organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-methyl­pyridinium 2-carb­­oxy­acetate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 May 2010; accepted 22 May 2010; online 29 May 2010)

In the title mol­ecular salt, C6H9N2+·C3H3O4, the cation is essentially planar, with a maximum deviation of 0.010 (3) Å. In the anion, an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring and results in a folded conformation. In the crystal, the protonated NH group and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. Weak inter­molecular C—H⋯O inter­actions help to further stabilize the crystal structure.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]); Feng et al. (2005[Feng, H., Sun, C.-R., Li, L., Jin, Z.-M. & Tu, B. (2005). Acta Cryst. E61, o1983-o1984.]); Xuan et al. (2003[Xuan, R.-C., Wan, Y.-H., Hu, W.-X., Yang, Z.-Y., Cheng, D.-P. & Xuan, R.-R. (2003). Acta Cryst. E59, o1704-o1706.]); Jin et al. (2005[Jin, Z.-M., Tu, B., He, L., Hu, M.-L. & Zou, J.-W. (2005). Acta Cryst. C61, m197-m199.]); Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o623-o624.],b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o621.],c[Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o662.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For the conformation of the malonate ion, see: Djinović et al. (1990[Djinović, K., Golič, L. & Leban, I. (1990). Acta Cryst. C46, 281-286.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C3H3O4

  • Mr = 212.21

  • Monoclinic, P 21 /c

  • a = 3.8082 (13) Å

  • b = 16.963 (5) Å

  • c = 15.372 (5) Å

  • β = 95.436 (9)°

  • V = 988.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.22 × 0.21 × 0.13 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.986

  • 8134 measured reflections

  • 2210 independent reflections

  • 1647 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.185

  • S = 1.11

  • 2210 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O1 1.00 1.53 2.475 (3) 157
N1—H1N1⋯O2i 1.02 (3) 1.65 (3) 2.652 (3) 170 (3)
N2—H1N2⋯O4ii 0.90 (3) 2.00 (3) 2.886 (3) 171 (3)
N2—H2N2⋯O1i 0.98 (3) 1.95 (3) 2.924 (3) 177 (3)
C2—H2A⋯O3ii 0.93 (3) 2.58 (3) 3.470 (3) 159 (2)
C8—H8A⋯O2iii 0.95 (3) 2.41 (3) 3.304 (3) 158 (3)
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977), 2-amino-5-methylpyridinium phosphate (Feng et al., 2005), 2-amino-5-methylpyridinium 3-(4- hydroxy-3-methoxyphenyl)-2-propenoate monohydrate (Xuan et al., 2003) and 2-amino-5-methylpyridinium (2-amino-5- methylpyridine)trichlorozincate(II) (Jin et al., 2005) have been reported in the literature. We have recently reported the crystal structures of 2-amino-5-methylpyridinium 3-aminobenzoate (Hemamalini & Fun, 2010a), 2-amino-5-methylpyridinium 4-nitrobenzoate (Hemamalini & Fun, 2010b) and 2-amino-5-methylpyridinium nicotinate (Hemamalini & Fun, 2010c) from our laboratory. In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title salt is presented here.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one hydrogen malonate anion. The proton transfer from the one of the carboxyl group oxygen atom (O2) to atom N1 of 2-amino-5-methylpyridine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 123.3 (2)°, compared to the corresponding angle of 117.4 (3)° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.010 (3) Å for atom C4. The bond lengths and angles are normal (Allen et al., 1987).

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O6 and O7) via a pair of intermolecular N1—H1N1···O2 and N2—H2N2···O1 hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). Atom O3 of the carboxyl group of the hydrogen malonate anions forms an intramolecular O3—H1O3···O1 hydrogen bond with the O atom of the carboxylate group (O1) [with graph-set notation S(6)], leading to a folded conformation. A similar intramolecular hydrogen bond has been observed in the crystal structures of benzylammonium hydrogen malonate and 4-picolinium hydrogen malonate (Djinović et al., 1990). The crystal structure is further stabilized by weak C2—H2A···O3 and C8—H8A···O2 (Table 1) hydrogen bonds.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Nahringbauer & Kvick (1977); Feng et al. (2005); Xuan et al. (2003); Jin et al. (2005); Hemamalini & Fun (2010a,b,c). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For the conformation of the malonate ion, see: Djinović et al. (1990). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (27 mg) and malonic acid (52 mg) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless blocks of (I) appeared after a few days.

Refinement top

All H atoms were located from a difference Fourier map and refined freely [C–H = 0.93 (4)–1.04 (4) Å and N–H = 0.89 (3)–0.97 (4) Å]. The hydrogen atom H1O3 was positioned geometrically and refined using a riding model.

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977), 2-amino-5-methylpyridinium phosphate (Feng et al., 2005), 2-amino-5-methylpyridinium 3-(4- hydroxy-3-methoxyphenyl)-2-propenoate monohydrate (Xuan et al., 2003) and 2-amino-5-methylpyridinium (2-amino-5- methylpyridine)trichlorozincate(II) (Jin et al., 2005) have been reported in the literature. We have recently reported the crystal structures of 2-amino-5-methylpyridinium 3-aminobenzoate (Hemamalini & Fun, 2010a), 2-amino-5-methylpyridinium 4-nitrobenzoate (Hemamalini & Fun, 2010b) and 2-amino-5-methylpyridinium nicotinate (Hemamalini & Fun, 2010c) from our laboratory. In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title salt is presented here.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one hydrogen malonate anion. The proton transfer from the one of the carboxyl group oxygen atom (O2) to atom N1 of 2-amino-5-methylpyridine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 123.3 (2)°, compared to the corresponding angle of 117.4 (3)° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.010 (3) Å for atom C4. The bond lengths and angles are normal (Allen et al., 1987).

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O6 and O7) via a pair of intermolecular N1—H1N1···O2 and N2—H2N2···O1 hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). Atom O3 of the carboxyl group of the hydrogen malonate anions forms an intramolecular O3—H1O3···O1 hydrogen bond with the O atom of the carboxylate group (O1) [with graph-set notation S(6)], leading to a folded conformation. A similar intramolecular hydrogen bond has been observed in the crystal structures of benzylammonium hydrogen malonate and 4-picolinium hydrogen malonate (Djinović et al., 1990). The crystal structure is further stabilized by weak C2—H2A···O3 and C8—H8A···O2 (Table 1) hydrogen bonds.

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Nahringbauer & Kvick (1977); Feng et al. (2005); Xuan et al. (2003); Jin et al. (2005); Hemamalini & Fun (2010a,b,c). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For the conformation of the malonate ion, see: Djinović et al. (1990). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen-bonded (dashed lines) networks. H atoms not involved in the hydrogen bond interactions are omitted for clarity.
2-Amino-5-methylpyridinium 2-carboxyacetate top
Crystal data top
C6H9N2+·C3H3O4F(000) = 448
Mr = 212.21Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3020 reflections
a = 3.8082 (13) Åθ = 2.4–29.9°
b = 16.963 (5) ŵ = 0.11 mm1
c = 15.372 (5) ÅT = 100 K
β = 95.436 (9)°Block, colourless
V = 988.6 (5) Å30.22 × 0.21 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
2210 independent reflections
Radiation source: fine-focus sealed tube1647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 34
Tmin = 0.975, Tmax = 0.986k = 2221
8134 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0826P)2 + 1.1878P]
where P = (Fo2 + 2Fc2)/3
2210 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C6H9N2+·C3H3O4V = 988.6 (5) Å3
Mr = 212.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.8082 (13) ŵ = 0.11 mm1
b = 16.963 (5) ÅT = 100 K
c = 15.372 (5) Å0.22 × 0.21 × 0.13 mm
β = 95.436 (9)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
2210 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1647 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.986Rint = 0.049
8134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.41 e Å3
2210 reflectionsΔρmin = 0.35 e Å3
180 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9416 (6)0.73279 (11)0.44933 (13)0.0206 (5)
N21.1470 (7)0.75544 (13)0.31461 (14)0.0244 (5)
C11.0172 (7)0.78349 (13)0.38551 (16)0.0200 (5)
C20.9494 (7)0.86455 (14)0.39920 (17)0.0227 (6)
C30.8223 (7)0.88786 (13)0.47473 (17)0.0225 (5)
C40.7545 (7)0.83392 (14)0.54172 (16)0.0220 (5)
C50.8174 (7)0.75628 (14)0.52501 (16)0.0216 (5)
C60.6322 (9)0.86073 (17)0.62714 (19)0.0287 (6)
O10.3293 (5)0.58819 (10)0.30911 (11)0.0254 (5)
O20.0927 (5)0.58087 (10)0.43646 (11)0.0247 (5)
O30.5960 (6)0.46992 (10)0.24783 (12)0.0288 (5)
H1O30.50450.52360.25930.043*
O40.5733 (6)0.35450 (10)0.31494 (12)0.0305 (5)
C70.2547 (7)0.55182 (13)0.37706 (15)0.0201 (5)
C80.3717 (7)0.46644 (13)0.38965 (16)0.0197 (5)
C90.5161 (7)0.42551 (14)0.31344 (16)0.0221 (5)
H2A1.011 (8)0.8991 (17)0.3559 (18)0.019 (7)*
H3A0.762 (10)0.943 (2)0.485 (2)0.042 (9)*
H5A0.767 (7)0.7161 (15)0.5656 (16)0.011 (6)*
H6A0.817 (10)0.885 (2)0.661 (2)0.038 (9)*
H6B0.426 (11)0.899 (2)0.614 (2)0.044 (10)*
H6C0.532 (10)0.818 (2)0.660 (2)0.048 (10)*
H8A0.559 (9)0.4656 (18)0.4350 (19)0.025 (8)*
H8B0.173 (9)0.4314 (19)0.411 (2)0.033 (8)*
H1N11.008 (10)0.676 (2)0.438 (2)0.045 (10)*
H1N21.209 (8)0.7882 (19)0.273 (2)0.025 (8)*
H2N21.212 (10)0.700 (2)0.311 (2)0.038 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0273 (12)0.0096 (9)0.0251 (10)0.0002 (8)0.0036 (8)0.0015 (7)
N20.0371 (14)0.0120 (10)0.0251 (11)0.0017 (8)0.0072 (9)0.0023 (8)
C10.0234 (14)0.0118 (11)0.0246 (12)0.0001 (9)0.0013 (9)0.0018 (8)
C20.0273 (15)0.0105 (11)0.0301 (13)0.0003 (9)0.0019 (10)0.0023 (9)
C30.0227 (14)0.0103 (10)0.0341 (13)0.0007 (9)0.0008 (10)0.0011 (9)
C40.0222 (14)0.0165 (11)0.0273 (12)0.0008 (9)0.0022 (10)0.0030 (9)
C50.0264 (14)0.0145 (11)0.0237 (11)0.0001 (9)0.0025 (10)0.0007 (9)
C60.0320 (17)0.0244 (13)0.0302 (14)0.0001 (11)0.0052 (12)0.0058 (11)
O10.0387 (12)0.0126 (8)0.0254 (9)0.0024 (7)0.0061 (8)0.0024 (7)
O20.0374 (12)0.0108 (8)0.0268 (9)0.0044 (7)0.0082 (8)0.0007 (6)
O30.0478 (13)0.0146 (9)0.0255 (9)0.0002 (8)0.0115 (8)0.0007 (7)
O40.0496 (14)0.0108 (8)0.0326 (10)0.0014 (8)0.0112 (9)0.0030 (7)
C70.0252 (14)0.0116 (10)0.0232 (12)0.0006 (9)0.0006 (9)0.0002 (8)
C80.0264 (14)0.0110 (10)0.0221 (11)0.0014 (9)0.0040 (10)0.0007 (8)
C90.0284 (15)0.0134 (11)0.0245 (12)0.0015 (9)0.0028 (10)0.0028 (9)
Geometric parameters (Å, º) top
N1—C11.356 (3)C5—H5A0.96 (3)
N1—C51.357 (3)C6—H6A0.93 (4)
N1—H1N11.02 (4)C6—H6B1.03 (4)
N2—C11.327 (3)C6—H6C0.99 (4)
N2—H1N20.89 (3)O1—C71.268 (3)
N2—H2N20.97 (4)O2—C71.251 (3)
C1—C21.419 (3)O3—C91.317 (3)
C2—C31.358 (4)O3—H1O30.9974
C2—H2A0.93 (3)O4—C91.224 (3)
C3—C41.419 (4)C7—C81.522 (3)
C3—H3A0.97 (4)C8—C91.510 (3)
C4—C51.367 (3)C8—H8A0.95 (3)
C4—C61.505 (4)C8—H8B1.04 (4)
C1—N1—C5123.3 (2)C4—C5—H5A121.0 (15)
C1—N1—H1N1114 (2)C4—C6—H6A110 (2)
C5—N1—H1N1122 (2)C4—C6—H6B108 (2)
C1—N2—H1N2120 (2)H6A—C6—H6B110 (3)
C1—N2—H2N2120.6 (19)C4—C6—H6C113 (2)
H1N2—N2—H2N2118 (3)H6A—C6—H6C110 (3)
N2—C1—N1119.2 (2)H6B—C6—H6C105 (3)
N2—C1—C2123.8 (2)C9—O3—H1O3106.1
N1—C1—C2117.0 (2)O2—C7—O1125.0 (2)
C3—C2—C1119.6 (2)O2—C7—C8116.2 (2)
C3—C2—H2A124.1 (18)O1—C7—C8118.8 (2)
C1—C2—H2A116.2 (18)C9—C8—C7117.6 (2)
C2—C3—C4122.4 (2)C9—C8—H8A105.0 (18)
C2—C3—H3A121 (2)C7—C8—H8A107.3 (19)
C4—C3—H3A116 (2)C9—C8—H8B107.9 (18)
C5—C4—C3116.0 (2)C7—C8—H8B111.9 (19)
C5—C4—C6122.0 (2)H8A—C8—H8B106 (3)
C3—C4—C6122.1 (2)O4—C9—O3121.6 (2)
N1—C5—C4121.7 (2)O4—C9—C8121.0 (2)
N1—C5—H5A117.3 (15)O3—C9—C8117.3 (2)
C5—N1—C1—N2178.1 (2)C1—N1—C5—C40.9 (4)
C5—N1—C1—C22.1 (4)C3—C4—C5—N10.9 (4)
N2—C1—C2—C3178.8 (3)C6—C4—C5—N1177.2 (2)
N1—C1—C2—C31.5 (4)O2—C7—C8—C9170.6 (2)
C1—C2—C3—C40.2 (4)O1—C7—C8—C910.1 (4)
C2—C3—C4—C51.4 (4)C7—C8—C9—O4170.7 (3)
C2—C3—C4—C6176.7 (3)C7—C8—C9—O313.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O11.001.532.475 (3)157
N1—H1N1···O2i1.02 (3)1.65 (3)2.652 (3)170 (3)
N2—H1N2···O4ii0.90 (3)2.00 (3)2.886 (3)171 (3)
N2—H2N2···O1i0.98 (3)1.95 (3)2.924 (3)177 (3)
C2—H2A···O3ii0.93 (3)2.58 (3)3.470 (3)159 (2)
C8—H8A···O2iii0.95 (3)2.41 (3)3.304 (3)158 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C3H3O4
Mr212.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)3.8082 (13), 16.963 (5), 15.372 (5)
β (°) 95.436 (9)
V3)988.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.21 × 0.13
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.975, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
8134, 2210, 1647
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.185, 1.11
No. of reflections2210
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O11.001.532.475 (3)157
N1—H1N1···O2i1.02 (3)1.65 (3)2.652 (3)170 (3)
N2—H1N2···O4ii0.90 (3)2.00 (3)2.886 (3)171 (3)
N2—H2N2···O1i0.98 (3)1.95 (3)2.924 (3)177 (3)
C2—H2A···O3ii0.93 (3)2.58 (3)3.470 (3)159 (2)
C8—H8A···O2iii0.95 (3)2.41 (3)3.304 (3)158 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks USM for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDjinović, K., Golič, L. & Leban, I. (1990). Acta Cryst. C46, 281–286.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationFeng, H., Sun, C.-R., Li, L., Jin, Z.-M. & Tu, B. (2005). Acta Cryst. E61, o1983–o1984.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o623–o624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationJin, Z.-M., Tu, B., He, L., Hu, M.-L. & Zou, J.-W. (2005). Acta Cryst. C61, m197–m199.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXuan, R.-C., Wan, Y.-H., Hu, W.-X., Yang, Z.-Y., Cheng, D.-P. & Xuan, R.-R. (2003). Acta Cryst. E59, o1704–o1706.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds