organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-chloro­pyridinium 2-carb­­oxy­acetate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 25 May 2010; accepted 25 May 2010; online 29 May 2010)

The title salt, C5H6ClN2+·C3H3O4, contains two cations and two anions in the asymmetric unit. Both 2-amino-5-chloro­pyridinium ions are protonated at their pyridine N atoms and both hydrogen malonate ions feature an intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring motif and results in a folded conformation. In the crystal structure, the cations and anions are linked via N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating in [010], which are cross-linked by further C—H⋯O inter­actions.

Related literature

For background to the chemistry of substituted pyridines, see: Amr et al. (2006[Amr, A. G., Mohamed, A. M., Mohamed, S. F., Abdel-Hafez, N. A. & Hammam, A. G. (2006). Bioorg. Med. Chem. 14, 5481-5488.]); Bart et al. (2001[Bart, A., Jansen, J., Zwan, J. V., Dulk, H., Brouwer, J. & Reedijk, J. (2001). J. Med. Chem. 44, 245-249.]); Shinkai et al. (2000[Shinkai, H., Ito, T., Iida, T., Kitao, Y., Yamada, H. & Uchida, I. (2000). J. Med. Chem. 43, 4667-4677.]); Klimesôva et al. (1999[Klimesôva, V., Svoboda, M., Waisser, K., Pour, M. & Kaustova, J. (1999). Il Farmaco, 54, 666-672.]). For related structures, see: Pourayoubi et al. (2007[Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.]); Janczak & Perpétuo (2009[Janczak, J. & Perpétuo, G. J. (2009). Acta Cryst. C65, o339-o341.]); Akriche & Rzaigui (2005[Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607-o2609.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6ClN2+·C3H3O4

  • Mr = 232.62

  • Monoclinic, P 21 /c

  • a = 15.6971 (19) Å

  • b = 16.866 (2) Å

  • c = 7.4662 (10) Å

  • β = 94.518 (3)°

  • V = 1970.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 100 K

  • 0.22 × 0.14 × 0.07 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.921, Tmax = 0.973

  • 22474 measured reflections

  • 5811 independent reflections

  • 4314 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.01

  • 5811 reflections

  • 343 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1A 0.93 (2) 1.68 (2) 2.5982 (17) 171 (2)
N2A—H2NA⋯O2A 0.95 (2) 2.01 (2) 2.9518 (19) 169.1 (18)
N2A—H3NA⋯O3Bi 0.87 (2) 2.07 (2) 2.9333 (18) 178 (2)
N1B—H1NB⋯O1B 0.92 (2) 1.69 (2) 2.5980 (17) 169 (2)
N2B—H2NB⋯O2B 0.88 (2) 2.08 (2) 2.9538 (19) 175 (2)
N2B—H3NB⋯O3Aii 0.93 (2) 2.04 (2) 2.9598 (19) 175 (2)
O4A—H1OA⋯O2A 0.94 (2) 1.58 (2) 2.4835 (16) 158 (2)
O4B—H1OB⋯O2B 0.93 (3) 1.57 (3) 2.4752 (16) 162 (3)
C1A—H1A⋯O3Biii 0.960 (18) 2.458 (18) 3.374 (2) 159.6 (14)
C1B—H1B⋯O3Aiii 0.98 (2) 2.46 (2) 3.417 (2) 166.1 (18)
C7A—H7AB⋯O1Biii 0.97 (2) 2.31 (2) 3.2509 (19) 162.6 (18)
C7B—H7BB⋯O4Aiv 0.96 (2) 2.55 (2) 3.440 (2) 155.7 (16)
C4A—H4A⋯O4Bi 0.95 (2) 2.32 (2) 3.264 (2) 171.6 (18)
C4B—H4B⋯O4Aii 0.94 (2) 2.30 (2) 3.237 (2) 177.4 (17)
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+2; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives continue to attract great interest due to the wide variety of interesting biological activities observed for these compounds, such as anticancer, analgesic, antimicrobial, and antidepressant activities (Amr et al., 2006; Bart et al., 2001; Shinkai et al., 2000; Klimesôva et al., 1999). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007), 2-amino-5-chloropyridinium trichloroacetate (Janczak & Perpétuo, 2009) and bis(2-amino-5-chloropyridinium)dihydrogendi phosphate (Akriche & Rzaigui, 2005) have been reported. Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title salt, (I), is presented here.

The asymmetric unit of the title salt consists of two crystallographically independent 2-amino-5-chloropyridinium cations and two hydrogen malonate anions, with atom labelling suffixes of A & B (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.002 (1) Å for C5A atom (molecule A) and 0.009 (1) Å for atom N1B (molecule B). In the cations, protonation at atoms N1A and N1B lead to slight increases in the C1A—N1A—C5A [123.22 (13)°] and C1B—N1B—C5B [122.97 (14)°] angles compared to those observed in an unprotonated structure (Pourayoubi et al., 2007). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure, (Fig. 2), the ionic units are linked by N1A—H1NA···O1A; N2A—H2NA···O2A; N2A—H3NA···O3B; N1B—H1NB···O1B; N2B—H2NB···O2B; N2B—H3NB···O3A; C1A—H1A···O3B; C1B—H1B···O3A; C4A—H4A···O4B and C4B—H4B···O4A (Table 1) hydrogen bonds, forming one-dimensional chains along the b-axis. Furthermore, these chains are inter-connected by intermolecular C7A—H7AB···O1B and C7B—H7BB···O4A hydrogen bonds. There are intramolecular O4A—H1OA···O2A and O4B—H1OB···O2B hydrogen bonds in the hydrogen malonate anions, which generate S(6) (Bernstein et al., 1995) ring motifs, resulting in folded conformation.

Related literature top

For background to the chemistry of substituted pyridines, see: Amr et al. (2006); Bart et al. (2001); Shinkai et al. (2000); Klimesôva et al. (1999). For related structures, see: Pourayoubi et al. (2007); Janczak & Perpétuo (2009); Akriche & Rzaigui (2005). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (64 mg, Aldrich) and malonic acid acid (52 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless needles of (I) appeared after a few days.

Refinement top

All the H atoms were located from the difference Fourier maps and allowed to refine freely [N–H = 0.87 (2)–0.95 (2) Å, O–H = 0.93 (3)–0.94 (3) Å and C–H = 0.90 (2)–0.97 (2) Å].

Structure description top

Pyridine and its derivatives continue to attract great interest due to the wide variety of interesting biological activities observed for these compounds, such as anticancer, analgesic, antimicrobial, and antidepressant activities (Amr et al., 2006; Bart et al., 2001; Shinkai et al., 2000; Klimesôva et al., 1999). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007), 2-amino-5-chloropyridinium trichloroacetate (Janczak & Perpétuo, 2009) and bis(2-amino-5-chloropyridinium)dihydrogendi phosphate (Akriche & Rzaigui, 2005) have been reported. Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title salt, (I), is presented here.

The asymmetric unit of the title salt consists of two crystallographically independent 2-amino-5-chloropyridinium cations and two hydrogen malonate anions, with atom labelling suffixes of A & B (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.002 (1) Å for C5A atom (molecule A) and 0.009 (1) Å for atom N1B (molecule B). In the cations, protonation at atoms N1A and N1B lead to slight increases in the C1A—N1A—C5A [123.22 (13)°] and C1B—N1B—C5B [122.97 (14)°] angles compared to those observed in an unprotonated structure (Pourayoubi et al., 2007). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure, (Fig. 2), the ionic units are linked by N1A—H1NA···O1A; N2A—H2NA···O2A; N2A—H3NA···O3B; N1B—H1NB···O1B; N2B—H2NB···O2B; N2B—H3NB···O3A; C1A—H1A···O3B; C1B—H1B···O3A; C4A—H4A···O4B and C4B—H4B···O4A (Table 1) hydrogen bonds, forming one-dimensional chains along the b-axis. Furthermore, these chains are inter-connected by intermolecular C7A—H7AB···O1B and C7B—H7BB···O4A hydrogen bonds. There are intramolecular O4A—H1OA···O2A and O4B—H1OB···O2B hydrogen bonds in the hydrogen malonate anions, which generate S(6) (Bernstein et al., 1995) ring motifs, resulting in folded conformation.

For background to the chemistry of substituted pyridines, see: Amr et al. (2006); Bart et al. (2001); Shinkai et al. (2000); Klimesôva et al. (1999). For related structures, see: Pourayoubi et al. (2007); Janczak & Perpétuo (2009); Akriche & Rzaigui (2005). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing the hydrogen-bonded (dashed lines) network.
2-Amino-5-chloropyridinium 2-carboxyacetate top
Crystal data top
C5H6ClN2+·C3H3O4F(000) = 960
Mr = 232.62Dx = 1.568 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3966 reflections
a = 15.6971 (19) Åθ = 2.6–29.5°
b = 16.866 (2) ŵ = 0.38 mm1
c = 7.4662 (10) ÅT = 100 K
β = 94.518 (3)°Needle, colourless
V = 1970.5 (4) Å30.22 × 0.14 × 0.07 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD
diffractometer
5811 independent reflections
Radiation source: fine-focus sealed tube4314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 30.1°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.921, Tmax = 0.973k = 2323
22474 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.3626P]
where P = (Fo2 + 2Fc2)/3
5811 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C5H6ClN2+·C3H3O4V = 1970.5 (4) Å3
Mr = 232.62Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.6971 (19) ŵ = 0.38 mm1
b = 16.866 (2) ÅT = 100 K
c = 7.4662 (10) Å0.22 × 0.14 × 0.07 mm
β = 94.518 (3)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
5811 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4314 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.973Rint = 0.050
22474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.37 e Å3
5811 reflectionsΔρmin = 0.29 e Å3
343 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A1.10339 (2)0.51132 (2)0.62925 (6)0.02059 (10)
N1A0.96753 (8)0.70248 (8)0.71311 (18)0.0154 (3)
N2A0.98853 (9)0.83754 (8)0.6948 (2)0.0201 (3)
C1A0.99204 (10)0.62574 (9)0.7005 (2)0.0158 (3)
C2A1.07092 (10)0.60860 (9)0.6478 (2)0.0161 (3)
C3A1.12584 (10)0.67048 (10)0.6084 (2)0.0185 (3)
C4A1.10044 (10)0.74747 (9)0.6221 (2)0.0183 (3)
C5A1.01808 (10)0.76410 (9)0.6772 (2)0.0153 (3)
O1A0.80991 (7)0.72010 (7)0.78892 (17)0.0217 (3)
O2A0.82767 (7)0.84610 (6)0.87375 (16)0.0188 (2)
O3A0.59603 (7)0.85002 (7)1.08754 (16)0.0210 (3)
O4A0.71363 (7)0.91411 (7)1.02782 (17)0.0202 (2)
C6A0.78450 (10)0.78253 (9)0.8570 (2)0.0152 (3)
C7A0.69498 (10)0.78000 (9)0.9200 (2)0.0150 (3)
C8A0.66443 (10)0.85090 (9)1.0200 (2)0.0156 (3)
Cl1B0.63656 (3)0.19876 (2)0.73072 (6)0.02333 (10)
N1B0.49352 (8)0.38598 (8)0.80976 (18)0.0157 (3)
N2B0.50075 (9)0.51989 (8)0.7476 (2)0.0208 (3)
C1B0.52319 (10)0.31042 (9)0.8071 (2)0.0164 (3)
C2B0.59873 (10)0.29500 (10)0.7381 (2)0.0175 (3)
C3B0.64554 (10)0.35768 (10)0.6699 (2)0.0200 (3)
C4B0.61446 (10)0.43307 (10)0.6713 (2)0.0192 (3)
C5B0.53518 (10)0.44787 (9)0.7429 (2)0.0162 (3)
O1B0.34096 (7)0.39509 (6)0.92022 (17)0.0215 (3)
O2B0.33226 (7)0.52644 (6)0.89745 (17)0.0209 (3)
O3B0.10788 (7)0.53283 (7)1.13690 (18)0.0270 (3)
O4B0.21003 (7)0.59797 (7)1.01198 (17)0.0213 (3)
C6B0.30412 (10)0.45958 (9)0.9424 (2)0.0157 (3)
C7B0.22061 (10)0.45532 (9)1.0316 (2)0.0163 (3)
C8B0.17473 (10)0.53207 (9)1.0644 (2)0.0172 (3)
H1A0.9511 (11)0.5865 (11)0.730 (2)0.016 (4)*
H1B0.4871 (12)0.2697 (12)0.856 (3)0.026 (5)*
H3A1.1788 (13)0.6612 (11)0.572 (3)0.025 (5)*
H3B0.7003 (13)0.3485 (11)0.623 (3)0.026 (5)*
H4A1.1372 (13)0.7899 (12)0.597 (3)0.028 (5)*
H4B0.6435 (13)0.4767 (12)0.626 (3)0.026 (5)*
H7AA0.6570 (12)0.7744 (11)0.815 (3)0.023 (5)*
H7AB0.6906 (13)0.7322 (12)0.991 (3)0.029 (5)*
H7BA0.1847 (14)0.4223 (13)0.967 (3)0.035 (6)*
H7BB0.2294 (13)0.4291 (12)1.145 (3)0.031 (6)*
H1NA0.9120 (14)0.7144 (13)0.738 (3)0.035 (6)*
H2NA0.9348 (14)0.8461 (12)0.743 (3)0.033 (6)*
H3NA1.0235 (14)0.8762 (14)0.680 (3)0.041 (6)*
H1NB0.4410 (14)0.3956 (12)0.851 (3)0.034 (6)*
H2NB0.4509 (13)0.5249 (12)0.793 (3)0.028 (5)*
H3NB0.5290 (14)0.5628 (14)0.702 (3)0.038 (6)*
H1OA0.7643 (16)0.8995 (15)0.976 (3)0.051 (7)*
H1OB0.2602 (17)0.5811 (16)0.965 (4)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.02137 (19)0.01383 (18)0.0268 (2)0.00466 (14)0.00314 (16)0.00142 (16)
N1A0.0130 (6)0.0137 (6)0.0202 (7)0.0002 (5)0.0045 (5)0.0004 (5)
N2A0.0188 (7)0.0131 (7)0.0292 (8)0.0008 (5)0.0074 (6)0.0005 (6)
C1A0.0172 (7)0.0120 (7)0.0182 (7)0.0011 (6)0.0025 (6)0.0002 (6)
C2A0.0172 (7)0.0128 (7)0.0182 (7)0.0019 (5)0.0016 (6)0.0007 (6)
C3A0.0134 (7)0.0198 (8)0.0228 (8)0.0008 (6)0.0054 (6)0.0010 (7)
C4A0.0161 (7)0.0156 (7)0.0238 (8)0.0030 (6)0.0054 (6)0.0015 (6)
C5A0.0165 (7)0.0147 (7)0.0149 (7)0.0015 (5)0.0018 (6)0.0004 (6)
O1A0.0173 (5)0.0146 (5)0.0346 (7)0.0007 (4)0.0101 (5)0.0051 (5)
O2A0.0185 (5)0.0132 (5)0.0255 (6)0.0037 (4)0.0074 (5)0.0022 (5)
O3A0.0193 (5)0.0195 (6)0.0250 (6)0.0019 (4)0.0080 (5)0.0011 (5)
O4A0.0225 (6)0.0123 (5)0.0272 (6)0.0009 (4)0.0096 (5)0.0026 (5)
C6A0.0155 (7)0.0137 (7)0.0165 (7)0.0004 (5)0.0023 (6)0.0013 (6)
C7A0.0150 (7)0.0122 (7)0.0178 (7)0.0013 (5)0.0023 (6)0.0001 (6)
C8A0.0187 (7)0.0128 (7)0.0154 (7)0.0016 (5)0.0026 (6)0.0025 (6)
Cl1B0.0262 (2)0.0190 (2)0.0250 (2)0.00833 (15)0.00331 (16)0.00035 (17)
N1B0.0148 (6)0.0144 (6)0.0184 (6)0.0006 (5)0.0038 (5)0.0001 (5)
N2B0.0198 (7)0.0146 (7)0.0288 (8)0.0001 (5)0.0081 (6)0.0015 (6)
C1B0.0177 (7)0.0140 (7)0.0174 (7)0.0003 (6)0.0011 (6)0.0013 (6)
C2B0.0191 (7)0.0166 (7)0.0164 (7)0.0037 (6)0.0006 (6)0.0007 (6)
C3B0.0161 (7)0.0249 (8)0.0195 (8)0.0010 (6)0.0053 (6)0.0024 (7)
C4B0.0176 (7)0.0194 (8)0.0212 (8)0.0032 (6)0.0061 (6)0.0009 (7)
C5B0.0176 (7)0.0148 (7)0.0162 (7)0.0025 (6)0.0015 (6)0.0010 (6)
O1B0.0192 (5)0.0124 (5)0.0342 (7)0.0012 (4)0.0110 (5)0.0018 (5)
O2B0.0208 (6)0.0119 (5)0.0312 (7)0.0005 (4)0.0094 (5)0.0013 (5)
O3B0.0246 (6)0.0194 (6)0.0392 (8)0.0045 (5)0.0157 (6)0.0017 (6)
O4B0.0199 (6)0.0128 (5)0.0321 (7)0.0012 (4)0.0082 (5)0.0002 (5)
C6B0.0162 (7)0.0137 (7)0.0175 (7)0.0013 (5)0.0024 (6)0.0002 (6)
C7B0.0170 (7)0.0113 (7)0.0212 (8)0.0015 (5)0.0054 (6)0.0016 (6)
C8B0.0178 (7)0.0147 (7)0.0193 (8)0.0020 (6)0.0016 (6)0.0005 (6)
Geometric parameters (Å, º) top
Cl1A—C2A1.7268 (16)Cl1B—C2B1.7308 (16)
N1A—C5A1.3472 (19)N1B—C5B1.3484 (19)
N1A—C1A1.3557 (19)N1B—C1B1.358 (2)
N1A—H1NA0.93 (2)N1B—H1NB0.92 (2)
N2A—C5A1.333 (2)N2B—C5B1.331 (2)
N2A—H2NA0.95 (2)N2B—H2NB0.88 (2)
N2A—H3NA0.87 (2)N2B—H3NB0.93 (2)
C1A—C2A1.360 (2)C1B—C2B1.355 (2)
C1A—H1A0.959 (18)C1B—H1B0.98 (2)
C2A—C3A1.400 (2)C2B—C3B1.406 (2)
C3A—C4A1.365 (2)C3B—C4B1.362 (2)
C3A—H3A0.91 (2)C3B—H3B0.96 (2)
C4A—C5A1.415 (2)C4B—C5B1.415 (2)
C4A—H4A0.95 (2)C4B—H4B0.94 (2)
O1A—C6A1.2481 (18)O1B—C6B1.2491 (18)
O2A—C6A1.2692 (18)O2B—C6B1.2660 (19)
O3A—C8A1.2217 (19)O3B—C8B1.2181 (19)
O4A—C8A1.3150 (18)O4B—C8B1.3153 (19)
O4A—H1OA0.94 (3)O4B—H1OB0.93 (3)
C6A—C7A1.517 (2)C6B—C7B1.518 (2)
C7A—C8A1.508 (2)C7B—C8B1.511 (2)
C7A—H7AA0.95 (2)C7B—H7BA0.90 (2)
C7A—H7AB0.97 (2)C7B—H7BB0.95 (2)
C5A—N1A—C1A123.22 (13)C5B—N1B—C1B122.97 (14)
C5A—N1A—H1NA116.7 (13)C5B—N1B—H1NB117.6 (13)
C1A—N1A—H1NA119.8 (13)C1B—N1B—H1NB119.3 (13)
C5A—N2A—H2NA120.2 (13)C5B—N2B—H2NB118.2 (13)
C5A—N2A—H3NA117.3 (15)C5B—N2B—H3NB119.7 (14)
H2NA—N2A—H3NA121.5 (19)H2NB—N2B—H3NB122.1 (19)
N1A—C1A—C2A119.54 (14)C2B—C1B—N1B119.84 (15)
N1A—C1A—H1A116.4 (11)C2B—C1B—H1B123.8 (12)
C2A—C1A—H1A124.1 (11)N1B—C1B—H1B116.4 (12)
C1A—C2A—C3A119.49 (14)C1B—C2B—C3B119.44 (15)
C1A—C2A—Cl1A120.43 (12)C1B—C2B—Cl1B120.34 (13)
C3A—C2A—Cl1A120.07 (12)C3B—C2B—Cl1B120.22 (12)
C4A—C3A—C2A120.35 (14)C4B—C3B—C2B120.10 (15)
C4A—C3A—H3A117.8 (12)C4B—C3B—H3B118.8 (12)
C2A—C3A—H3A121.9 (12)C2B—C3B—H3B121.1 (12)
C3A—C4A—C5A119.31 (14)C3B—C4B—C5B119.59 (15)
C3A—C4A—H4A121.2 (12)C3B—C4B—H4B122.9 (12)
C5A—C4A—H4A119.5 (12)C5B—C4B—H4B117.5 (12)
N2A—C5A—N1A118.84 (14)N2B—C5B—N1B119.12 (14)
N2A—C5A—C4A123.08 (14)N2B—C5B—C4B122.84 (15)
N1A—C5A—C4A118.08 (14)N1B—C5B—C4B118.04 (14)
C8A—O4A—H1OA106.3 (15)C8B—O4B—H1OB104.0 (16)
O1A—C6A—O2A124.57 (14)O1B—C6B—O2B124.45 (14)
O1A—C6A—C7A115.85 (13)O1B—C6B—C7B116.22 (13)
O2A—C6A—C7A119.57 (13)O2B—C6B—C7B119.33 (13)
C8A—C7A—C6A118.02 (13)C8B—C7B—C6B118.02 (13)
C8A—C7A—H7AA106.5 (12)C8B—C7B—H7BA109.3 (13)
C6A—C7A—H7AA106.5 (12)C6B—C7B—H7BA108.6 (13)
C8A—C7A—H7AB110.6 (12)C8B—C7B—H7BB106.9 (12)
C6A—C7A—H7AB107.4 (12)C6B—C7B—H7BB109.9 (12)
H7AA—C7A—H7AB107.4 (16)H7BA—C7B—H7BB103.1 (18)
O3A—C8A—O4A121.58 (14)O3B—C8B—O4B121.41 (14)
O3A—C8A—C7A121.26 (14)O3B—C8B—C7B121.29 (14)
O4A—C8A—C7A117.15 (13)O4B—C8B—C7B117.29 (13)
C5A—N1A—C1A—C2A0.6 (2)C5B—N1B—C1B—C2B1.4 (2)
N1A—C1A—C2A—C3A0.4 (2)N1B—C1B—C2B—C3B0.0 (2)
N1A—C1A—C2A—Cl1A179.58 (12)N1B—C1B—C2B—Cl1B179.02 (12)
C1A—C2A—C3A—C4A0.2 (3)C1B—C2B—C3B—C4B0.8 (3)
Cl1A—C2A—C3A—C4A179.75 (14)Cl1B—C2B—C3B—C4B178.16 (13)
C2A—C3A—C4A—C5A0.2 (3)C2B—C3B—C4B—C5B0.4 (3)
C1A—N1A—C5A—N2A179.49 (15)C1B—N1B—C5B—N2B178.66 (15)
C1A—N1A—C5A—C4A0.6 (2)C1B—N1B—C5B—C4B1.7 (2)
C3A—C4A—C5A—N2A179.68 (17)C3B—C4B—C5B—N2B179.60 (16)
C3A—C4A—C5A—N1A0.4 (2)C3B—C4B—C5B—N1B0.8 (2)
O1A—C6A—C7A—C8A173.93 (14)O1B—C6B—C7B—C8B178.82 (15)
O2A—C6A—C7A—C8A6.9 (2)O2B—C6B—C7B—C8B0.5 (2)
C6A—C7A—C8A—O3A173.71 (15)C6B—C7B—C8B—O3B179.34 (16)
C6A—C7A—C8A—O4A7.8 (2)C6B—C7B—C8B—O4B0.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1A0.93 (2)1.68 (2)2.5982 (17)171 (2)
N2A—H2NA···O2A0.95 (2)2.01 (2)2.9518 (19)169.1 (18)
N2A—H3NA···O3Bi0.87 (2)2.07 (2)2.9333 (18)178 (2)
N1B—H1NB···O1B0.92 (2)1.69 (2)2.5980 (17)169 (2)
N2B—H2NB···O2B0.88 (2)2.08 (2)2.9538 (19)175 (2)
N2B—H3NB···O3Aii0.93 (2)2.04 (2)2.9598 (19)175 (2)
O4A—H1OA···O2A0.94 (2)1.58 (2)2.4835 (16)158 (2)
O4B—H1OB···O2B0.93 (3)1.57 (3)2.4752 (16)162 (3)
C1A—H1A···O3Biii0.960 (18)2.458 (18)3.374 (2)159.6 (14)
C1B—H1B···O3Aiii0.98 (2)2.46 (2)3.417 (2)166.1 (18)
C7A—H7AB···O1Biii0.97 (2)2.31 (2)3.2509 (19)162.6 (18)
C7B—H7BB···O4Aiv0.96 (2)2.55 (2)3.440 (2)155.7 (16)
C4A—H4A···O4Bi0.95 (2)2.32 (2)3.264 (2)171.6 (18)
C4B—H4B···O4Aii0.94 (2)2.30 (2)3.237 (2)177.4 (17)
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+2; (iv) x+1, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC5H6ClN2+·C3H3O4
Mr232.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.6971 (19), 16.866 (2), 7.4662 (10)
β (°) 94.518 (3)
V3)1970.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.22 × 0.14 × 0.07
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.921, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
22474, 5811, 4314
Rint0.050
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.01
No. of reflections5811
No. of parameters343
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1A0.93 (2)1.68 (2)2.5982 (17)171 (2)
N2A—H2NA···O2A0.95 (2)2.01 (2)2.9518 (19)169.1 (18)
N2A—H3NA···O3Bi0.87 (2)2.07 (2)2.9333 (18)178 (2)
N1B—H1NB···O1B0.92 (2)1.69 (2)2.5980 (17)169 (2)
N2B—H2NB···O2B0.88 (2)2.08 (2)2.9538 (19)175 (2)
N2B—H3NB···O3Aii0.93 (2)2.04 (2)2.9598 (19)175 (2)
O4A—H1OA···O2A0.94 (2)1.58 (2)2.4835 (16)158 (2)
O4B—H1OB···O2B0.93 (3)1.57 (3)2.4752 (16)162 (3)
C1A—H1A···O3Biii0.960 (18)2.458 (18)3.374 (2)159.6 (14)
C1B—H1B···O3Aiii0.98 (2)2.46 (2)3.417 (2)166.1 (18)
C7A—H7AB···O1Biii0.97 (2)2.31 (2)3.2509 (19)162.6 (18)
C7B—H7BB···O4Aiv0.96 (2)2.55 (2)3.440 (2)155.7 (16)
C4A—H4A···O4Bi0.95 (2)2.32 (2)3.264 (2)171.6 (18)
C4B—H4B···O4Aii0.94 (2)2.30 (2)3.237 (2)177.4 (17)
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+2; (iv) x+1, y1/2, z+5/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAkriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607–o2609.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAmr, A. G., Mohamed, A. M., Mohamed, S. F., Abdel-Hafez, N. A. & Hammam, A. G. (2006). Bioorg. Med. Chem. 14, 5481–5488.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBart, A., Jansen, J., Zwan, J. V., Dulk, H., Brouwer, J. & Reedijk, J. (2001). J. Med. Chem. 44, 245–249.  Web of Science PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2009). Acta Cryst. C65, o339–o341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKlimesôva, V., Svoboda, M., Waisser, K., Pour, M. & Kaustova, J. (1999). Il Farmaco, 54, 666–672.  Web of Science PubMed Google Scholar
First citationPourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinkai, H., Ito, T., Iida, T., Kitao, Y., Yamada, H. & Uchida, I. (2000). J. Med. Chem. 43, 4667–4677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds