

  • γ = 115.350 (4)°

  • V = 2001.90 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 8.46 mm−1

  • T = 173 K

  • 0.20 × 0.08 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur2 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.608, Tmax = 1.000

  • 39646 measured reflections

  • 9035 independent reflections

  • 7218 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.039

  • S = 0.95

  • 9035 reflections

  • 518 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −1.74 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—W1 2.7274 (3)
Sn1—O11 2.091 (2)
Sn1—O17 2.001 (3)
Sn1—O21 2.201 (2)
Sn1—N14 2.507 (3)
Sn2—W2 2.7334 (3)
Sn2—O11 2.173 (2)
Sn2—O21 2.104 (2)
Sn2—O27 2.011 (2)
Sn2—N24 2.391 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23a⋯O44i 0.99 2.52 3.301 (5) 136
C64—H64a⋯O31ii 0.95 2.58 3.174 (6) 121
Symmetry codes: (i) x+1, y, z; (ii) x-1, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The title compound, (I), investigated as a continuation of a long-standing interest in heterometallic compounds containing Sn and W (Zeldin et al., 1976; Zschunke et al., 1983; Zschunke et al., 1986; Berends et al., 2009), is a co-crystal comprising a [(CO)5WSn(OC2H4)2NPh]2 molecule, Fig. 1, and a W(CO)6 molecule, Fig. 2, with the latter disposed about a crystallographic centre of inversion.

The structure of [(CO)5WSn(OC2H4)2NPh]2 resembles that of the related N-methyl- and N-(t-butyl)- substituted derivatives (Berends et al., 2009). Dimerization is achieved by almost symmetric µ2-ethoxy bridges between the Sn atoms, Table 1. Each tridentate ligand also coordinates to a tin atom via bonds formed by a second ethoxy-O and the amine-N. The coordination geometries are based on square pyramidal configurations with the O11, O17, O21, and N14 atoms at Sn1, and the O11, O21, O27, and N24 atoms at Sn2 occupying the basal positions, and W1 (at Sn1) and W2 (at Sn2) occupying the apical positions, Table 1. The values of τ = 0.02 and 0.08 for Sn1 and Sn2, respectively, which compare to τ = 0.0 for an ideal square pyramid and τ = 1.0 for an ideal trigonal pyramidal arrangement (Addison et al., 1984), confirm the assignment of coordination polyhedra. The W atoms are approximately syn to each other but the W1–Sn1···Sn2–W2 atoms deviate from co-planarity as seen in the torsion angle of 43.573 (16) °. The Sn1–N14 and Sn2–N24 bond distances of 2.507 (3) and 2.391 (3) Å, respectively, fall in between those found for the N-methyl (2.356 (5)/2.360 (6) Å) and N-(t-butyl) (2.549 (4)/2.444 (5) Å)) -substituted analogues (Berends et al., 2009) and indicate the increasing donor capacity of the N atoms in the sequence N(t-Bu) < NPh < NMe.

The most prominent intermolecular interactions operating in the crystal structure are of the type C–H···O, Table 2, and these occur between atoms comprising [(CO)5WSn(OC2H4)2NPh]2 to form an undulating 2-D array in the ab plane, Fig. 3. Centrosymmetric layers associate to form a double layer and these stack along the c axis. Gaps evident in Fig. 2, from translational symmetry, face each other in the global crystal packing to form voids of approximate volume 300 Å3, allowing for the incorporation of the W(CO)6 molecules, as highlighted in Fig. 4.

Related literature top

For synthetic background, see: Zeldin et al. (1976); Zschunke et al. (1983, 1986). For related structures, see: Berends et al. (2009). For additional geometric analysis, see: Addison et al. (1984).

Experimental top

Freshly prepared tin(II) butoxide was reacted with one molar equivalent of N-phenyldiethanolamine in toluene. The toluene/butanol azeotropic mixture was distilled off and the stannylene Sn(OCH2CH2)2NPh was isolated as a very poorly soluble white solid that was not characterized further and used in the next step without further purification. The stannylene (2.9 g, 4.8 mmol) was suspended in THF (50 ml) and an excess of W(CO)5.THF in THF was added dropwise. The reaction mixture was stirred for 24 h at room temperature during which it turned to a clear solution. The THF was removed in vacuo and the residue was recrystallized from toluene to give colourless prisms of (I) (5.2 g, 75%, m.p. 460 K). 119Sn-NMR (CD2Cl2, 300 MHz) δ -210 p.p.m. (s, 1J(119Sn-183W) = 1515 Hz). Elemental analysis: calculated (%) for C66H52N4O34Sn4W5: C 27.9, H 1.9, N 2.0. Found: C 27.0, H 2.0, N 1.9.

Refinement top

The H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks of 0.87 and -1.74 e Å-3, respectively, were located 0.00 and 0.57 Å from the W3 atom. One the W2-bound carbonyl groups (C35O35) was disordered over two positions of equal weight (from anisotropic refinement). The anisotropic displacement parameters of the disordered atoms were constrained to be equal and approximately isotropic by the EADP and ISOR commands in SHELX-97, respectively (Sheldrick, 2008).

Structure description top

The title compound, (I), investigated as a continuation of a long-standing interest in heterometallic compounds containing Sn and W (Zeldin et al., 1976; Zschunke et al., 1983; Zschunke et al., 1986; Berends et al., 2009), is a co-crystal comprising a [(CO)5WSn(OC2H4)2NPh]2 molecule, Fig. 1, and a W(CO)6 molecule, Fig. 2, with the latter disposed about a crystallographic centre of inversion.

The structure of [(CO)5WSn(OC2H4)2NPh]2 resembles that of the related N-methyl- and N-(t-butyl)- substituted derivatives (Berends et al., 2009). Dimerization is achieved by almost symmetric µ2-ethoxy bridges between the Sn atoms, Table 1. Each tridentate ligand also coordinates to a tin atom via bonds formed by a second ethoxy-O and the amine-N. The coordination geometries are based on square pyramidal configurations with the O11, O17, O21, and N14 atoms at Sn1, and the O11, O21, O27, and N24 atoms at Sn2 occupying the basal positions, and W1 (at Sn1) and W2 (at Sn2) occupying the apical positions, Table 1. The values of τ = 0.02 and 0.08 for Sn1 and Sn2, respectively, which compare to τ = 0.0 for an ideal square pyramid and τ = 1.0 for an ideal trigonal pyramidal arrangement (Addison et al., 1984), confirm the assignment of coordination polyhedra. The W atoms are approximately syn to each other but the W1–Sn1···Sn2–W2 atoms deviate from co-planarity as seen in the torsion angle of 43.573 (16) °. The Sn1–N14 and Sn2–N24 bond distances of 2.507 (3) and 2.391 (3) Å, respectively, fall in between those found for the N-methyl (2.356 (5)/2.360 (6) Å) and N-(t-butyl) (2.549 (4)/2.444 (5) Å)) -substituted analogues (Berends et al., 2009) and indicate the increasing donor capacity of the N atoms in the sequence N(t-Bu) < NPh < NMe.

The most prominent intermolecular interactions operating in the crystal structure are of the type C–H···O, Table 2, and these occur between atoms comprising [(CO)5WSn(OC2H4)2NPh]2 to form an undulating 2-D array in the ab plane, Fig. 3. Centrosymmetric layers associate to form a double layer and these stack along the c axis. Gaps evident in Fig. 2, from translational symmetry, face each other in the global crystal packing to form voids of approximate volume 300 Å3, allowing for the incorporation of the W(CO)6 molecules, as highlighted in Fig. 4.

For synthetic background, see: Zeldin et al. (1976); Zschunke et al. (1983, 1986). For related structures, see: Berends et al. (2009). For additional geometric analysis, see: Addison et al. (1984).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of [(CO)5WSn(OC2H4)2NPh]2 in (I) showing displacement ellipsoids at the 50% probability level. One one orientation of the disordered carbonyl group (bound to W2) is shown.
[Figure 2] Fig. 2. The molecular structure of the W(CO)6 molecule in (I) showing displacement ellipsoids at the 50% probability level. Unlabelled atoms are related by the symmetry operation -x, -y, -z.
[Figure 3] Fig. 3. Two-dimensional array, in the ab plane, in (I) mediated by C–H···O interactions (blue dashed lines) between molecules of [(CO)5WSn(OC2H4)2NPh]2. Colour code: W, olive; Sn, orange; O, red; N, blue; C, grey; and H, green.
[Figure 4] Fig. 4. A view of the stacking of layers in (I) along the c axis allowing for the incorporation of W(CO)6 molecules (shown in space filling mode) in the voids thus formed. The C–H···O interactions are shown as blue dashed lines. Colour code: W, olive; Sn, orange; O, red; N, blue; C, grey; and H, green.
(I) top
Crystal data top
[Sn2W2(C10H13NO2)2(CO)10]2[W(CO)6]Z = 1
Mr = 2839.15F(000) = 1318
Triclinic, P1Dx = 2.355 Mg m3
Hall symbol: -P 1Melting point: 460 K
a = 11.3547 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5454 (5) ÅCell parameters from 35730 reflections
c = 16.8187 (7) Åθ = 2.0–25.5°
α = 108.715 (4)°µ = 8.46 mm1
β = 92.758 (4)°T = 173 K
γ = 115.350 (4)°Prism, colourless
V = 2001.90 (19) Å30.20 × 0.08 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur2 CCD
diffractometer
9035 independent reflections
Radiation source: Enhance (Mo) X-ray Source7218 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.0560 pixels mm-1θmax = 27.5°, θmin = 2.0°
973 frames via ω–rotation (Δω = 1°) and two times 30 s per frame (16 sets at different κ–angles) scansh = 1414
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1615
Tmin = 0.608, Tmax = 1.000l = 2121
39646 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.039H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.018P)2]
where P = (Fo2 + 2Fc2)/3
9035 reflections(Δ/σ)max = 0.001
518 parametersΔρmax = 0.87 e Å3
12 restraintsΔρmin = 1.74 e Å3
Crystal data top
[Sn2W2(C10H13NO2)2(CO)10]2[W(CO)6]γ = 115.350 (4)°
Mr = 2839.15V = 2001.90 (19) Å3
Triclinic, P1Z = 1
a = 11.3547 (5) ÅMo Kα radiation
b = 12.5454 (5) ŵ = 8.46 mm1
c = 16.8187 (7) ÅT = 173 K
α = 108.715 (4)°0.20 × 0.08 × 0.06 mm
β = 92.758 (4)°
Data collection top
Oxford Diffraction Xcalibur2 CCD
diffractometer
9035 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
7218 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 1.000Rint = 0.038
39646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02012 restraints
wR(F2) = 0.039H-atom parameters constrained
S = 0.95Δρmax = 0.87 e Å3
9035 reflectionsΔρmin = 1.74 e Å3
518 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.282538 (14)0.425012 (14)0.091913 (8)0.01414 (4)
W20.204122 (15)0.964916 (14)0.386429 (9)0.02111 (4)
W30.00000.00000.00000.02888 (6)
Sn10.12400 (2)0.43967 (2)0.226266 (13)0.01384 (5)
Sn20.17113 (2)0.72211 (2)0.335720 (13)0.01364 (5)
O110.0388 (2)0.6118 (2)0.33287 (13)0.0172 (5)
O170.0577 (3)0.3220 (2)0.24211 (15)0.0270 (6)
O210.0794 (2)0.5636 (2)0.21882 (13)0.0159 (5)
O270.2066 (2)0.6510 (2)0.42020 (14)0.0225 (6)
O310.1889 (3)0.9430 (3)0.19202 (17)0.0344 (7)
O320.5203 (3)1.0749 (3)0.4149 (2)0.0577 (10)
O330.1126 (3)0.8466 (3)0.3463 (2)0.0481 (8)
O340.1939 (3)0.9427 (3)0.56971 (17)0.0458 (9)
O410.4503 (3)0.4212 (3)0.06435 (16)0.0363 (7)
O420.4920 (3)0.1343 (3)0.04587 (17)0.0441 (8)
O430.0948 (3)0.3502 (3)0.02380 (16)0.0328 (7)
O440.4392 (3)0.5231 (3)0.22452 (17)0.0350 (7)
O450.0934 (3)0.7209 (3)0.13766 (19)0.0456 (8)
O1W0.2172 (3)0.0976 (3)0.0011 (2)0.0499 (8)
O2W0.2380 (4)0.2807 (3)0.0516 (2)0.0713 (12)
O3W0.0041 (3)0.0494 (4)0.1977 (2)0.0575 (10)
N140.2180 (3)0.3899 (3)0.34934 (17)0.0173 (6)
N240.3492 (3)0.6808 (3)0.29092 (16)0.0150 (6)
C120.0998 (4)0.6237 (3)0.4054 (2)0.0210 (8)
H12A0.18260.62850.39150.025*
H12B0.03820.70230.45490.025*
C130.1313 (3)0.5090 (4)0.4276 (2)0.0208 (8)
H13A0.17870.51200.47550.025*
H13B0.04760.50840.44620.025*
C150.1904 (4)0.2831 (4)0.3487 (2)0.0275 (9)
H15A0.26460.20090.30890.033*
H15B0.18420.28090.40700.033*
C160.0601 (4)0.3013 (4)0.3201 (2)0.0304 (9)
H16A0.01560.37520.36550.037*
H16B0.04900.22480.31240.037*
C220.1591 (3)0.5150 (3)0.1702 (2)0.0187 (8)
H22A0.18560.55450.12730.022*
H22B0.10580.42170.13910.022*
C230.2809 (3)0.5439 (3)0.2290 (2)0.0195 (8)
H23A0.34360.52690.19450.023*
H23B0.25550.48730.26170.023*
C250.4201 (4)0.6963 (4)0.3742 (2)0.0229 (8)
H25A0.47380.78810.41020.027*
H25B0.48140.65870.36320.027*
C260.3187 (4)0.6303 (4)0.4220 (2)0.0242 (9)
H26A0.28830.53750.39610.029*
H26B0.36390.66120.48270.029*
C310.1962 (4)0.9539 (4)0.2626 (2)0.0242 (8)
C320.4076 (4)1.0356 (4)0.4052 (2)0.0343 (10)
C330.0011 (4)0.8895 (4)0.3611 (2)0.0291 (9)
C340.2003 (4)0.9537 (4)0.5052 (2)0.0305 (10)
C350.2013 (8)1.1351 (9)0.4227 (5)0.0224 (13)0.50
O350.2001 (6)1.2300 (6)0.4454 (4)0.0326 (11)0.50
C35'0.2389 (9)1.1409 (9)0.4413 (5)0.0224 (13)0.50
O35'0.2527 (6)1.2454 (6)0.4726 (4)0.0326 (11)0.50
C410.3904 (4)0.4216 (3)0.0074 (2)0.0206 (8)
C420.4151 (4)0.2378 (4)0.0629 (2)0.0246 (9)
C430.1640 (4)0.3754 (3)0.0168 (2)0.0197 (8)
C440.3857 (4)0.4845 (4)0.1755 (2)0.0212 (8)
C450.1578 (4)0.6146 (4)0.1211 (2)0.0249 (9)
C500.4344 (3)0.7664 (3)0.25168 (19)0.0164 (7)
C510.5718 (3)0.8100 (4)0.2657 (2)0.0225 (8)
H51A0.61290.78490.30160.027*
C520.6483 (4)0.8903 (4)0.2268 (2)0.0304 (10)
H52A0.74220.92090.23700.037*
C530.5899 (4)0.9265 (4)0.1735 (2)0.0305 (10)
H53A0.64320.98090.14670.037*
C540.4533 (4)0.8831 (4)0.1593 (2)0.0255 (9)
H54A0.41240.90800.12310.031*
C550.3757 (4)0.8024 (3)0.1985 (2)0.0186 (8)
H55A0.28190.77200.18840.022*
C600.3583 (4)0.3562 (3)0.3345 (2)0.0204 (8)
C610.4104 (4)0.4260 (4)0.3887 (2)0.0210 (8)
H61A0.35400.49710.43940.025*
C620.5461 (4)0.3915 (4)0.3686 (3)0.0318 (10)
H62A0.58160.43820.40670.038*
C630.6283 (4)0.2915 (4)0.2949 (3)0.0378 (11)
H63A0.72010.26930.28140.045*
C640.5764 (4)0.2235 (4)0.2402 (3)0.0361 (11)
H64A0.63260.15480.18850.043*
C650.4425 (4)0.2545 (4)0.2601 (2)0.0253 (9)
H65A0.40850.20560.22250.030*
C1W0.1393 (4)0.0640 (4)0.0008 (3)0.0347 (10)
C3W0.0019 (4)0.0314 (5)0.1270 (3)0.0398 (11)
C2W0.1544 (5)0.1819 (5)0.0329 (3)0.0454 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01393 (7)0.01671 (8)0.01116 (7)0.00708 (6)0.00274 (5)0.00467 (6)
W20.02669 (9)0.01450 (8)0.02054 (8)0.00916 (7)0.01048 (6)0.00461 (6)
W30.03388 (14)0.02716 (13)0.03009 (12)0.01872 (11)0.00676 (10)0.01009 (10)
Sn10.01483 (12)0.01582 (12)0.01151 (11)0.00799 (10)0.00312 (9)0.00475 (9)
Sn20.01529 (12)0.01461 (12)0.01094 (11)0.00749 (10)0.00403 (9)0.00392 (9)
O110.0165 (13)0.0191 (13)0.0132 (11)0.0072 (11)0.0085 (9)0.0037 (10)
O170.0395 (17)0.0323 (16)0.0247 (13)0.0257 (14)0.0150 (12)0.0159 (12)
O210.0124 (12)0.0189 (13)0.0130 (11)0.0078 (11)0.0049 (9)0.0009 (10)
O270.0251 (14)0.0355 (16)0.0200 (13)0.0190 (13)0.0118 (11)0.0185 (12)
O310.0388 (18)0.0384 (18)0.0331 (16)0.0190 (15)0.0119 (13)0.0203 (14)
O320.0267 (19)0.050 (2)0.055 (2)0.0002 (17)0.0024 (15)0.0043 (17)
O330.037 (2)0.055 (2)0.071 (2)0.0307 (18)0.0195 (16)0.0333 (18)
O340.066 (2)0.045 (2)0.0193 (15)0.0225 (18)0.0110 (14)0.0081 (14)
O410.0443 (18)0.054 (2)0.0186 (14)0.0351 (17)0.0006 (12)0.0076 (13)
O420.0468 (19)0.0227 (17)0.0334 (16)0.0042 (15)0.0089 (14)0.0038 (13)
O430.0352 (17)0.0425 (18)0.0271 (14)0.0231 (15)0.0172 (13)0.0123 (13)
O440.0442 (18)0.0503 (19)0.0340 (16)0.0359 (16)0.0223 (14)0.0229 (14)
O450.044 (2)0.0199 (17)0.058 (2)0.0040 (15)0.0155 (16)0.0120 (15)
O1W0.048 (2)0.059 (2)0.066 (2)0.0393 (19)0.0203 (17)0.0303 (18)
O2W0.064 (3)0.033 (2)0.090 (3)0.007 (2)0.015 (2)0.012 (2)
O3W0.079 (3)0.087 (3)0.0382 (19)0.063 (2)0.0235 (18)0.0261 (19)
N140.0214 (16)0.0181 (16)0.0163 (14)0.0112 (14)0.0057 (12)0.0085 (12)
N240.0151 (15)0.0188 (16)0.0112 (13)0.0085 (13)0.0019 (11)0.0050 (12)
C120.0188 (19)0.023 (2)0.0134 (17)0.0068 (17)0.0074 (14)0.0014 (15)
C130.0186 (19)0.035 (2)0.0126 (17)0.0128 (18)0.0056 (14)0.0134 (16)
C150.043 (3)0.027 (2)0.027 (2)0.023 (2)0.0124 (18)0.0172 (17)
C160.043 (3)0.037 (2)0.029 (2)0.030 (2)0.0087 (18)0.0186 (19)
C220.0184 (19)0.0187 (19)0.0151 (17)0.0086 (16)0.0062 (14)0.0016 (15)
C230.0187 (19)0.0175 (19)0.0213 (18)0.0088 (16)0.0055 (15)0.0053 (15)
C250.023 (2)0.032 (2)0.0154 (17)0.0136 (18)0.0002 (15)0.0104 (16)
C260.029 (2)0.030 (2)0.0206 (19)0.0160 (19)0.0043 (16)0.0146 (17)
C310.026 (2)0.020 (2)0.033 (2)0.0135 (18)0.0109 (17)0.0136 (17)
C320.036 (3)0.025 (2)0.024 (2)0.005 (2)0.0062 (18)0.0006 (18)
C330.035 (3)0.030 (2)0.038 (2)0.025 (2)0.0163 (19)0.0186 (19)
C340.030 (2)0.019 (2)0.027 (2)0.0052 (18)0.0046 (17)0.0022 (17)
C350.0225 (16)0.0222 (15)0.0222 (15)0.0103 (10)0.0059 (11)0.0082 (9)
O350.0336 (14)0.0310 (12)0.0332 (13)0.0160 (9)0.0099 (10)0.0107 (9)
C35'0.0225 (16)0.0222 (15)0.0222 (15)0.0103 (10)0.0059 (11)0.0082 (9)
O35'0.0336 (14)0.0310 (12)0.0332 (13)0.0160 (9)0.0099 (10)0.0107 (9)
C410.023 (2)0.024 (2)0.0140 (17)0.0125 (17)0.0034 (15)0.0035 (15)
C420.028 (2)0.025 (2)0.0149 (18)0.0094 (19)0.0060 (16)0.0043 (16)
C430.024 (2)0.0195 (19)0.0161 (17)0.0101 (17)0.0034 (15)0.0079 (15)
C440.022 (2)0.024 (2)0.0182 (18)0.0097 (18)0.0008 (15)0.0120 (16)
C450.023 (2)0.027 (2)0.024 (2)0.0123 (19)0.0089 (16)0.0076 (17)
C500.022 (2)0.0152 (18)0.0094 (16)0.0088 (16)0.0034 (14)0.0020 (14)
C510.017 (2)0.027 (2)0.0186 (18)0.0073 (18)0.0017 (15)0.0061 (16)
C520.020 (2)0.034 (2)0.025 (2)0.0045 (19)0.0072 (16)0.0069 (18)
C530.036 (2)0.024 (2)0.023 (2)0.0069 (19)0.0123 (18)0.0087 (17)
C540.033 (2)0.024 (2)0.0194 (19)0.0145 (19)0.0069 (16)0.0070 (16)
C550.0203 (19)0.0184 (19)0.0160 (17)0.0104 (16)0.0049 (14)0.0034 (15)
C600.024 (2)0.021 (2)0.0197 (18)0.0079 (17)0.0088 (15)0.0161 (16)
C610.023 (2)0.025 (2)0.0204 (18)0.0108 (17)0.0091 (15)0.0146 (16)
C620.031 (2)0.045 (3)0.039 (2)0.023 (2)0.0206 (19)0.029 (2)
C630.017 (2)0.053 (3)0.046 (3)0.008 (2)0.0102 (19)0.033 (2)
C640.025 (2)0.035 (3)0.034 (2)0.003 (2)0.0021 (18)0.019 (2)
C650.030 (2)0.018 (2)0.024 (2)0.0051 (18)0.0097 (17)0.0119 (16)
C1W0.039 (3)0.036 (3)0.034 (2)0.021 (2)0.0078 (19)0.015 (2)
C3W0.040 (3)0.051 (3)0.039 (3)0.032 (2)0.011 (2)0.014 (2)
C2W0.049 (3)0.037 (3)0.050 (3)0.023 (3)0.015 (2)0.014 (2)
Geometric parameters (Å, º) top
W1—C412.000 (4)N24—C251.493 (4)
W1—C442.035 (4)N24—C231.506 (4)
W1—C432.042 (4)C12—C131.500 (5)
W1—C422.046 (4)C12—H12A0.9900
W1—C452.050 (4)C12—H12B0.9900
W2—C35'1.947 (10)C13—H13A0.9900
W2—C312.037 (4)C13—H13B0.9900
W2—C352.038 (10)C15—C161.524 (5)
W2—C332.042 (4)C15—H15A0.9900
W2—C342.049 (4)C15—H15B0.9900
W2—C322.054 (5)C16—H16A0.9900
W3—C3Wi2.047 (4)C16—H16B0.9900
W3—C3W2.047 (4)C22—C231.494 (5)
W3—C1Wi2.059 (5)C22—H22A0.9900
W3—C1W2.059 (5)C22—H22B0.9900
W3—C2W2.064 (5)C23—H23A0.9900
W3—C2Wi2.064 (5)C23—H23B0.9900
Sn1—W12.7274 (3)C25—C261.535 (5)
Sn1—O112.091 (2)C25—H25A0.9900
Sn1—O172.001 (3)C25—H25B0.9900
Sn1—O212.201 (2)C26—H26A0.9900
Sn1—N142.507 (3)C26—H26B0.9900
Sn2—W22.7334 (3)C35—O351.134 (11)
Sn2—O112.173 (2)C35'—O35'1.181 (11)
Sn2—O212.104 (2)C50—C551.381 (5)
Sn2—O272.011 (2)C50—C511.393 (5)
Sn2—N242.391 (3)C51—C521.387 (5)
O11—C121.430 (3)C51—H51A0.9500
O17—C161.416 (4)C52—C531.383 (6)
O21—C221.443 (4)C52—H52A0.9500
O27—C261.405 (4)C53—C541.384 (5)
O31—C311.146 (4)C53—H53A0.9500
O32—C321.138 (5)C54—C551.399 (5)
O33—C331.142 (5)C54—H54A0.9500
O34—C341.138 (4)C55—H55A0.9500
O41—C411.146 (4)C60—C651.387 (5)
O42—C421.139 (4)C60—C611.389 (5)
O43—C431.145 (4)C61—C621.401 (5)
O44—C441.152 (4)C61—H61A0.9500
O45—C451.139 (4)C62—C631.367 (6)
O1W—C1W1.129 (5)C62—H62A0.9500
O2W—C2W1.117 (5)C63—C641.378 (6)
O3W—C3W1.140 (5)C63—H63A0.9500
N14—C601.448 (4)C64—C651.391 (6)
N14—C151.498 (5)C64—H64A0.9500
N14—C131.513 (4)C65—H65A0.9500
N24—C501.467 (4)
C41—W1—C4492.39 (14)C13—C12—H12B110.1
C41—W1—C4391.82 (14)H12A—C12—H12B108.4
C44—W1—C43174.81 (14)C12—C13—N14109.1 (3)
C41—W1—C4288.78 (15)C12—C13—H13A109.9
C44—W1—C4291.70 (14)N14—C13—H13A109.9
C43—W1—C4291.42 (14)C12—C13—H13B109.9
C41—W1—C4589.43 (15)N14—C13—H13B109.9
C44—W1—C4586.05 (14)H13A—C13—H13B108.3
C43—W1—C4590.96 (14)N14—C15—C16110.1 (3)
C42—W1—C45177.07 (16)N14—C15—H15A109.6
C41—W1—Sn1176.98 (10)C16—C15—H15A109.6
C44—W1—Sn188.91 (10)N14—C15—H15B109.6
C43—W1—Sn186.74 (10)C16—C15—H15B109.6
C42—W1—Sn193.90 (11)H15A—C15—H15B108.2
C45—W1—Sn187.94 (11)O17—C16—C15111.6 (3)
C35'—W2—C3198.6 (3)O17—C16—H16A109.3
C35'—W2—C3513.6 (3)C15—C16—H16A109.3
C31—W2—C3590.4 (3)O17—C16—H16B109.3
C35'—W2—C3395.2 (3)C15—C16—H16B109.3
C31—W2—C3387.69 (15)H16A—C16—H16B108.0
C35—W2—C3384.0 (3)O21—C22—C23110.2 (3)
C35'—W2—C3487.6 (3)O21—C22—H22A109.6
C31—W2—C34173.43 (15)C23—C22—H22A109.6
C35—W2—C3495.2 (3)O21—C22—H22B109.6
C33—W2—C3489.53 (15)C23—C22—H22B109.6
C35'—W2—C3286.6 (3)H22A—C22—H22B108.1
C31—W2—C3289.70 (15)C22—C23—N24111.3 (3)
C35—W2—C3297.5 (3)C22—C23—H23A109.4
C33—W2—C32177.00 (15)N24—C23—H23A109.4
C34—W2—C3292.91 (16)C22—C23—H23B109.4
C35'—W2—Sn2170.6 (2)N24—C23—H23B109.4
C31—W2—Sn290.23 (11)H23A—C23—H23B108.0
C35—W2—Sn2172.2 (2)N24—C25—C26110.1 (3)
C33—W2—Sn288.23 (11)N24—C25—H25A109.6
C34—W2—Sn283.74 (11)C26—C25—H25A109.6
C32—W2—Sn290.29 (12)N24—C25—H25B109.6
C3Wi—W3—C3W180.0 (3)C26—C25—H25B109.6
C3Wi—W3—C1Wi87.14 (16)H25A—C25—H25B108.2
C3W—W3—C1Wi92.86 (16)O27—C26—C25113.9 (3)
C3Wi—W3—C1W92.86 (16)O27—C26—H26A108.8
C3W—W3—C1W87.14 (16)C25—C26—H26A108.8
C1Wi—W3—C1W180.0 (3)O27—C26—H26B108.8
C3Wi—W3—C2W89.36 (18)C25—C26—H26B108.8
C3W—W3—C2W90.64 (18)H26A—C26—H26B107.7
C1Wi—W3—C2W88.71 (19)O31—C31—W2177.5 (3)
C1W—W3—C2W91.29 (19)O32—C32—W2179.3 (4)
C3Wi—W3—C2Wi90.64 (18)O33—C33—W2179.4 (4)
C3W—W3—C2Wi89.36 (18)O34—C34—W2177.3 (3)
C1Wi—W3—C2Wi91.29 (19)O35—C35—W2177.9 (8)
C1W—W3—C2Wi88.71 (19)O35'—C35'—W2176.3 (8)
C2W—W3—C2Wi180.0 (3)O41—C41—W1178.9 (3)
O17—Sn1—O11110.71 (10)O42—C42—W1177.8 (4)
O17—Sn1—O2188.04 (10)O43—C43—W1178.3 (3)
O11—Sn1—O2169.82 (8)O44—C44—W1177.1 (3)
O17—Sn1—N1476.52 (9)O45—C45—W1176.8 (4)
O11—Sn1—N1473.42 (9)C55—C50—C51119.6 (3)
O21—Sn1—N14131.57 (8)C55—C50—N24118.8 (3)
O17—Sn1—W1132.90 (7)C51—C50—N24121.6 (3)
O11—Sn1—W1116.19 (7)C52—C51—C50119.6 (4)
O21—Sn1—W1103.68 (6)C52—C51—H51A120.2
N14—Sn1—W1120.53 (7)C50—C51—H51A120.2
O27—Sn2—O21104.24 (10)C53—C52—C51120.9 (4)
O27—Sn2—O1185.86 (9)C53—C52—H52A119.5
O21—Sn2—O1170.16 (8)C51—C52—H52A119.5
O27—Sn2—N2478.41 (9)C52—C53—C54119.6 (4)
O21—Sn2—N2475.71 (9)C52—C53—H53A120.2
O11—Sn2—N24137.35 (9)C54—C53—H53A120.2
O27—Sn2—W2122.15 (7)C53—C54—C55119.7 (4)
O21—Sn2—W2132.75 (7)C53—C54—H54A120.2
O11—Sn2—W2102.58 (6)C55—C54—H54A120.2
N24—Sn2—W2119.42 (7)C50—C55—C54120.6 (3)
C12—O11—Sn1119.87 (19)C50—C55—H55A119.7
C12—O11—Sn2125.65 (19)C54—C55—H55A119.7
Sn1—O11—Sn2110.16 (9)C65—C60—C61118.7 (3)
C16—O17—Sn1119.0 (2)C65—C60—N14118.3 (3)
C22—O21—Sn2119.90 (18)C61—C60—N14122.8 (3)
C22—O21—Sn1122.88 (19)C60—C61—C62119.9 (4)
Sn2—O21—Sn1108.63 (9)C60—C61—H61A120.0
C26—O27—Sn2118.74 (19)C62—C61—H61A120.0
C60—N14—C15114.3 (3)C63—C62—C61121.0 (4)
C60—N14—C13114.8 (3)C63—C62—H62A119.5
C15—N14—C13110.5 (3)C61—C62—H62A119.5
C60—N14—Sn1109.40 (19)C62—C63—C64119.2 (4)
C15—N14—Sn1102.40 (19)C62—C63—H63A120.4
C13—N14—Sn1104.16 (18)C64—C63—H63A120.4
C50—N24—C25113.4 (3)C63—C64—C65120.7 (4)
C50—N24—C23111.8 (2)C63—C64—H64A119.7
C25—N24—C23111.7 (3)C65—C64—H64A119.7
C50—N24—Sn2114.0 (2)C60—C65—C64120.4 (4)
C25—N24—Sn2100.56 (19)C60—C65—H65A119.8
C23—N24—Sn2104.57 (19)C64—C65—H65A119.8
O11—C12—C13108.0 (3)O1W—C1W—W3177.5 (4)
O11—C12—H12A110.1O3W—C3W—W3179.1 (4)
C13—C12—H12A110.1O2W—C2W—W3179.2 (4)
O11—C12—H12B110.1
C41—W1—Sn1—O17110.4 (19)W1—Sn1—O21—Sn2121.94 (8)
C44—W1—Sn1—O17134.13 (14)O21—Sn2—O27—C2680.3 (3)
C43—W1—Sn1—O1748.71 (14)O11—Sn2—O27—C26148.6 (3)
C42—W1—Sn1—O1742.50 (14)N24—Sn2—O27—C268.4 (2)
C45—W1—Sn1—O17139.78 (14)W2—Sn2—O27—C26109.2 (2)
C41—W1—Sn1—O1163.9 (19)O17—Sn1—N14—C60132.3 (2)
C44—W1—Sn1—O1151.63 (12)O11—Sn1—N14—C60110.9 (2)
C43—W1—Sn1—O11125.54 (12)O21—Sn1—N14—C60152.7 (2)
C42—W1—Sn1—O11143.25 (12)W1—Sn1—N14—C600.2 (2)
C45—W1—Sn1—O1134.46 (12)O17—Sn1—N14—C1510.7 (2)
C41—W1—Sn1—O2110.1 (19)O11—Sn1—N14—C15127.5 (2)
C44—W1—Sn1—O21125.61 (12)O21—Sn1—N14—C1585.7 (2)
C43—W1—Sn1—O2151.55 (11)W1—Sn1—N14—C15121.5 (2)
C42—W1—Sn1—O21142.76 (12)O17—Sn1—N14—C13104.4 (2)
C45—W1—Sn1—O2139.52 (12)O11—Sn1—N14—C1312.4 (2)
C41—W1—Sn1—N14149.3 (19)O21—Sn1—N14—C1329.5 (3)
C44—W1—Sn1—N1433.84 (13)W1—Sn1—N14—C13123.40 (19)
C43—W1—Sn1—N14149.00 (13)O27—Sn2—N24—C50150.5 (2)
C42—W1—Sn1—N1457.79 (13)O21—Sn2—N24—C50101.4 (2)
C45—W1—Sn1—N14119.93 (12)O11—Sn2—N24—C50138.88 (19)
C35'—W2—Sn2—O275.0 (16)W2—Sn2—N24—C5029.9 (2)
C31—W2—Sn2—O27165.61 (13)O27—Sn2—N24—C2528.8 (2)
C35—W2—Sn2—O2799.6 (18)O21—Sn2—N24—C25137.0 (2)
C33—W2—Sn2—O27106.71 (13)O11—Sn2—N24—C2599.5 (2)
C34—W2—Sn2—O2716.99 (14)W2—Sn2—N24—C2591.7 (2)
C32—W2—Sn2—O2775.91 (13)O27—Sn2—N24—C2387.1 (2)
C35'—W2—Sn2—O21172.6 (16)O21—Sn2—N24—C2321.01 (19)
C31—W2—Sn2—O2126.87 (13)O11—Sn2—N24—C2316.5 (2)
C35—W2—Sn2—O2167.9 (18)W2—Sn2—N24—C23152.35 (17)
C33—W2—Sn2—O2160.82 (13)Sn1—O11—C12—C1347.2 (3)
C34—W2—Sn2—O21150.54 (14)Sn2—O11—C12—C13107.1 (3)
C32—W2—Sn2—O21116.57 (13)O11—C12—C13—N1456.1 (3)
C35'—W2—Sn2—O1198.1 (16)C60—N14—C13—C1280.8 (3)
C31—W2—Sn2—O11101.36 (12)C15—N14—C13—C12148.2 (3)
C35—W2—Sn2—O116.6 (18)Sn1—N14—C13—C1238.9 (3)
C33—W2—Sn2—O1113.68 (12)C60—N14—C15—C16151.8 (3)
C34—W2—Sn2—O1176.04 (13)C13—N14—C15—C1676.8 (3)
C32—W2—Sn2—O11168.94 (12)Sn1—N14—C15—C1633.6 (3)
C35'—W2—Sn2—N2489.7 (16)Sn1—O17—C16—C1543.3 (4)
C31—W2—Sn2—N2470.91 (13)N14—C15—C16—O1751.5 (4)
C35—W2—Sn2—N24165.7 (18)Sn2—O21—C22—C2327.6 (4)
C33—W2—Sn2—N24158.59 (13)Sn1—O21—C22—C23116.6 (3)
C34—W2—Sn2—N24111.69 (13)O21—C22—C23—N2447.2 (4)
C32—W2—Sn2—N2418.79 (13)C50—N24—C23—C2281.7 (3)
O17—Sn1—O11—C1286.7 (2)C25—N24—C23—C22150.0 (3)
O21—Sn1—O11—C12166.5 (3)Sn2—N24—C23—C2242.1 (3)
N14—Sn1—O11—C1218.6 (2)C50—N24—C25—C26165.6 (3)
W1—Sn1—O11—C1297.8 (2)C23—N24—C25—C2667.0 (4)
O17—Sn1—O11—Sn271.24 (12)Sn2—N24—C25—C2643.5 (3)
O21—Sn1—O11—Sn28.51 (10)Sn2—O27—C26—C2514.6 (4)
N14—Sn1—O11—Sn2139.37 (13)N24—C25—C26—O2742.8 (4)
W1—Sn1—O11—Sn2104.25 (9)C25—N24—C50—C55152.8 (3)
O27—Sn2—O11—C1258.5 (3)C23—N24—C50—C5579.9 (4)
O21—Sn2—O11—C12165.3 (3)Sn2—N24—C50—C5538.5 (3)
N24—Sn2—O11—C12126.4 (2)C25—N24—C50—C5128.4 (4)
W2—Sn2—O11—C1263.5 (3)C23—N24—C50—C5199.0 (4)
O27—Sn2—O11—Sn197.87 (12)Sn2—N24—C50—C51142.7 (3)
O21—Sn2—O11—Sn18.89 (10)C55—C50—C51—C520.8 (5)
N24—Sn2—O11—Sn129.95 (18)N24—C50—C51—C52179.6 (3)
W2—Sn2—O11—Sn1140.09 (9)C50—C51—C52—C530.8 (6)
O11—Sn1—O17—C1649.0 (3)C51—C52—C53—C540.6 (6)
O21—Sn1—O17—C16116.6 (3)C52—C53—C54—C550.5 (6)
N14—Sn1—O17—C1617.1 (3)C51—C50—C55—C540.7 (5)
W1—Sn1—O17—C16136.5 (2)N24—C50—C55—C54179.5 (3)
O27—Sn2—O21—C2276.9 (2)C53—C54—C55—C500.5 (5)
O11—Sn2—O21—C22157.1 (3)C15—N14—C60—C6556.2 (4)
N24—Sn2—O21—C223.1 (2)C13—N14—C60—C65174.6 (3)
W2—Sn2—O21—C22114.0 (2)Sn1—N14—C60—C6558.0 (3)
O27—Sn2—O21—Sn171.81 (12)C15—N14—C60—C61127.9 (3)
O11—Sn2—O21—Sn18.36 (10)C13—N14—C60—C611.3 (5)
N24—Sn2—O21—Sn1145.64 (12)Sn1—N14—C60—C61117.9 (3)
W2—Sn2—O21—Sn197.32 (10)C65—C60—C61—C621.3 (5)
O17—Sn1—O21—C2243.4 (2)N14—C60—C61—C62177.2 (3)
O11—Sn1—O21—C22156.3 (3)C60—C61—C62—C631.7 (6)
N14—Sn1—O21—C22113.4 (2)C61—C62—C63—C640.6 (6)
W1—Sn1—O21—C2290.5 (2)C62—C63—C64—C650.9 (6)
O17—Sn1—O21—Sn2104.22 (11)C61—C60—C65—C640.2 (5)
O11—Sn1—O21—Sn28.71 (10)N14—C60—C65—C64175.9 (3)
N14—Sn1—O21—Sn234.23 (17)C63—C64—C65—C601.3 (6)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23a···O44ii0.992.523.301 (5)136
C64—H64a···O31iii0.952.583.174 (6)121
Symmetry codes: (ii) x+1, y, z; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Sn2W2(C10H13NO2)2(CO)10]2[W(CO)6]
Mr2839.15
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)11.3547 (5), 12.5454 (5), 16.8187 (7)
α, β, γ (°)108.715 (4), 92.758 (4), 115.350 (4)
V3)2001.90 (19)
Z1
Radiation typeMo Kα
µ (mm1)8.46
Crystal size (mm)0.20 × 0.08 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur2 CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.608, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
39646, 9035, 7218
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.039, 0.95
No. of reflections9035
No. of parameters518
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 1.74

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—W12.7274 (3)Sn2—W22.7334 (3)
Sn1—O112.091 (2)Sn2—O112.173 (2)
Sn1—O172.001 (3)Sn2—O212.104 (2)
Sn1—O212.201 (2)Sn2—O272.011 (2)
Sn1—N142.507 (3)Sn2—N242.391 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23a···O44i0.992.523.301 (5)136
C64—H64a···O31ii0.952.583.174 (6)121
Symmetry codes: (i) x+1, y, z; (ii) x1, y1, z.
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBerends, T., Iovkova, L., Bradtmöller, G., Oppel, I., Schürmann, M. & Jurkschat, K. (2009). Z. Anorg. Allg. Chem. 635, 369–374.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationZeldin, M. & Gsell, R. (1976). Synth. React. Inorg. Metallorg. Chem. 6, 11.  CrossRef Web of Science Google Scholar
First citationZschunke, A., Mügge, C., Scheer, M., Jurkschat, K. & Tzschach, A. (1983). J. Crystallogr. Spectrosc. Res. 13, 201–210.  CrossRef CAS Web of Science Google Scholar
First citationZschunke, A., Scheer, M., Völzke, M., Jurkschat, K. & Tzschach, A. (1986). J. Organomet. Chem. 308, 325–334.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds