organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­amino-5-nitro­benzoic acid

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 22 May 2010; accepted 24 May 2010; online 29 May 2010)

The title compound, C8H8N2O4, is almost planar (r.m.s. deviation = 0.037 Å) and an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(8) loops. Inter­molecular N—H⋯O hydrogen bonds (involving the same H atom that forms the intra­molecular hydrogen bond) link the dimers into infinite sheets lying parallel to (102).

Related literature

For background to the medicinal properties of benzodiazepines, see: Blank et al. (2009[Blank, A., Hellstern, V., Schuster, D., Hartmann, M., Matthée, A. K., Burhenne, J., Haefeli, W. E. & Mikus, G. (2009). Clin. Infect. Dis. 48, 1787-1789.]); Kamal et al. (2010[Kamal, A., Vijaya, B. E., Janaki, R. M., Dastagiri, D., Surendranadha, R. J., Viswanath, A., Sultana, F., Pal-Bhadra, M., Srivastava, H. K., Narahari, S. G., Juvekar, A. & Zingde, S. (2010). Bioorg. Med. Chem. 18, 526-542.]). For a related structure, see: Dhaneshwar & Pant (1972[Dhaneshwar, N. N. & Pant, L. M. (1972). Acta Cryst. B28, 647-649.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N2O4

  • Mr = 196.16

  • Monoclinic, P 21 /c

  • a = 7.2541 (12) Å

  • b = 14.037 (2) Å

  • c = 8.5972 (14) Å

  • β = 103.673 (6)°

  • V = 850.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.34 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.988

  • 6739 measured reflections

  • 1667 independent reflections

  • 931 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.156

  • S = 0.95

  • 1667 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.03 2.694 (3) 134
N1—H1⋯O4i 0.86 2.52 3.165 (3) 133
O2—H2⋯O1ii 0.82 1.86 2.679 (3) 177
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The benzodiazepines constitute a very diverse class of heterocyclic compounds with plethora of biological activities such as anti-caner (Kamal et al., 2010) and anti-HIV (Blank et al., 2009) agent. The title compound (I, Fig. 1) was synthesized as a precursor for the synthesis of benzodiazepine derivative and it will also be utilized for the metal complexation.

The crystal structures of N-methylanthranilic acid (II) (Dhaneshwar & Pant, 1972) has been published. The title compound differs from (II) due to substitution of nitro group at at position five.

The asymmetric unit of title compound is essentially planar with r. m. s. deviation of 0.0366 Å from the least square plane of (C1—C8/N1/N2/O1/O2/O3). There exist a S(6) ring motif (Bernstein et al., 1995) due to N—H···O type of intramolecular H-bondings. The molecules are dimerised due to inversion related O—H···O type of H-bondings with R22(8) ring motifs. The dimers are interlinked in the form of infinite two dimensional polymeric sheets due to H-bonding of N—H···O type (Fig. 2).

Related literature top

For background to the medicinal properties of benzodiazepines, see: Blank et al. (2009); Kamal et al. (2010). For a related structure, see: Dhaneshwar & Pant (1972). For graph-set theory, see: Bernstein et al. (1995);

Experimental top

To HNO3 (1.83 g, 0.03 mol) taken in an ice chilled round bottom flask the H2SO4 (2.6 g, 0.026 mol) was added as drops with constant stirring. A solution of N-methylanthranilic acid (2 g, 0.01 mol) in EtOAc (25 ml) was added as drops to the nitrating mixture in ice chilled water bath and stirred for half an hour followed by 3 hours reflux. The reaction mixture was neutralized and extracted with EtOAc (3 × 30 ml). The organic layer was dried over anhydrous Na2SO4 and concentrated under reduce pressure that afforded purple needles of (I) upon standing.

Refinement top

Although H atoms were appeared in difference Fourier map but were positioned geometrically with (C-H = 0.93–0.96 and O-H = 0.82 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and hydroxy H-atoms and x = 1.2 for other H atoms.

Structure description top

The benzodiazepines constitute a very diverse class of heterocyclic compounds with plethora of biological activities such as anti-caner (Kamal et al., 2010) and anti-HIV (Blank et al., 2009) agent. The title compound (I, Fig. 1) was synthesized as a precursor for the synthesis of benzodiazepine derivative and it will also be utilized for the metal complexation.

The crystal structures of N-methylanthranilic acid (II) (Dhaneshwar & Pant, 1972) has been published. The title compound differs from (II) due to substitution of nitro group at at position five.

The asymmetric unit of title compound is essentially planar with r. m. s. deviation of 0.0366 Å from the least square plane of (C1—C8/N1/N2/O1/O2/O3). There exist a S(6) ring motif (Bernstein et al., 1995) due to N—H···O type of intramolecular H-bondings. The molecules are dimerised due to inversion related O—H···O type of H-bondings with R22(8) ring motifs. The dimers are interlinked in the form of infinite two dimensional polymeric sheets due to H-bonding of N—H···O type (Fig. 2).

For background to the medicinal properties of benzodiazepines, see: Blank et al. (2009); Kamal et al. (2010). For a related structure, see: Dhaneshwar & Pant (1972). For graph-set theory, see: Bernstein et al. (1995);

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted line indicate the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing diagram of (I), which shows that molecules form polymeric chains extending along the b-axis.
2-Methylamino-5-nitrobenzoic acid top
Crystal data top
C8H8N2O4F(000) = 408
Mr = 196.16Dx = 1.532 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 931 reflections
a = 7.2541 (12) Åθ = 2.8–26.0°
b = 14.037 (2) ŵ = 0.13 mm1
c = 8.5972 (14) ÅT = 296 K
β = 103.673 (6)°Needle, colorless
V = 850.6 (2) Å30.34 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1667 independent reflections
Radiation source: fine-focus sealed tube931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 7.50 pixels mm-1θmax = 26.0°, θmin = 2.8°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1712
Tmin = 0.979, Tmax = 0.988l = 1010
6739 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0901P)2]
where P = (Fo2 + 2Fc2)/3
1667 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C8H8N2O4V = 850.6 (2) Å3
Mr = 196.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2541 (12) ŵ = 0.13 mm1
b = 14.037 (2) ÅT = 296 K
c = 8.5972 (14) Å0.34 × 0.12 × 0.10 mm
β = 103.673 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1667 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
931 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.988Rint = 0.051
6739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 0.95Δρmax = 0.25 e Å3
1667 reflectionsΔρmin = 0.27 e Å3
129 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5419 (3)0.38658 (12)0.5049 (2)0.0518 (7)
O20.7127 (3)0.49628 (11)0.4158 (3)0.0573 (8)
O31.2269 (3)0.42409 (14)0.1896 (3)0.0729 (9)
O41.3096 (3)0.27893 (14)0.1606 (3)0.0672 (8)
N10.6259 (3)0.20268 (13)0.4642 (3)0.0468 (8)
N21.2080 (3)0.33798 (16)0.2050 (3)0.0520 (9)
C10.7967 (3)0.33700 (15)0.3914 (3)0.0356 (8)
C20.7635 (3)0.23711 (16)0.4028 (3)0.0380 (8)
C30.8868 (3)0.17368 (17)0.3470 (3)0.0421 (9)
C41.0304 (4)0.20647 (17)0.2851 (3)0.0445 (9)
C51.0588 (3)0.30381 (17)0.2745 (3)0.0412 (9)
C60.9435 (4)0.36766 (16)0.3270 (3)0.0405 (8)
C70.6728 (4)0.40694 (16)0.4424 (3)0.0404 (9)
C80.5800 (4)0.10286 (17)0.4683 (4)0.0530 (11)
H10.559630.242470.504270.0562*
H20.636120.531600.443250.0859*
H30.868640.108330.353120.0505*
H41.109700.163750.249880.0534*
H60.964730.432630.319040.0486*
H8A0.688220.068780.528570.0796*
H8B0.545750.078390.361010.0796*
H8C0.475520.094990.517890.0796*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0570 (13)0.0296 (10)0.0792 (14)0.0016 (8)0.0367 (11)0.0003 (9)
O20.0657 (13)0.0256 (11)0.0921 (16)0.0005 (9)0.0418 (12)0.0015 (9)
O30.0793 (16)0.0436 (12)0.1119 (19)0.0089 (10)0.0550 (14)0.0108 (12)
O40.0582 (13)0.0610 (13)0.0958 (17)0.0082 (10)0.0448 (12)0.0052 (12)
N10.0541 (14)0.0254 (11)0.0716 (16)0.0034 (10)0.0363 (13)0.0040 (10)
N20.0497 (15)0.0443 (14)0.0687 (17)0.0010 (12)0.0273 (13)0.0050 (12)
C10.0406 (15)0.0224 (12)0.0464 (16)0.0003 (10)0.0156 (12)0.0020 (10)
C20.0416 (15)0.0307 (13)0.0447 (15)0.0026 (11)0.0160 (13)0.0013 (11)
C30.0464 (16)0.0261 (12)0.0584 (17)0.0005 (11)0.0216 (14)0.0032 (12)
C40.0461 (16)0.0333 (15)0.0586 (18)0.0050 (12)0.0212 (14)0.0029 (12)
C50.0414 (15)0.0366 (15)0.0497 (16)0.0023 (11)0.0190 (13)0.0030 (12)
C60.0438 (15)0.0288 (13)0.0502 (16)0.0012 (11)0.0137 (13)0.0003 (11)
C70.0467 (16)0.0264 (14)0.0494 (16)0.0001 (11)0.0141 (14)0.0006 (12)
C80.069 (2)0.0257 (14)0.076 (2)0.0092 (12)0.0404 (16)0.0070 (13)
Geometric parameters (Å, º) top
O1—C71.230 (4)C1—C61.380 (4)
O2—C71.319 (3)C2—C31.423 (3)
O3—N21.227 (3)C3—C41.357 (4)
O4—N21.228 (3)C4—C51.388 (3)
O2—H20.8200C5—C61.373 (4)
N1—C81.443 (3)C3—H30.9300
N1—C21.326 (3)C4—H40.9300
N2—C51.437 (3)C6—H60.9300
N1—H10.8600C8—H8A0.9600
C1—C71.466 (3)C8—H8B0.9600
C1—C21.430 (3)C8—H8C0.9600
C7—O2—H2109.00N2—C5—C6119.7 (2)
C2—N1—C8124.3 (2)C1—C6—C5121.1 (2)
O3—N2—C5119.2 (2)O1—C7—O2121.4 (2)
O4—N2—C5118.1 (2)O1—C7—C1124.5 (2)
O3—N2—O4122.7 (2)O2—C7—C1114.2 (2)
C2—N1—H1118.00C2—C3—H3119.00
C8—N1—H1118.00C4—C3—H3119.00
C6—C1—C7119.8 (2)C3—C4—H4120.00
C2—C1—C6119.5 (2)C5—C4—H4120.00
C2—C1—C7120.7 (2)C1—C6—H6119.00
N1—C2—C3119.9 (2)C5—C6—H6119.00
N1—C2—C1122.7 (2)N1—C8—H8A109.00
C1—C2—C3117.4 (2)N1—C8—H8B109.00
C2—C3—C4121.5 (2)N1—C8—H8C109.00
C3—C4—C5119.9 (2)H8A—C8—H8B109.00
C4—C5—C6120.6 (2)H8A—C8—H8C110.00
N2—C5—C4119.6 (2)H8B—C8—H8C109.00
C8—N1—C2—C1175.8 (3)C2—C1—C7—O14.1 (4)
C8—N1—C2—C35.1 (4)C2—C1—C7—O2175.9 (2)
O3—N2—C5—C4176.8 (3)C6—C1—C7—O1178.0 (2)
O3—N2—C5—C62.0 (4)C6—C1—C7—O22.0 (4)
O4—N2—C5—C41.9 (4)N1—C2—C3—C4179.3 (2)
O4—N2—C5—C6179.4 (3)C1—C2—C3—C40.1 (4)
C6—C1—C2—N1179.6 (2)C2—C3—C4—C50.3 (4)
C6—C1—C2—C30.4 (4)C3—C4—C5—N2178.4 (2)
C7—C1—C2—N12.5 (4)C3—C4—C5—C60.4 (4)
C7—C1—C2—C3178.4 (2)N2—C5—C6—C1178.7 (2)
C2—C1—C6—C50.4 (4)C4—C5—C6—C10.0 (4)
C7—C1—C6—C5178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.032.694 (3)134
N1—H1···O4i0.862.523.165 (3)133
O2—H2···O1ii0.821.862.679 (3)177
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H8N2O4
Mr196.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.2541 (12), 14.037 (2), 8.5972 (14)
β (°) 103.673 (6)
V3)850.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.34 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.979, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
6739, 1667, 931
Rint0.051
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.156, 0.95
No. of reflections1667
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.032.694 (3)134
N1—H1···O4i0.862.523.165 (3)133
O2—H2···O1ii0.821.862.679 (3)177
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of a research project (20-819).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlank, A., Hellstern, V., Schuster, D., Hartmann, M., Matthée, A. K., Burhenne, J., Haefeli, W. E. & Mikus, G. (2009). Clin. Infect. Dis. 48, 1787–1789.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhaneshwar, N. N. & Pant, L. M. (1972). Acta Cryst. B28, 647–649.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKamal, A., Vijaya, B. E., Janaki, R. M., Dastagiri, D., Surendranadha, R. J., Viswanath, A., Sultana, F., Pal-Bhadra, M., Srivastava, H. K., Narahari, S. G., Juvekar, A. & Zingde, S. (2010). Bioorg. Med. Chem. 18, 526–542.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds