organic compounds
2-Amino-5-chloropyridinium 2-carboxyacetate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
The title salt, C5H6ClN2+·C3H3O4−, contains two cations and two anions in the Both 2-amino-5-chloropyridinium ions are protonated at their pyridine N atoms and both hydrogen malonate ions feature an intramolecular O—H⋯O hydrogen bond, which generates an S(6) ring motif and results in a folded conformation. In the the cations and anions are linked via N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating in [010], which are cross-linked by further C—H⋯O interactions.
Related literature
For background to the chemistry of substituted pyridines, see: Amr et al. (2006); Bart et al. (2001); Shinkai et al. (2000); Klimesôva et al. (1999). For related structures, see: Pourayoubi et al. (2007); Janczak & Perpétuo (2009); Akriche & Rzaigui (2005). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810019677/hb5466sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810019677/hb5466Isup2.hkl
A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (64 mg, Aldrich) and malonic acid acid (52 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless needles of (I) appeared after a few days.
All the H atoms were located from the difference Fourier maps and allowed to refine freely [N–H = 0.87 (2)–0.95 (2) Å, O–H = 0.93 (3)–0.94 (3) Å and C–H = 0.90 (2)–0.97 (2) Å].
Pyridine and its derivatives continue to attract great interest due to the wide variety of interesting biological activities observed for these compounds, such as anticancer, analgesic, antimicrobial, and antidepressant activities (Amr et al., 2006; Bart et al., 2001; Shinkai et al., 2000; Klimesôva et al., 1999). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007), 2-amino-5-chloropyridinium trichloroacetate (Janczak & Perpétuo, 2009) and bis(2-amino-5-chloropyridinium)dihydrogendi phosphate (Akriche & Rzaigui, 2005) have been reported. Since our aim is to study some interesting hydrogen-bonding interactions, the
of the title salt, (I), is presented here.The
of the title salt consists of two crystallographically independent 2-amino-5-chloropyridinium cations and two hydrogen malonate anions, with atom labelling suffixes of A & B (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.002 (1) Å for C5A atom (molecule A) and 0.009 (1) Å for atom N1B (molecule B). In the cations, protonation at atoms N1A and N1B lead to slight increases in the C1A—N1A—C5A [123.22 (13)°] and C1B—N1B—C5B [122.97 (14)°] angles compared to those observed in an unprotonated structure (Pourayoubi et al., 2007). The bond lengths (Allen et al., 1987) and angles are normal.In the
(Fig. 2), the ionic units are linked by N1A—H1NA···O1A; N2A—H2NA···O2A; N2A—H3NA···O3B; N1B—H1NB···O1B; N2B—H2NB···O2B; N2B—H3NB···O3A; C1A—H1A···O3B; C1B—H1B···O3A; C4A—H4A···O4B and C4B—H4B···O4A (Table 1) hydrogen bonds, forming one-dimensional chains along the b-axis. Furthermore, these chains are inter-connected by intermolecular C7A—H7AB···O1B and C7B—H7BB···O4A hydrogen bonds. There are intramolecular O4A—H1OA···O2A and O4B—H1OB···O2B hydrogen bonds in the hydrogen malonate anions, which generate S(6) (Bernstein et al., 1995) ring motifs, resulting in folded conformation.For background to the chemistry of substituted pyridines, see: Amr et al. (2006); Bart et al. (2001); Shinkai et al. (2000); Klimesôva et al. (1999). For related structures, see: Pourayoubi et al. (2007); Janczak & Perpétuo (2009); Akriche & Rzaigui (2005). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The crystal packing of (I), showing the hydrogen-bonded (dashed lines) network. |
C5H6ClN2+·C3H3O4− | F(000) = 960 |
Mr = 232.62 | Dx = 1.568 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3966 reflections |
a = 15.6971 (19) Å | θ = 2.6–29.5° |
b = 16.866 (2) Å | µ = 0.38 mm−1 |
c = 7.4662 (10) Å | T = 100 K |
β = 94.518 (3)° | Needle, colourless |
V = 1970.5 (4) Å3 | 0.22 × 0.14 × 0.07 mm |
Z = 8 |
Bruker APEXII DUO CCD diffractometer | 5811 independent reflections |
Radiation source: fine-focus sealed tube | 4314 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
φ and ω scans | θmax = 30.1°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −22→22 |
Tmin = 0.921, Tmax = 0.973 | k = −23→23 |
22474 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0434P)2 + 0.3626P] where P = (Fo2 + 2Fc2)/3 |
5811 reflections | (Δ/σ)max = 0.001 |
343 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C5H6ClN2+·C3H3O4− | V = 1970.5 (4) Å3 |
Mr = 232.62 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.6971 (19) Å | µ = 0.38 mm−1 |
b = 16.866 (2) Å | T = 100 K |
c = 7.4662 (10) Å | 0.22 × 0.14 × 0.07 mm |
β = 94.518 (3)° |
Bruker APEXII DUO CCD diffractometer | 5811 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4314 reflections with I > 2σ(I) |
Tmin = 0.921, Tmax = 0.973 | Rint = 0.050 |
22474 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.37 e Å−3 |
5811 reflections | Δρmin = −0.29 e Å−3 |
343 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1A | 1.10339 (2) | 0.51132 (2) | 0.62925 (6) | 0.02059 (10) | |
N1A | 0.96753 (8) | 0.70248 (8) | 0.71311 (18) | 0.0154 (3) | |
N2A | 0.98853 (9) | 0.83754 (8) | 0.6948 (2) | 0.0201 (3) | |
C1A | 0.99204 (10) | 0.62574 (9) | 0.7005 (2) | 0.0158 (3) | |
C2A | 1.07092 (10) | 0.60860 (9) | 0.6478 (2) | 0.0161 (3) | |
C3A | 1.12584 (10) | 0.67048 (10) | 0.6084 (2) | 0.0185 (3) | |
C4A | 1.10044 (10) | 0.74747 (9) | 0.6221 (2) | 0.0183 (3) | |
C5A | 1.01808 (10) | 0.76410 (9) | 0.6772 (2) | 0.0153 (3) | |
O1A | 0.80991 (7) | 0.72010 (7) | 0.78892 (17) | 0.0217 (3) | |
O2A | 0.82767 (7) | 0.84610 (6) | 0.87375 (16) | 0.0188 (2) | |
O3A | 0.59603 (7) | 0.85002 (7) | 1.08754 (16) | 0.0210 (3) | |
O4A | 0.71363 (7) | 0.91411 (7) | 1.02782 (17) | 0.0202 (2) | |
C6A | 0.78450 (10) | 0.78253 (9) | 0.8570 (2) | 0.0152 (3) | |
C7A | 0.69498 (10) | 0.78000 (9) | 0.9200 (2) | 0.0150 (3) | |
C8A | 0.66443 (10) | 0.85090 (9) | 1.0200 (2) | 0.0156 (3) | |
Cl1B | 0.63656 (3) | 0.19876 (2) | 0.73072 (6) | 0.02333 (10) | |
N1B | 0.49352 (8) | 0.38598 (8) | 0.80976 (18) | 0.0157 (3) | |
N2B | 0.50075 (9) | 0.51989 (8) | 0.7476 (2) | 0.0208 (3) | |
C1B | 0.52319 (10) | 0.31042 (9) | 0.8071 (2) | 0.0164 (3) | |
C2B | 0.59873 (10) | 0.29500 (10) | 0.7381 (2) | 0.0175 (3) | |
C3B | 0.64554 (10) | 0.35768 (10) | 0.6699 (2) | 0.0200 (3) | |
C4B | 0.61446 (10) | 0.43307 (10) | 0.6713 (2) | 0.0192 (3) | |
C5B | 0.53518 (10) | 0.44787 (9) | 0.7429 (2) | 0.0162 (3) | |
O1B | 0.34096 (7) | 0.39509 (6) | 0.92022 (17) | 0.0215 (3) | |
O2B | 0.33226 (7) | 0.52644 (6) | 0.89745 (17) | 0.0209 (3) | |
O3B | 0.10788 (7) | 0.53283 (7) | 1.13690 (18) | 0.0270 (3) | |
O4B | 0.21003 (7) | 0.59797 (7) | 1.01198 (17) | 0.0213 (3) | |
C6B | 0.30412 (10) | 0.45958 (9) | 0.9424 (2) | 0.0157 (3) | |
C7B | 0.22061 (10) | 0.45532 (9) | 1.0316 (2) | 0.0163 (3) | |
C8B | 0.17473 (10) | 0.53207 (9) | 1.0644 (2) | 0.0172 (3) | |
H1A | 0.9511 (11) | 0.5865 (11) | 0.730 (2) | 0.016 (4)* | |
H1B | 0.4871 (12) | 0.2697 (12) | 0.856 (3) | 0.026 (5)* | |
H3A | 1.1788 (13) | 0.6612 (11) | 0.572 (3) | 0.025 (5)* | |
H3B | 0.7003 (13) | 0.3485 (11) | 0.623 (3) | 0.026 (5)* | |
H4A | 1.1372 (13) | 0.7899 (12) | 0.597 (3) | 0.028 (5)* | |
H4B | 0.6435 (13) | 0.4767 (12) | 0.626 (3) | 0.026 (5)* | |
H7AA | 0.6570 (12) | 0.7744 (11) | 0.815 (3) | 0.023 (5)* | |
H7AB | 0.6906 (13) | 0.7322 (12) | 0.991 (3) | 0.029 (5)* | |
H7BA | 0.1847 (14) | 0.4223 (13) | 0.967 (3) | 0.035 (6)* | |
H7BB | 0.2294 (13) | 0.4291 (12) | 1.145 (3) | 0.031 (6)* | |
H1NA | 0.9120 (14) | 0.7144 (13) | 0.738 (3) | 0.035 (6)* | |
H2NA | 0.9348 (14) | 0.8461 (12) | 0.743 (3) | 0.033 (6)* | |
H3NA | 1.0235 (14) | 0.8762 (14) | 0.680 (3) | 0.041 (6)* | |
H1NB | 0.4410 (14) | 0.3956 (12) | 0.851 (3) | 0.034 (6)* | |
H2NB | 0.4509 (13) | 0.5249 (12) | 0.793 (3) | 0.028 (5)* | |
H3NB | 0.5290 (14) | 0.5628 (14) | 0.702 (3) | 0.038 (6)* | |
H1OA | 0.7643 (16) | 0.8995 (15) | 0.976 (3) | 0.051 (7)* | |
H1OB | 0.2602 (17) | 0.5811 (16) | 0.965 (4) | 0.058 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1A | 0.02137 (19) | 0.01383 (18) | 0.0268 (2) | 0.00466 (14) | 0.00314 (16) | −0.00142 (16) |
N1A | 0.0130 (6) | 0.0137 (6) | 0.0202 (7) | −0.0002 (5) | 0.0045 (5) | −0.0004 (5) |
N2A | 0.0188 (7) | 0.0131 (7) | 0.0292 (8) | −0.0008 (5) | 0.0074 (6) | 0.0005 (6) |
C1A | 0.0172 (7) | 0.0120 (7) | 0.0182 (7) | −0.0011 (6) | 0.0025 (6) | −0.0002 (6) |
C2A | 0.0172 (7) | 0.0128 (7) | 0.0182 (7) | 0.0019 (5) | 0.0016 (6) | −0.0007 (6) |
C3A | 0.0134 (7) | 0.0198 (8) | 0.0228 (8) | 0.0008 (6) | 0.0054 (6) | −0.0010 (7) |
C4A | 0.0161 (7) | 0.0156 (7) | 0.0238 (8) | −0.0030 (6) | 0.0054 (6) | 0.0015 (6) |
C5A | 0.0165 (7) | 0.0147 (7) | 0.0149 (7) | −0.0015 (5) | 0.0018 (6) | 0.0004 (6) |
O1A | 0.0173 (5) | 0.0146 (5) | 0.0346 (7) | −0.0007 (4) | 0.0101 (5) | −0.0051 (5) |
O2A | 0.0185 (5) | 0.0132 (5) | 0.0255 (6) | −0.0037 (4) | 0.0074 (5) | −0.0022 (5) |
O3A | 0.0193 (5) | 0.0195 (6) | 0.0250 (6) | 0.0019 (4) | 0.0080 (5) | −0.0011 (5) |
O4A | 0.0225 (6) | 0.0123 (5) | 0.0272 (6) | −0.0009 (4) | 0.0096 (5) | −0.0026 (5) |
C6A | 0.0155 (7) | 0.0137 (7) | 0.0165 (7) | 0.0004 (5) | 0.0023 (6) | 0.0013 (6) |
C7A | 0.0150 (7) | 0.0122 (7) | 0.0178 (7) | −0.0013 (5) | 0.0023 (6) | −0.0001 (6) |
C8A | 0.0187 (7) | 0.0128 (7) | 0.0154 (7) | 0.0016 (5) | 0.0026 (6) | 0.0025 (6) |
Cl1B | 0.0262 (2) | 0.0190 (2) | 0.0250 (2) | 0.00833 (15) | 0.00331 (16) | 0.00035 (17) |
N1B | 0.0148 (6) | 0.0144 (6) | 0.0184 (6) | −0.0006 (5) | 0.0038 (5) | 0.0001 (5) |
N2B | 0.0198 (7) | 0.0146 (7) | 0.0288 (8) | −0.0001 (5) | 0.0081 (6) | 0.0015 (6) |
C1B | 0.0177 (7) | 0.0140 (7) | 0.0174 (7) | −0.0003 (6) | 0.0011 (6) | 0.0013 (6) |
C2B | 0.0191 (7) | 0.0166 (7) | 0.0164 (7) | 0.0037 (6) | −0.0006 (6) | −0.0007 (6) |
C3B | 0.0161 (7) | 0.0249 (8) | 0.0195 (8) | 0.0010 (6) | 0.0053 (6) | −0.0024 (7) |
C4B | 0.0176 (7) | 0.0194 (8) | 0.0212 (8) | −0.0032 (6) | 0.0061 (6) | −0.0009 (7) |
C5B | 0.0176 (7) | 0.0148 (7) | 0.0162 (7) | −0.0025 (6) | 0.0015 (6) | −0.0010 (6) |
O1B | 0.0192 (5) | 0.0124 (5) | 0.0342 (7) | 0.0012 (4) | 0.0110 (5) | 0.0018 (5) |
O2B | 0.0208 (6) | 0.0119 (5) | 0.0312 (7) | −0.0005 (4) | 0.0094 (5) | 0.0013 (5) |
O3B | 0.0246 (6) | 0.0194 (6) | 0.0392 (8) | 0.0045 (5) | 0.0157 (6) | 0.0017 (6) |
O4B | 0.0199 (6) | 0.0128 (5) | 0.0321 (7) | 0.0012 (4) | 0.0082 (5) | −0.0002 (5) |
C6B | 0.0162 (7) | 0.0137 (7) | 0.0175 (7) | 0.0013 (5) | 0.0024 (6) | −0.0002 (6) |
C7B | 0.0170 (7) | 0.0113 (7) | 0.0212 (8) | 0.0015 (5) | 0.0054 (6) | 0.0016 (6) |
C8B | 0.0178 (7) | 0.0147 (7) | 0.0193 (8) | 0.0020 (6) | 0.0016 (6) | 0.0005 (6) |
Cl1A—C2A | 1.7268 (16) | Cl1B—C2B | 1.7308 (16) |
N1A—C5A | 1.3472 (19) | N1B—C5B | 1.3484 (19) |
N1A—C1A | 1.3557 (19) | N1B—C1B | 1.358 (2) |
N1A—H1NA | 0.93 (2) | N1B—H1NB | 0.92 (2) |
N2A—C5A | 1.333 (2) | N2B—C5B | 1.331 (2) |
N2A—H2NA | 0.95 (2) | N2B—H2NB | 0.88 (2) |
N2A—H3NA | 0.87 (2) | N2B—H3NB | 0.93 (2) |
C1A—C2A | 1.360 (2) | C1B—C2B | 1.355 (2) |
C1A—H1A | 0.959 (18) | C1B—H1B | 0.98 (2) |
C2A—C3A | 1.400 (2) | C2B—C3B | 1.406 (2) |
C3A—C4A | 1.365 (2) | C3B—C4B | 1.362 (2) |
C3A—H3A | 0.91 (2) | C3B—H3B | 0.96 (2) |
C4A—C5A | 1.415 (2) | C4B—C5B | 1.415 (2) |
C4A—H4A | 0.95 (2) | C4B—H4B | 0.94 (2) |
O1A—C6A | 1.2481 (18) | O1B—C6B | 1.2491 (18) |
O2A—C6A | 1.2692 (18) | O2B—C6B | 1.2660 (19) |
O3A—C8A | 1.2217 (19) | O3B—C8B | 1.2181 (19) |
O4A—C8A | 1.3150 (18) | O4B—C8B | 1.3153 (19) |
O4A—H1OA | 0.94 (3) | O4B—H1OB | 0.93 (3) |
C6A—C7A | 1.517 (2) | C6B—C7B | 1.518 (2) |
C7A—C8A | 1.508 (2) | C7B—C8B | 1.511 (2) |
C7A—H7AA | 0.95 (2) | C7B—H7BA | 0.90 (2) |
C7A—H7AB | 0.97 (2) | C7B—H7BB | 0.95 (2) |
C5A—N1A—C1A | 123.22 (13) | C5B—N1B—C1B | 122.97 (14) |
C5A—N1A—H1NA | 116.7 (13) | C5B—N1B—H1NB | 117.6 (13) |
C1A—N1A—H1NA | 119.8 (13) | C1B—N1B—H1NB | 119.3 (13) |
C5A—N2A—H2NA | 120.2 (13) | C5B—N2B—H2NB | 118.2 (13) |
C5A—N2A—H3NA | 117.3 (15) | C5B—N2B—H3NB | 119.7 (14) |
H2NA—N2A—H3NA | 121.5 (19) | H2NB—N2B—H3NB | 122.1 (19) |
N1A—C1A—C2A | 119.54 (14) | C2B—C1B—N1B | 119.84 (15) |
N1A—C1A—H1A | 116.4 (11) | C2B—C1B—H1B | 123.8 (12) |
C2A—C1A—H1A | 124.1 (11) | N1B—C1B—H1B | 116.4 (12) |
C1A—C2A—C3A | 119.49 (14) | C1B—C2B—C3B | 119.44 (15) |
C1A—C2A—Cl1A | 120.43 (12) | C1B—C2B—Cl1B | 120.34 (13) |
C3A—C2A—Cl1A | 120.07 (12) | C3B—C2B—Cl1B | 120.22 (12) |
C4A—C3A—C2A | 120.35 (14) | C4B—C3B—C2B | 120.10 (15) |
C4A—C3A—H3A | 117.8 (12) | C4B—C3B—H3B | 118.8 (12) |
C2A—C3A—H3A | 121.9 (12) | C2B—C3B—H3B | 121.1 (12) |
C3A—C4A—C5A | 119.31 (14) | C3B—C4B—C5B | 119.59 (15) |
C3A—C4A—H4A | 121.2 (12) | C3B—C4B—H4B | 122.9 (12) |
C5A—C4A—H4A | 119.5 (12) | C5B—C4B—H4B | 117.5 (12) |
N2A—C5A—N1A | 118.84 (14) | N2B—C5B—N1B | 119.12 (14) |
N2A—C5A—C4A | 123.08 (14) | N2B—C5B—C4B | 122.84 (15) |
N1A—C5A—C4A | 118.08 (14) | N1B—C5B—C4B | 118.04 (14) |
C8A—O4A—H1OA | 106.3 (15) | C8B—O4B—H1OB | 104.0 (16) |
O1A—C6A—O2A | 124.57 (14) | O1B—C6B—O2B | 124.45 (14) |
O1A—C6A—C7A | 115.85 (13) | O1B—C6B—C7B | 116.22 (13) |
O2A—C6A—C7A | 119.57 (13) | O2B—C6B—C7B | 119.33 (13) |
C8A—C7A—C6A | 118.02 (13) | C8B—C7B—C6B | 118.02 (13) |
C8A—C7A—H7AA | 106.5 (12) | C8B—C7B—H7BA | 109.3 (13) |
C6A—C7A—H7AA | 106.5 (12) | C6B—C7B—H7BA | 108.6 (13) |
C8A—C7A—H7AB | 110.6 (12) | C8B—C7B—H7BB | 106.9 (12) |
C6A—C7A—H7AB | 107.4 (12) | C6B—C7B—H7BB | 109.9 (12) |
H7AA—C7A—H7AB | 107.4 (16) | H7BA—C7B—H7BB | 103.1 (18) |
O3A—C8A—O4A | 121.58 (14) | O3B—C8B—O4B | 121.41 (14) |
O3A—C8A—C7A | 121.26 (14) | O3B—C8B—C7B | 121.29 (14) |
O4A—C8A—C7A | 117.15 (13) | O4B—C8B—C7B | 117.29 (13) |
C5A—N1A—C1A—C2A | −0.6 (2) | C5B—N1B—C1B—C2B | 1.4 (2) |
N1A—C1A—C2A—C3A | 0.4 (2) | N1B—C1B—C2B—C3B | 0.0 (2) |
N1A—C1A—C2A—Cl1A | −179.58 (12) | N1B—C1B—C2B—Cl1B | −179.02 (12) |
C1A—C2A—C3A—C4A | −0.2 (3) | C1B—C2B—C3B—C4B | −0.8 (3) |
Cl1A—C2A—C3A—C4A | 179.75 (14) | Cl1B—C2B—C3B—C4B | 178.16 (13) |
C2A—C3A—C4A—C5A | 0.2 (3) | C2B—C3B—C4B—C5B | 0.4 (3) |
C1A—N1A—C5A—N2A | −179.49 (15) | C1B—N1B—C5B—N2B | 178.66 (15) |
C1A—N1A—C5A—C4A | 0.6 (2) | C1B—N1B—C5B—C4B | −1.7 (2) |
C3A—C4A—C5A—N2A | 179.68 (17) | C3B—C4B—C5B—N2B | −179.60 (16) |
C3A—C4A—C5A—N1A | −0.4 (2) | C3B—C4B—C5B—N1B | 0.8 (2) |
O1A—C6A—C7A—C8A | 173.93 (14) | O1B—C6B—C7B—C8B | 178.82 (15) |
O2A—C6A—C7A—C8A | −6.9 (2) | O2B—C6B—C7B—C8B | −0.5 (2) |
C6A—C7A—C8A—O3A | −173.71 (15) | C6B—C7B—C8B—O3B | −179.34 (16) |
C6A—C7A—C8A—O4A | 7.8 (2) | C6B—C7B—C8B—O4B | 0.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···O1A | 0.93 (2) | 1.68 (2) | 2.5982 (17) | 171 (2) |
N2A—H2NA···O2A | 0.95 (2) | 2.01 (2) | 2.9518 (19) | 169.1 (18) |
N2A—H3NA···O3Bi | 0.87 (2) | 2.07 (2) | 2.9333 (18) | 178 (2) |
N1B—H1NB···O1B | 0.92 (2) | 1.69 (2) | 2.5980 (17) | 169 (2) |
N2B—H2NB···O2B | 0.88 (2) | 2.08 (2) | 2.9538 (19) | 175 (2) |
N2B—H3NB···O3Aii | 0.93 (2) | 2.04 (2) | 2.9598 (19) | 175 (2) |
O4A—H1OA···O2A | 0.94 (2) | 1.58 (2) | 2.4835 (16) | 158 (2) |
O4B—H1OB···O2B | 0.93 (3) | 1.57 (3) | 2.4752 (16) | 162 (3) |
C1A—H1A···O3Biii | 0.960 (18) | 2.458 (18) | 3.374 (2) | 159.6 (14) |
C1B—H1B···O3Aiii | 0.98 (2) | 2.46 (2) | 3.417 (2) | 166.1 (18) |
C7A—H7AB···O1Biii | 0.97 (2) | 2.31 (2) | 3.2509 (19) | 162.6 (18) |
C7B—H7BB···O4Aiv | 0.96 (2) | 2.55 (2) | 3.440 (2) | 155.7 (16) |
C4A—H4A···O4Bi | 0.95 (2) | 2.32 (2) | 3.264 (2) | 171.6 (18) |
C4B—H4B···O4Aii | 0.94 (2) | 2.30 (2) | 3.237 (2) | 177.4 (17) |
Symmetry codes: (i) x+1, −y+3/2, z−1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+2; (iv) −x+1, y−1/2, −z+5/2. |
Experimental details
Crystal data | |
Chemical formula | C5H6ClN2+·C3H3O4− |
Mr | 232.62 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 15.6971 (19), 16.866 (2), 7.4662 (10) |
β (°) | 94.518 (3) |
V (Å3) | 1970.5 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.22 × 0.14 × 0.07 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.921, 0.973 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22474, 5811, 4314 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.706 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.097, 1.01 |
No. of reflections | 5811 |
No. of parameters | 343 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.37, −0.29 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···O1A | 0.93 (2) | 1.68 (2) | 2.5982 (17) | 171 (2) |
N2A—H2NA···O2A | 0.95 (2) | 2.01 (2) | 2.9518 (19) | 169.1 (18) |
N2A—H3NA···O3Bi | 0.87 (2) | 2.07 (2) | 2.9333 (18) | 178 (2) |
N1B—H1NB···O1B | 0.92 (2) | 1.69 (2) | 2.5980 (17) | 169 (2) |
N2B—H2NB···O2B | 0.88 (2) | 2.08 (2) | 2.9538 (19) | 175 (2) |
N2B—H3NB···O3Aii | 0.93 (2) | 2.04 (2) | 2.9598 (19) | 175 (2) |
O4A—H1OA···O2A | 0.94 (2) | 1.58 (2) | 2.4835 (16) | 158 (2) |
O4B—H1OB···O2B | 0.93 (3) | 1.57 (3) | 2.4752 (16) | 162 (3) |
C1A—H1A···O3Biii | 0.960 (18) | 2.458 (18) | 3.374 (2) | 159.6 (14) |
C1B—H1B···O3Aiii | 0.98 (2) | 2.46 (2) | 3.417 (2) | 166.1 (18) |
C7A—H7AB···O1Biii | 0.97 (2) | 2.31 (2) | 3.2509 (19) | 162.6 (18) |
C7B—H7BB···O4Aiv | 0.96 (2) | 2.55 (2) | 3.440 (2) | 155.7 (16) |
C4A—H4A···O4Bi | 0.95 (2) | 2.32 (2) | 3.264 (2) | 171.6 (18) |
C4B—H4B···O4Aii | 0.94 (2) | 2.30 (2) | 3.237 (2) | 177.4 (17) |
Symmetry codes: (i) x+1, −y+3/2, z−1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+2; (iv) −x+1, y−1/2, −z+5/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607–o2609. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Amr, A. G., Mohamed, A. M., Mohamed, S. F., Abdel-Hafez, N. A. & Hammam, A. G. (2006). Bioorg. Med. Chem. 14, 5481–5488. Web of Science CrossRef PubMed CAS Google Scholar
Bart, A., Jansen, J., Zwan, J. V., Dulk, H., Brouwer, J. & Reedijk, J. (2001). J. Med. Chem. 44, 245–249. Web of Science PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Janczak, J. & Perpétuo, G. J. (2009). Acta Cryst. C65, o339–o341. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Klimesôva, V., Svoboda, M., Waisser, K., Pour, M. & Kaustova, J. (1999). Il Farmaco, 54, 666–672. Web of Science PubMed Google Scholar
Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631. Web of Science CSD CrossRef IUCr Journals Google Scholar
Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shinkai, H., Ito, T., Iida, T., Kitao, Y., Yamada, H. & Uchida, I. (2000). J. Med. Chem. 43, 4667–4677. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives continue to attract great interest due to the wide variety of interesting biological activities observed for these compounds, such as anticancer, analgesic, antimicrobial, and antidepressant activities (Amr et al., 2006; Bart et al., 2001; Shinkai et al., 2000; Klimesôva et al., 1999). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007), 2-amino-5-chloropyridinium trichloroacetate (Janczak & Perpétuo, 2009) and bis(2-amino-5-chloropyridinium)dihydrogendi phosphate (Akriche & Rzaigui, 2005) have been reported. Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title salt, (I), is presented here.
The asymmetric unit of the title salt consists of two crystallographically independent 2-amino-5-chloropyridinium cations and two hydrogen malonate anions, with atom labelling suffixes of A & B (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.002 (1) Å for C5A atom (molecule A) and 0.009 (1) Å for atom N1B (molecule B). In the cations, protonation at atoms N1A and N1B lead to slight increases in the C1A—N1A—C5A [123.22 (13)°] and C1B—N1B—C5B [122.97 (14)°] angles compared to those observed in an unprotonated structure (Pourayoubi et al., 2007). The bond lengths (Allen et al., 1987) and angles are normal.
In the crystal structure, (Fig. 2), the ionic units are linked by N1A—H1NA···O1A; N2A—H2NA···O2A; N2A—H3NA···O3B; N1B—H1NB···O1B; N2B—H2NB···O2B; N2B—H3NB···O3A; C1A—H1A···O3B; C1B—H1B···O3A; C4A—H4A···O4B and C4B—H4B···O4A (Table 1) hydrogen bonds, forming one-dimensional chains along the b-axis. Furthermore, these chains are inter-connected by intermolecular C7A—H7AB···O1B and C7B—H7BB···O4A hydrogen bonds. There are intramolecular O4A—H1OA···O2A and O4B—H1OB···O2B hydrogen bonds in the hydrogen malonate anions, which generate S(6) (Bernstein et al., 1995) ring motifs, resulting in folded conformation.