organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[1-(6-Bromo-2-oxo-2H-chromen-3-yl)ethyl­­idene]thio­semicarbazide

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 May 2010; accepted 22 May 2010; online 29 May 2010)

The title compound, C12H10BrN3O2S, exists in an E configuration with respect to the C=N bond. The approximately planar 2H-chromene ring system [maximum deviation = 0.059 (1) Å] is inclined at a dihedral angle of 17.50 (5)° with respect to the mean plane through the thio­semicarbazide unit and an intra­molecular N—H⋯N hydrogen bond generates an S(5) ring. In the crystal structure, adjacent mol­ecules are linked by N—H⋯S hydrogen bonds, forming [010] chains built up from R22(8) loops, such that each S atom accepts two such bonds. These chains are further inter­connected into sheets parallel to the ab plane via short Br⋯O inter­actions [3.0732 (13) Å] and a ππ aromatic stacking inter­action [3.7870 (8) Å] is also observed.

Related literature

For general background to and applications of the title thio­semicarbazide compound, see: Anderson et al. (2002[Anderson, D. M., Shelley, S., Crick, N. & Buraglio, L. (2002). J. Clin. Pharmacol. 42, 1358-1365.]); Chulian et al. (2009[Chulian, X., Gang, C., Baigen, X., Hui, S., Zhihong, J., Shuguang, D & Nan, Y. (2009). Huaxue Tongbao 72, 815-819.]); Desai et al. (1984[Desai, N. C., Shukla, H. K., Paresh, B. P. & Thaker, K. A. (1984). J. Indian Chem. Soc. pp. 455-457.]); Finn et al. (2004[Finn, G. J., Creaven, B. S. & Egan, D. A. (2004). Cancer Lett. 214, 43-54.]); Hofmanová et al. (1998[Hofmanová, J., Kozubík, A., Dusék, L. & Pacherník, J. (1998). Eur. J. Pharmacol. 350, 273-284.]); Hoult & Payá (1996[Hoult, J. R. S. & Payá, M. (1996). Gen. Pharmacol. 27, 713-722.]); Kimura et al. (1985[Kimura, Y., Okuda, H., Arichi, S., Baba, K. & Kozawa, M. (1985). Biochim. Biophys. Acta, 834, 224-229.]); Laffitte et al. (2002[Laffitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Braind, C. & Gilli, R. (2002). Biochemistry, 41, 7217-7223.]); Mitscher (2002[Mitscher, L. A. (2002). Principles of Medicinal Chemistry, 5th ed., pp. 819-864. Baltimore: Williams & Wilkinsons.]); Moffett (1964[Moffett, R. B. (1964). J. Med. Chem. 7, 446-449.]); Pillai et al. (1999[Pillai, S. P., Menon, S. R., Mitsher, L. A., Pillai, C. A. & Shankel, D. A. (1999). J. Nat. Prod. 62, 1358-1360.]); Shukla et al. (1984[Shukla, H. K., Desai, N. C., Astik, R. R. & Thaker, K. A. (1984). J. Indian Chem. Soc. pp. 168-196.]); Tassies et al. (2002[Tassies, D., Freire, C., Puoan, J., Maragall, S., Moonteagudo, J., Ordinas, A. & Reverter, J. C. (2002). Haematologica, 87, 1185-1191.]); Weber et al. (1998[Weber, U. S., Steffen, B. & Siegers, C. (1998). Res. Commun. Mol. Pathol. Pharmacol. 99, 193-206.]). For the preparation, see: Moamen et al. (2009[Moamen, S. R., Ibrahim, M. E.-D., Zeinab, M. A. & Samir, E.-G. (2009). J. Mol. Struct. 920, 149-162.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Arshad et al. (2010[Arshad, A., Osman, H., Chan, K. L., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1446-o1447.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10BrN3O2S

  • Mr = 340.20

  • Triclinic, [P \overline 1]

  • a = 6.3796 (6) Å

  • b = 8.1260 (7) Å

  • c = 13.3756 (12) Å

  • α = 106.697 (2)°

  • β = 95.095 (2)°

  • γ = 98.925 (2)°

  • V = 649.57 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 100 K

  • 0.73 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.196, Tmax = 0.637

  • 19355 measured reflections

  • 5036 independent reflections

  • 4733 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.084

  • S = 1.17

  • 5036 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H2N3⋯N1 0.82 (3) 2.15 (3) 2.6004 (17) 114 (3)
N2—H1N2⋯S1i 0.73 (3) 2.70 (3) 3.4094 (13) 165 (3)
N3—H1N3⋯S1ii 0.81 (2) 2.49 (2) 3.3010 (13) 175.6 (19)
Symmetry codes: (i) -x-1, -y+1, -z+1; (ii) -x-1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiosemicarbazide compounds exhibit various biological activities such as anti-bacterial, anti-fungal and especially anti-tuberculosis (Shukla et al., 1984, Desai et al., 1984). Apart from this, coumarins constitute an important class of compounds found throughout the plant kingdom and are known to have diverse activities such as anti-coagulants (Anderson et al., 2002, Tassies et al., 2002), anti-bacterial (Mitscher, 2002, Laffitte et al., 2002), anti-fungal (Moffett, 1964) and cytotoxicity (Weber et al., 1998) properties. The coumarin moiety and related derivatives are also reported to have importance as vasodilators (Hoult & Payá, 1996), anti-mutagenic agents (Pillai et al., 1999), scavengers of reactive oxygen species (Finn et al., 2004), as well as lipoxygenese and cyclooxygenese inhibitors (Kimura et al., 1985, Hofmanová et al., 1998). The title compound exhibits very good anti-bacterial activity against Escherichia coli and Bacillus. subtilus (Chulian et al., 2009). The objective of this study is to synthesize new derivatives of coumarin-thiosemicarbazide compounds. We present in this paper the crystal structure of this title compound.

The title thiosemicarbazide compound (Fig. 1) exists in a cis configuration with respect to the Schiff base C10N1 bond [N1C10 = 1.2890 (15) Å; torsion angle C9–C10–N1–N2 = 178.83 (10)°]. The 2H-chromene ring system (C1-C9/O1) is approximately planar, with a maximum deviation of 0.059 (1) Å at atom C9. The mean plane through the thiosemicarbazide moiety (N1/N2/C11/N3/S1) forms dihedral angle of 17.50 (5)° with the 2H-chromene ring system. Bond lengths and angles are consistent to a closely related structure (Arshad et al., 2010).

In the crystal structure, pairs of intermolecular N2—H1N2···S1 and N3—H1N3···S1 hydrogen bonds (Table 1) form bifurcated acceptor hydrogen bonds which generate two different R22(8) hydrogen bond ring motifs with zig-zag formation (Fig. 2, Bernstein et al., 1995). These hydrogen bonds link adjacent molecules into two-molecule wide chains along the b axis. Intermolecular short Br···O interactions [Br1···O2iii = 3.0732 (13) Å; (iii) x+1, y-1, z] interconnect these chains into two-dimensional planes parallel to the ab plane (Fig. 3). The crystal structure is further stabilized by weak Cg1···Cg1 interactions involving the centroid of the C2-C7 benzene ring [Cg1···Cg1iv = 3.7870 (8) Å; (iv) -x+1, -y, -z].

Related literature top

For general background to and applications of the title thiosemicarbazide compound, see: Anderson et al. (2002); Chulian et al. (2009); Desai et al. (1984); Finn et al. (2004); Hofmanová et al. (1998); Hoult et al. (1996); Kimura et al. (1985); Laffitte et al. (2002); Mitscher (2002); Moffett (1964); Pillai et al. (1999); Shukla et al. (1984); Tassies et al. (2002); Weber et al. (1998). For the preparation, see: Moamen et al. (2009). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For a related structure, see: Arshad et al. (2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Coumarin thiosemicarbazone was prepared by cyclocondensation of 5-bromosalicylaldehyde with ethylacetoacetate and the resulting acetyl coumarin intermediate was then treated with thiosemicarbazide to get the title compound as reported in the literature with some modifications (Moamen et al., 2009). The methanol solution of thiosemicarbazide (5.00 mmol) was added to a solution of 6-bromo-(3-acethylcoumarin) (5.00 mmol) in hot methanol (10 ml) while stirring. The resulting solution was refluxed for 1 h and then pH of the solution was adjusted to 4–5 by adding glacial acetic acid. The solution was again refluxed for 4 h. The title compound was recrystallized from ethyl acetate:ethanol (2:1) to give yellow needles of (I).

Refinement top

H atoms bound to N atoms were located from difference Fourier map and allowed to refine freely [range of N—H = 0.73 (3)–0.82 (3) Å]. All other H atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the C12 methyl group.

Structure description top

Thiosemicarbazide compounds exhibit various biological activities such as anti-bacterial, anti-fungal and especially anti-tuberculosis (Shukla et al., 1984, Desai et al., 1984). Apart from this, coumarins constitute an important class of compounds found throughout the plant kingdom and are known to have diverse activities such as anti-coagulants (Anderson et al., 2002, Tassies et al., 2002), anti-bacterial (Mitscher, 2002, Laffitte et al., 2002), anti-fungal (Moffett, 1964) and cytotoxicity (Weber et al., 1998) properties. The coumarin moiety and related derivatives are also reported to have importance as vasodilators (Hoult & Payá, 1996), anti-mutagenic agents (Pillai et al., 1999), scavengers of reactive oxygen species (Finn et al., 2004), as well as lipoxygenese and cyclooxygenese inhibitors (Kimura et al., 1985, Hofmanová et al., 1998). The title compound exhibits very good anti-bacterial activity against Escherichia coli and Bacillus. subtilus (Chulian et al., 2009). The objective of this study is to synthesize new derivatives of coumarin-thiosemicarbazide compounds. We present in this paper the crystal structure of this title compound.

The title thiosemicarbazide compound (Fig. 1) exists in a cis configuration with respect to the Schiff base C10N1 bond [N1C10 = 1.2890 (15) Å; torsion angle C9–C10–N1–N2 = 178.83 (10)°]. The 2H-chromene ring system (C1-C9/O1) is approximately planar, with a maximum deviation of 0.059 (1) Å at atom C9. The mean plane through the thiosemicarbazide moiety (N1/N2/C11/N3/S1) forms dihedral angle of 17.50 (5)° with the 2H-chromene ring system. Bond lengths and angles are consistent to a closely related structure (Arshad et al., 2010).

In the crystal structure, pairs of intermolecular N2—H1N2···S1 and N3—H1N3···S1 hydrogen bonds (Table 1) form bifurcated acceptor hydrogen bonds which generate two different R22(8) hydrogen bond ring motifs with zig-zag formation (Fig. 2, Bernstein et al., 1995). These hydrogen bonds link adjacent molecules into two-molecule wide chains along the b axis. Intermolecular short Br···O interactions [Br1···O2iii = 3.0732 (13) Å; (iii) x+1, y-1, z] interconnect these chains into two-dimensional planes parallel to the ab plane (Fig. 3). The crystal structure is further stabilized by weak Cg1···Cg1 interactions involving the centroid of the C2-C7 benzene ring [Cg1···Cg1iv = 3.7870 (8) Å; (iv) -x+1, -y, -z].

For general background to and applications of the title thiosemicarbazide compound, see: Anderson et al. (2002); Chulian et al. (2009); Desai et al. (1984); Finn et al. (2004); Hofmanová et al. (1998); Hoult et al. (1996); Kimura et al. (1985); Laffitte et al. (2002); Mitscher (2002); Moffett (1964); Pillai et al. (1999); Shukla et al. (1984); Tassies et al. (2002); Weber et al. (1998). For the preparation, see: Moamen et al. (2009). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For a related structure, see: Arshad et al. (2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50 % probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing molecules being linked into an infinite chain incorporating zig-zag shaped R22(8) ring motifs along the b axis.
[Figure 3] Fig. 3. The crystal structure of (I), viewed along the b axis, showing a two-molecule-wide plane parallel to the ab plane. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
(E)-1-[1-(6-Bromo-2-oxo-2H-chromen-3- yl)ethylidene]thiosemicarbazide top
Crystal data top
C12H10BrN3O2SZ = 2
Mr = 340.20F(000) = 340
Triclinic, P1Dx = 1.739 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3796 (6) ÅCell parameters from 9969 reflections
b = 8.1260 (7) Åθ = 2.7–35.1°
c = 13.3756 (12) ŵ = 3.33 mm1
α = 106.697 (2)°T = 100 K
β = 95.095 (2)°Needle, yellow
γ = 98.925 (2)°0.73 × 0.20 × 0.15 mm
V = 649.57 (10) Å3
Data collection top
Bruker APEXII DUO CCD
diffractometer
5036 independent reflections
Radiation source: fine-focus sealed tube4733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 33.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.196, Tmax = 0.637k = 1212
19355 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.0443P]
where P = (Fo2 + 2Fc2)/3
5036 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C12H10BrN3O2Sγ = 98.925 (2)°
Mr = 340.20V = 649.57 (10) Å3
Triclinic, P1Z = 2
a = 6.3796 (6) ÅMo Kα radiation
b = 8.1260 (7) ŵ = 3.33 mm1
c = 13.3756 (12) ÅT = 100 K
α = 106.697 (2)°0.73 × 0.20 × 0.15 mm
β = 95.095 (2)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
5036 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4733 reflections with I > 2σ(I)
Tmin = 0.196, Tmax = 0.637Rint = 0.020
19355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.73 e Å3
5036 reflectionsΔρmin = 0.56 e Å3
185 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.831903 (19)0.130575 (15)0.134917 (9)0.01986 (5)
S10.52737 (6)0.26734 (4)0.52668 (3)0.02208 (7)
O10.39540 (15)0.46915 (12)0.12143 (7)0.01830 (16)
O20.14155 (19)0.62282 (15)0.15561 (9)0.0270 (2)
N10.08889 (17)0.33908 (13)0.34997 (8)0.01559 (17)
N20.24110 (18)0.37175 (14)0.41584 (8)0.01611 (17)
N30.2610 (2)0.08895 (15)0.41915 (9)0.0204 (2)
C10.2259 (2)0.50976 (16)0.17462 (10)0.0177 (2)
C20.48940 (19)0.32942 (15)0.12434 (9)0.01509 (18)
C30.6564 (2)0.29964 (17)0.06532 (10)0.0179 (2)
H3A0.70110.37200.02550.022*
C40.75479 (19)0.15951 (17)0.06722 (9)0.0178 (2)
H4A0.86750.13750.02880.021*
C50.68424 (19)0.05161 (16)0.12688 (9)0.01630 (19)
C60.51529 (19)0.07869 (15)0.18374 (9)0.01632 (19)
H6A0.46700.00310.22100.020*
C70.41777 (18)0.22285 (15)0.18420 (9)0.01446 (18)
C80.25545 (18)0.27089 (15)0.24813 (9)0.01512 (18)
H8A0.21130.20480.29150.018*
C90.16407 (18)0.41112 (15)0.24698 (9)0.01454 (18)
C100.00056 (18)0.46198 (15)0.31560 (9)0.01494 (18)
C110.33190 (19)0.23856 (15)0.44883 (9)0.01633 (19)
C120.0508 (2)0.64307 (16)0.34349 (10)0.0196 (2)
H12A0.06740.68140.41670.029*
H12B0.18140.64170.30130.029*
H12C0.06410.72180.33020.029*
H1N20.308 (5)0.438 (4)0.420 (3)0.060 (9)*
H1N30.317 (3)0.005 (3)0.4346 (16)0.019 (4)*
H2N30.164 (5)0.094 (4)0.383 (3)0.057 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02111 (7)0.01997 (7)0.02278 (7)0.01169 (5)0.00823 (5)0.00757 (5)
S10.02734 (16)0.01628 (13)0.03123 (16)0.01088 (11)0.02016 (13)0.01232 (11)
O10.0205 (4)0.0197 (4)0.0223 (4)0.0104 (3)0.0121 (3)0.0121 (3)
O20.0334 (5)0.0302 (5)0.0330 (5)0.0205 (4)0.0192 (4)0.0220 (4)
N10.0174 (4)0.0165 (4)0.0162 (4)0.0071 (3)0.0086 (3)0.0062 (3)
N20.0191 (4)0.0145 (4)0.0197 (4)0.0078 (3)0.0116 (3)0.0078 (3)
N30.0264 (5)0.0157 (4)0.0259 (5)0.0104 (4)0.0158 (4)0.0099 (4)
C10.0197 (5)0.0189 (5)0.0199 (5)0.0086 (4)0.0097 (4)0.0096 (4)
C20.0157 (4)0.0162 (4)0.0162 (4)0.0063 (4)0.0057 (3)0.0066 (4)
C30.0181 (5)0.0216 (5)0.0186 (5)0.0077 (4)0.0089 (4)0.0092 (4)
C40.0166 (5)0.0219 (5)0.0176 (5)0.0078 (4)0.0075 (4)0.0063 (4)
C50.0164 (4)0.0176 (5)0.0172 (4)0.0084 (4)0.0054 (4)0.0053 (4)
C60.0173 (5)0.0163 (4)0.0186 (5)0.0071 (4)0.0068 (4)0.0069 (4)
C70.0154 (4)0.0149 (4)0.0154 (4)0.0055 (3)0.0058 (3)0.0058 (3)
C80.0158 (4)0.0155 (4)0.0171 (4)0.0060 (4)0.0068 (4)0.0069 (4)
C90.0158 (4)0.0152 (4)0.0156 (4)0.0059 (3)0.0068 (3)0.0064 (3)
C100.0155 (4)0.0155 (4)0.0167 (4)0.0061 (4)0.0065 (4)0.0065 (3)
C110.0198 (5)0.0146 (4)0.0184 (5)0.0068 (4)0.0090 (4)0.0072 (4)
C120.0234 (5)0.0159 (5)0.0248 (5)0.0092 (4)0.0121 (4)0.0090 (4)
Geometric parameters (Å, º) top
Br1—C51.8965 (11)C3—C41.3879 (17)
S1—C111.6957 (12)C3—H3A0.9300
O1—C21.3722 (14)C4—C51.3969 (17)
O1—C11.3770 (14)C4—H4A0.9300
O2—C11.2091 (15)C5—C61.3827 (16)
N1—C101.2890 (15)C6—C71.4079 (15)
N1—N21.3738 (14)C6—H6A0.9300
N2—C111.3516 (15)C7—C81.4307 (16)
N2—H1N20.73 (3)C8—C91.3613 (15)
N3—C111.3288 (15)C8—H8A0.9300
N3—H1N30.81 (2)C9—C101.4846 (16)
N3—H2N30.82 (3)C10—C121.5033 (16)
C1—C91.4665 (16)C12—H12A0.9600
C2—C31.3917 (16)C12—H12B0.9600
C2—C71.3930 (15)C12—H12C0.9600
C2—O1—C1122.75 (9)C5—C6—H6A120.6
C10—N1—N2119.10 (10)C7—C6—H6A120.6
C11—N2—N1117.19 (10)C2—C7—C6118.95 (10)
C11—N2—H1N2111 (3)C2—C7—C8118.13 (10)
N1—N2—H1N2128 (3)C6—C7—C8122.83 (10)
C11—N3—H1N3119.9 (15)C9—C8—C7121.52 (10)
C11—N3—H2N3112 (2)C9—C8—H8A119.2
H1N3—N3—H2N3128 (3)C7—C8—H8A119.2
O2—C1—O1116.08 (11)C8—C9—C1119.13 (10)
O2—C1—C9126.61 (11)C8—C9—C10120.96 (10)
O1—C1—C9117.31 (10)C1—C9—C10119.90 (10)
O1—C2—C3117.34 (10)N1—C10—C9113.79 (10)
O1—C2—C7120.50 (10)N1—C10—C12124.38 (10)
C3—C2—C7122.16 (10)C9—C10—C12121.81 (10)
C4—C3—C2118.48 (11)N3—C11—N2117.80 (11)
C4—C3—H3A120.8N3—C11—S1122.45 (9)
C2—C3—H3A120.8N2—C11—S1119.74 (9)
C3—C4—C5119.89 (10)C10—C12—H12A109.5
C3—C4—H4A120.1C10—C12—H12B109.5
C5—C4—H4A120.1H12A—C12—H12B109.5
C6—C5—C4121.73 (10)C10—C12—H12C109.5
C6—C5—Br1119.11 (9)H12A—C12—H12C109.5
C4—C5—Br1119.11 (9)H12B—C12—H12C109.5
C5—C6—C7118.75 (10)
C10—N1—N2—C11179.07 (11)C5—C6—C7—C8174.14 (11)
C2—O1—C1—O2171.47 (12)C2—C7—C8—C93.45 (17)
C2—O1—C1—C97.73 (18)C6—C7—C8—C9179.96 (12)
C1—O1—C2—C3178.59 (11)C7—C8—C9—C13.09 (18)
C1—O1—C2—C71.23 (18)C7—C8—C9—C10178.55 (11)
O1—C2—C3—C4179.76 (11)O2—C1—C9—C8170.56 (14)
C7—C2—C3—C40.43 (19)O1—C1—C9—C88.54 (18)
C2—C3—C4—C50.48 (19)O2—C1—C9—C107.8 (2)
C3—C4—C5—C60.93 (19)O1—C1—C9—C10173.08 (11)
C3—C4—C5—Br1176.32 (9)N2—N1—C10—C9178.83 (10)
C4—C5—C6—C72.35 (18)N2—N1—C10—C120.63 (18)
Br1—C5—C6—C7174.90 (9)C8—C9—C10—N118.82 (16)
O1—C2—C7—C6178.81 (11)C1—C9—C10—N1159.52 (11)
C3—C2—C7—C60.99 (18)C8—C9—C10—C12159.43 (12)
O1—C2—C7—C84.54 (17)C1—C9—C10—C1222.22 (17)
C3—C2—C7—C8175.65 (11)N1—N2—C11—N32.93 (17)
C5—C6—C7—C22.34 (18)N1—N2—C11—S1177.80 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2N3···N10.82 (3)2.15 (3)2.6004 (17)114 (3)
N2—H1N2···S1i0.73 (3)2.70 (3)3.4094 (13)165 (3)
N3—H1N3···S1ii0.81 (2)2.49 (2)3.3010 (13)175.6 (19)
Symmetry codes: (i) x1, y+1, z+1; (ii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H10BrN3O2S
Mr340.20
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.3796 (6), 8.1260 (7), 13.3756 (12)
α, β, γ (°)106.697 (2), 95.095 (2), 98.925 (2)
V3)649.57 (10)
Z2
Radiation typeMo Kα
µ (mm1)3.33
Crystal size (mm)0.73 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.196, 0.637
No. of measured, independent and
observed [I > 2σ(I)] reflections
19355, 5036, 4733
Rint0.020
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.084, 1.17
No. of reflections5036
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.56

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2N3···N10.82 (3)2.15 (3)2.6004 (17)114 (3)
N2—H1N2···S1i0.73 (3)2.70 (3)3.4094 (13)165 (3)
N3—H1N3···S1ii0.81 (2)2.49 (2)3.3010 (13)175.6 (19)
Symmetry codes: (i) x1, y+1, z+1; (ii) x1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: C-7576-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for a Short-term Grant (No. 304/PKIMIA/639004) to conduct this research. AA thanks the Pakistan Government and PCSIR for financial scholarship support. HKF and JHG thank USM for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationAnderson, D. M., Shelley, S., Crick, N. & Buraglio, L. (2002). J. Clin. Pharmacol. 42, 1358–1365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArshad, A., Osman, H., Chan, K. L., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1446–o1447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChulian, X., Gang, C., Baigen, X., Hui, S., Zhihong, J., Shuguang, D & Nan, Y. (2009). Huaxue Tongbao 72, 815–819.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesai, N. C., Shukla, H. K., Paresh, B. P. & Thaker, K. A. (1984). J. Indian Chem. Soc. pp. 455–457.  Google Scholar
First citationFinn, G. J., Creaven, B. S. & Egan, D. A. (2004). Cancer Lett. 214, 43–54.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHofmanová, J., Kozubík, A., Dusék, L. & Pacherník, J. (1998). Eur. J. Pharmacol. 350, 273–284.  Web of Science PubMed Google Scholar
First citationHoult, J. R. S. & Payá, M. (1996). Gen. Pharmacol. 27, 713–722.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKimura, Y., Okuda, H., Arichi, S., Baba, K. & Kozawa, M. (1985). Biochim. Biophys. Acta, 834, 224–229.  CAS PubMed Web of Science Google Scholar
First citationLaffitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Braind, C. & Gilli, R. (2002). Biochemistry, 41, 7217–7223.  Web of Science CrossRef PubMed Google Scholar
First citationMitscher, L. A. (2002). Principles of Medicinal Chemistry, 5th ed., pp. 819–864. Baltimore: Williams & Wilkinsons.  Google Scholar
First citationMoamen, S. R., Ibrahim, M. E.-D., Zeinab, M. A. & Samir, E.-G. (2009). J. Mol. Struct. 920, 149–162.  Google Scholar
First citationMoffett, R. B. (1964). J. Med. Chem. 7, 446–449.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPillai, S. P., Menon, S. R., Mitsher, L. A., Pillai, C. A. & Shankel, D. A. (1999). J. Nat. Prod. 62, 1358–1360.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShukla, H. K., Desai, N. C., Astik, R. R. & Thaker, K. A. (1984). J. Indian Chem. Soc. pp. 168–196.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTassies, D., Freire, C., Puoan, J., Maragall, S., Moonteagudo, J., Ordinas, A. & Reverter, J. C. (2002). Haematologica, 87, 1185–1191.  Web of Science PubMed CAS Google Scholar
First citationWeber, U. S., Steffen, B. & Siegers, C. (1998). Res. Commun. Mol. Pathol. Pharmacol. 99, 193–206.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds