organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-Carb­oxy­phen­yl)disulfan­yl]benzoic acid–4,4′-bi­pyridyl N,N′-dioxide (1/2)

aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil, and cInstituto de Qυ'imica de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 23 April 2010; accepted 19 May 2010; online 26 May 2010)

In the title 2:1 adduct, C14H10O4S2·0.5C10H8N2O2, which arose from an unexpected oxidation of a precursor, the dihedral angle between the aromatic rings in the disulfide is 82.51 (11)°. In the crystal, the molecules are linked by O—H⋯O, O—H⋯N and C—H⋯O interactions, generating sheets.

Related literature

For structural studies of 4,4′-bipyridyl N,N′-dioxide, see: Lou & Huang (2007[Lou, B.-Y. & Huang, Y.-B. (2007). Acta Cryst. C63, o246-o248.]); Reddy et al. (2006[Reddy, L. S., Babu, N. J. & Nangia, A. (2006). Chem. Commun. pp. 1369-1371.]). For the disulfide bond in polypeptide chains, see: Gortner & Hoffman (1941[Gortner, R. A. & Hoffman, W. F. (1941). Org. Synth. Coll. 1, 1941.]). For a related structure, see: Moreno-Fuquen et al. (2003[Moreno-Fuquen, R., Font i Carot, M., Garriga, M., Cano, F., Martinez-Ripoll, M., Valderrama-Naranjo, J. & Serratto, L. M. (2003). Acta Cryst. E59, o495-o497.]). For hydrogen bonding, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10O4S2·0.5C10H8N2O2

  • Mr = 400.45

  • Monoclinic, C 2/c

  • a = 21.314 (2) Å

  • b = 10.5621 (8) Å

  • c = 16.005 (8) Å

  • β = 105.412 (8)°

  • V = 3473.5 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 291 K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Rigaku AFC-7S diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.951, Tmax = 0.990

  • 3066 measured reflections

  • 2781 independent reflections

  • 2658 reflections with I > 2σ(I)

  • Rint = 0.046

  • 3 standard reflections every 120 min intensity decay: 0.9%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.192

  • S = 1.11

  • 2781 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H55⋯O1i 0.82 1.77 2.583 (3) 174
O3—H3⋯O1ii 0.82 1.86 2.672 (3) 170
O5—H55⋯N1i 0.82 2.50 3.255 (3) 154
C17—H17⋯O2iii 0.93 2.59 3.359 (4) 140
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993[Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995[Molecular Structure Corporation (1995). TEXSAN/TEXRAY. MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, C14H10O4S2, 0.5(C10H8N2O2), (I), belongs to a series of molecular systems based on 4,4'-bipyridyl N,N'-dioxide (DPNO) with diverse hydrogen-bond donors, that has been synthesized in our research group (Moreno-Fuquen et al., 2003). Several authors have reported the formation of co-crystals from DPNO moiety (Lou & Huang, 2007; Reddy et al., 2006), taking advantage of the strong acceptor character of the N-oxide group. Initially, it was unclear which intermolecular hydrogen bond is formed: S—H ··· O or O—H ··· O. The oxidation of sulfhydryl (S—H) group, of the 2-mercaptobenzoic acid (MBA), allows the formation of 2,2'-dicarboxyphenyldisulfide molecule (CPS), which enters in the reaction with DPNO to form the title co-crystal. The strong S—S disulfide bond formed in this structure, is important in linking polypeptide chains of proteins (Gortner & Hoffman, 1941). A perspective view of the molecule of the title compound, showing the atomic numbering scheme, is given in Fig. 1. The DPNO and CPS molecules are held together by an intermolecular hydrogen bonds between the O1 atom of the N-oxide group of DPNO and the O5 and O3 of the CPS molecule, with O···O distances of 2.583 (3) and 2.672 (3) Å respectively. The central S1—S2 bond length is 2.0397 (10) Å and the Car-S—S-Car torsion angle is -86.15 (14)%. There are no intramolecular O—H ··· S bonds in the structure. It is noted however, that carboxylic groups of the CPS molecule, exhibit different behaviors with respect to the presence of the neighboring sulfur atom. Indeed, while one of the O—H group of carboxylic group is oriented away from the S1 atom [torsion angle C13 C14 C19 O5, -12.7 (5)°], the second O—H group is oriented near to S2 atom [torsion angle C8 C7 C6 O3 163.8 (3)]. the DPNO molecule is almost coplanar with one of the planes of the CPS molecule showing a dihedral angle of 0.71 (7)°. With the other plane of CPS, the DPNO molecule forms a dihedral angle of 82.52 (11)°. The growth of the crystal system can be explained through a hydrogen bonding scheme (Table 1) (Nardelli, 1995). The title molecule is characterized by the formation of O—H···O and O—H···N hydrogen bonds and other weak C—H···O interactions. In a first substructure atom O5 in the molecule at (x+1/2,-y+1/2,+z-1/2) and atom O3 in the molecule at (-x,-y,-z+1) act simultaneously as hydrogen bond donors to O1 atom in the molecule at (x,y,z). In turn, the O5 atom is linked to the N1 atom at (x,y,z). The propagation of these interactions forms a large R76(57) ring (Etter, 1990) in the (1 0 -2) plane (Fig. 2). In a second substructure, atom C17 in the molecule at (x,y,z) acts as hydrogen bond donor to O2 atom in the molecule at -x+1/2,+y-1/2,-z+1/2. The propagation of this interaction forms C(11) continuous chains and running along [010] direction. All of these interactions define an infinite two-dimensional network for the structure (I) (Fig. 3).

Related literature top

For structural studies of 4,4'-bipyridyl N,N'-dioxide, see: Lou & Huang (2007); Reddy et al. (2006). For the disulfide bond in polypeptide chains, see: Gortner & Hoffman (1941). For a related structure, see: Moreno-Fuquen et al. (2003). For hydrogen bonding, see: Etter (1990); Nardelli (1995).

Experimental top

The sinthesis of the title compound (I) was carried out by slow evaporation of equimolar quantities of 2-mercaptobenzoic acid (0.537 g., 0.0035 mol) and 4,4'-bipyridyl N,N'-dioxide (0.655 g) in 50 ml of dry acetonitrile. Pale-yellow prisms of good quality, suitable for X-ray analysis were obtained. The initial reagents were purchased from Aldrich Chemical Co. and were used as received.

Refinement top

All H-atoms were located from difference maps and were positioned geometrically and refined using a riding model with C–H= 0.93–0.97 Å and Uiso(H)= 1.2Ueq(C).

Structure description top

The title compound, C14H10O4S2, 0.5(C10H8N2O2), (I), belongs to a series of molecular systems based on 4,4'-bipyridyl N,N'-dioxide (DPNO) with diverse hydrogen-bond donors, that has been synthesized in our research group (Moreno-Fuquen et al., 2003). Several authors have reported the formation of co-crystals from DPNO moiety (Lou & Huang, 2007; Reddy et al., 2006), taking advantage of the strong acceptor character of the N-oxide group. Initially, it was unclear which intermolecular hydrogen bond is formed: S—H ··· O or O—H ··· O. The oxidation of sulfhydryl (S—H) group, of the 2-mercaptobenzoic acid (MBA), allows the formation of 2,2'-dicarboxyphenyldisulfide molecule (CPS), which enters in the reaction with DPNO to form the title co-crystal. The strong S—S disulfide bond formed in this structure, is important in linking polypeptide chains of proteins (Gortner & Hoffman, 1941). A perspective view of the molecule of the title compound, showing the atomic numbering scheme, is given in Fig. 1. The DPNO and CPS molecules are held together by an intermolecular hydrogen bonds between the O1 atom of the N-oxide group of DPNO and the O5 and O3 of the CPS molecule, with O···O distances of 2.583 (3) and 2.672 (3) Å respectively. The central S1—S2 bond length is 2.0397 (10) Å and the Car-S—S-Car torsion angle is -86.15 (14)%. There are no intramolecular O—H ··· S bonds in the structure. It is noted however, that carboxylic groups of the CPS molecule, exhibit different behaviors with respect to the presence of the neighboring sulfur atom. Indeed, while one of the O—H group of carboxylic group is oriented away from the S1 atom [torsion angle C13 C14 C19 O5, -12.7 (5)°], the second O—H group is oriented near to S2 atom [torsion angle C8 C7 C6 O3 163.8 (3)]. the DPNO molecule is almost coplanar with one of the planes of the CPS molecule showing a dihedral angle of 0.71 (7)°. With the other plane of CPS, the DPNO molecule forms a dihedral angle of 82.52 (11)°. The growth of the crystal system can be explained through a hydrogen bonding scheme (Table 1) (Nardelli, 1995). The title molecule is characterized by the formation of O—H···O and O—H···N hydrogen bonds and other weak C—H···O interactions. In a first substructure atom O5 in the molecule at (x+1/2,-y+1/2,+z-1/2) and atom O3 in the molecule at (-x,-y,-z+1) act simultaneously as hydrogen bond donors to O1 atom in the molecule at (x,y,z). In turn, the O5 atom is linked to the N1 atom at (x,y,z). The propagation of these interactions forms a large R76(57) ring (Etter, 1990) in the (1 0 -2) plane (Fig. 2). In a second substructure, atom C17 in the molecule at (x,y,z) acts as hydrogen bond donor to O2 atom in the molecule at -x+1/2,+y-1/2,-z+1/2. The propagation of this interaction forms C(11) continuous chains and running along [010] direction. All of these interactions define an infinite two-dimensional network for the structure (I) (Fig. 3).

For structural studies of 4,4'-bipyridyl N,N'-dioxide, see: Lou & Huang (2007); Reddy et al. (2006). For the disulfide bond in polypeptide chains, see: Gortner & Hoffman (1941). For a related structure, see: Moreno-Fuquen et al. (2003). For hydrogen bonding, see: Etter (1990); Nardelli (1995).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the title (I) compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing in the unit cell of (I) parallel to the (1 0 -2) plane, showing the R76(57) ring. Hydrogen-bonding interactions are presented as broken lines. Symmetry code: (i) x+1/2,-y+1/2,+z-1/2; (ii) -x,-y,-z+1.
[Figure 3] Fig. 3. The packing in the unit cell of (I) along [100], showing the formation of C(11) infinite chains. Hydrogen-bonding interactions are presented as broken lines. Symmetry code: (i) -x+1/2,+y-1/2,-z+1/2.
2-[(2-Carboxyphenyl)disulfanyl]benzoic acid–4,4'-bipyridyl N,N'-dioxide (1/2) top
Crystal data top
C14H10O4S2·0.5C10H8N2O2F(000) = 1656
Mr = 400.45Dx = 1.532 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2ycCell parameters from 25 reflections
a = 21.314 (2) Åθ = 10.3–19.1°
b = 10.5621 (8) ŵ = 0.34 mm1
c = 16.005 (8) ÅT = 291 K
β = 105.412 (8)°Prism, pale-yellow
V = 3473.5 (18) Å30.22 × 0.18 × 0.12 mm
Z = 8
Data collection top
Rigaku AFC-7S
diffractometer
2658 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.046
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
ω/2θ scansh = 2524
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.951, Tmax = 0.990l = 019
3066 measured reflections3 standard reflections every 120 min
2781 independent reflections intensity decay: 0.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.1415P)2 + 4.1121P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2781 reflectionsΔρmax = 0.74 e Å3
244 parametersΔρmin = 0.47 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: none
Crystal data top
C14H10O4S2·0.5C10H8N2O2V = 3473.5 (18) Å3
Mr = 400.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.314 (2) ŵ = 0.34 mm1
b = 10.5621 (8) ÅT = 291 K
c = 16.005 (8) Å0.22 × 0.18 × 0.12 mm
β = 105.412 (8)°
Data collection top
Rigaku AFC-7S
diffractometer
2658 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.046
Tmin = 0.951, Tmax = 0.9903 standard reflections every 120 min
3066 measured reflections intensity decay: 0.9%
2781 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.11Δρmax = 0.74 e Å3
2781 reflectionsΔρmin = 0.47 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.34651 (3)0.02160 (7)0.27473 (5)0.0381 (3)
S10.25516 (3)0.05076 (8)0.22805 (5)0.0389 (3)
O20.13221 (10)0.1328 (3)0.17027 (17)0.0487 (6)
O40.55073 (13)0.0281 (3)0.4215 (2)0.0761 (9)
O30.07037 (11)0.1051 (3)0.03538 (17)0.0589 (7)
H30.04080.11590.05850.088*
O50.46308 (12)0.1178 (2)0.3372 (2)0.0690 (9)
H550.48290.18320.35510.103*
C130.39868 (14)0.1151 (3)0.2968 (2)0.0359 (7)
C170.41418 (17)0.3405 (3)0.2889 (2)0.0472 (8)
H170.39750.41970.26930.057*
C90.29901 (14)0.0579 (3)0.0790 (2)0.0374 (7)
H90.34010.04040.11500.045*
C70.18433 (13)0.0960 (2)0.0587 (2)0.0337 (7)
C140.46425 (14)0.1032 (3)0.3434 (2)0.0379 (7)
C110.23059 (17)0.0955 (3)0.0634 (2)0.0443 (8)
H110.22540.10390.12270.053*
C80.24617 (13)0.0705 (3)0.1146 (2)0.0335 (7)
C100.29099 (16)0.0710 (3)0.0088 (2)0.0428 (8)
H100.32680.06320.03140.051*
C180.37493 (15)0.2348 (3)0.2689 (2)0.0421 (7)
H180.33200.24380.23630.051*
C190.49747 (14)0.0205 (3)0.3733 (2)0.0441 (8)
C60.12735 (14)0.1140 (3)0.0947 (2)0.0395 (8)
C150.50222 (15)0.2117 (3)0.3643 (2)0.0455 (8)
H150.54520.20410.39690.055*
C160.47782 (16)0.3297 (3)0.3378 (2)0.0480 (8)
H160.50380.40120.35270.058*
C120.17762 (15)0.1077 (3)0.0295 (2)0.0422 (8)
H120.13680.12390.06650.051*
N10.08340 (11)0.1895 (2)0.91617 (17)0.0361 (6)
O10.01985 (9)0.1677 (2)0.88364 (16)0.0460 (6)
C40.18672 (14)0.2206 (3)0.8937 (2)0.0399 (7)
H40.21270.22560.85550.048*
C10.10782 (14)0.2062 (3)1.0006 (2)0.0449 (8)
H10.08040.20231.03710.054*
C30.21476 (12)0.2373 (2)0.98169 (19)0.0311 (6)
C20.17312 (14)0.2295 (3)1.0351 (2)0.0436 (8)
H20.18950.24001.09460.052*
C50.12157 (14)0.1970 (3)0.8619 (2)0.0428 (7)
H50.10380.18630.80270.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0244 (4)0.0417 (5)0.0448 (6)0.0003 (3)0.0033 (3)0.0071 (3)
S10.0220 (4)0.0573 (5)0.0375 (6)0.0022 (3)0.0081 (3)0.0064 (3)
O20.0295 (11)0.0734 (15)0.0435 (17)0.0045 (10)0.0101 (10)0.0060 (11)
O40.0343 (15)0.0647 (17)0.109 (3)0.0041 (11)0.0167 (15)0.0058 (16)
O30.0253 (12)0.092 (2)0.0547 (16)0.0101 (11)0.0029 (10)0.0050 (13)
O50.0371 (13)0.0452 (13)0.105 (2)0.0065 (10)0.0149 (13)0.0014 (13)
C130.0301 (14)0.0420 (15)0.0366 (18)0.0015 (11)0.0104 (12)0.0001 (12)
C170.056 (2)0.0402 (16)0.050 (2)0.0028 (14)0.0208 (16)0.0012 (13)
C90.0296 (15)0.0405 (15)0.044 (2)0.0018 (11)0.0129 (13)0.0009 (12)
C70.0281 (14)0.0313 (13)0.040 (2)0.0027 (10)0.0060 (12)0.0008 (11)
C140.0269 (14)0.0446 (16)0.044 (2)0.0017 (11)0.0127 (12)0.0010 (13)
C110.054 (2)0.0433 (16)0.038 (2)0.0037 (14)0.0158 (15)0.0013 (13)
C80.0247 (13)0.0328 (13)0.044 (2)0.0005 (10)0.0103 (12)0.0008 (11)
C100.0435 (17)0.0418 (16)0.050 (2)0.0021 (13)0.0243 (15)0.0017 (13)
C180.0367 (15)0.0448 (16)0.045 (2)0.0064 (12)0.0107 (13)0.0047 (13)
C190.0232 (16)0.0506 (18)0.057 (2)0.0011 (12)0.0079 (14)0.0019 (14)
C60.0256 (14)0.0360 (15)0.054 (2)0.0054 (11)0.0055 (13)0.0040 (13)
C150.0336 (15)0.0553 (19)0.050 (2)0.0077 (13)0.0142 (13)0.0056 (15)
C160.0466 (18)0.0494 (18)0.053 (2)0.0115 (14)0.0214 (15)0.0080 (14)
C120.0401 (17)0.0398 (16)0.043 (2)0.0081 (12)0.0049 (14)0.0055 (12)
N10.0223 (11)0.0340 (12)0.0523 (19)0.0035 (9)0.0108 (11)0.0060 (10)
O10.0191 (10)0.0503 (13)0.0661 (16)0.0003 (8)0.0071 (9)0.0062 (10)
C40.0290 (15)0.0531 (17)0.042 (2)0.0012 (12)0.0171 (13)0.0015 (13)
C10.0281 (14)0.065 (2)0.047 (2)0.0006 (13)0.0187 (14)0.0026 (15)
C30.0253 (14)0.0300 (12)0.0416 (19)0.0032 (10)0.0152 (12)0.0025 (11)
C20.0277 (14)0.065 (2)0.042 (2)0.0003 (13)0.0157 (13)0.0003 (14)
C50.0316 (15)0.0500 (17)0.047 (2)0.0025 (13)0.0108 (14)0.0025 (14)
Geometric parameters (Å, º) top
S2—C131.799 (3)C11—C101.375 (5)
S2—S12.0397 (10)C11—C121.383 (5)
S1—C81.786 (3)C11—H110.9300
O2—C61.203 (4)C10—H100.9300
O4—C191.194 (4)C18—H180.9300
O3—C61.331 (4)C15—C161.373 (5)
O3—H30.8200C15—H150.9300
O5—C191.305 (4)C16—H160.9300
O5—H550.8200C12—H120.9300
C13—C181.391 (4)N1—C11.324 (4)
C13—C141.404 (4)N1—O11.336 (3)
C17—C161.379 (5)N1—C51.340 (4)
C17—C181.380 (5)C4—C51.369 (4)
C17—H170.9300C4—C31.387 (5)
C9—C101.376 (5)C4—H40.9300
C9—C81.397 (4)C1—C21.376 (4)
C9—H90.9300C1—H10.9300
C7—C121.386 (5)C3—C21.389 (4)
C7—C81.408 (4)C3—C3i1.484 (5)
C7—C61.488 (4)C2—H20.9300
C14—C151.391 (4)C5—H50.9300
C14—C191.502 (4)
C13—S2—S1104.55 (10)O4—C19—C14123.5 (3)
C8—S1—S2104.49 (9)O5—C19—C14112.5 (3)
C6—O3—H3109.5O2—C6—O3123.2 (3)
C19—O5—H55109.5O2—C6—C7123.3 (3)
C18—C13—C14118.6 (3)O3—C6—C7113.5 (3)
C18—C13—S2120.9 (2)C16—C15—C14121.7 (3)
C14—C13—S2120.6 (2)C16—C15—H15119.2
C16—C17—C18120.6 (3)C14—C15—H15119.2
C16—C17—H17119.7C15—C16—C17119.0 (3)
C18—C17—H17119.7C15—C16—H16120.5
C10—C9—C8120.8 (3)C17—C16—H16120.5
C10—C9—H9119.6C11—C12—C7121.2 (3)
C8—C9—H9119.6C11—C12—H12119.4
C12—C7—C8119.3 (3)C7—C12—H12119.4
C12—C7—C6120.6 (3)C1—N1—O1120.2 (2)
C8—C7—C6120.1 (3)C1—N1—C5120.7 (3)
C15—C14—C13119.2 (3)O1—N1—C5119.0 (3)
C15—C14—C19116.4 (3)C5—C4—C3121.4 (3)
C13—C14—C19124.4 (3)C5—C4—H4119.3
C10—C11—C12119.5 (3)C3—C4—H4119.3
C10—C11—H11120.3N1—C1—C2121.0 (3)
C12—C11—H11120.3N1—C1—H1119.5
C9—C8—C7118.6 (3)C2—C1—H1119.5
C9—C8—S1121.5 (2)C4—C3—C2116.3 (3)
C7—C8—S1119.8 (2)C4—C3—C3i122.8 (3)
C11—C10—C9120.6 (3)C2—C3—C3i120.9 (3)
C11—C10—H10119.7C1—C2—C3120.5 (3)
C9—C10—H10119.7C1—C2—H2119.8
C17—C18—C13120.9 (3)C3—C2—H2119.8
C17—C18—H18119.5N1—C5—C4120.0 (3)
C13—C18—H18119.5N1—C5—H5120.0
O4—C19—O5123.9 (3)C4—C5—H5120.0
C13—S2—S1—C886.15 (14)C13—C14—C19—O512.7 (5)
S1—S2—C13—C1810.1 (3)C12—C7—C6—O2163.0 (3)
S1—S2—C13—C14169.3 (2)C8—C7—C6—O215.1 (4)
C18—C13—C14—C153.6 (5)C12—C7—C6—O318.1 (4)
S2—C13—C14—C15175.9 (2)C8—C7—C6—O3163.8 (3)
C18—C13—C14—C19176.5 (3)C13—C14—C15—C162.3 (5)
S2—C13—C14—C194.1 (4)C19—C14—C15—C16177.7 (3)
C10—C9—C8—C70.5 (4)C14—C15—C16—C170.4 (5)
C10—C9—C8—S1178.8 (2)C18—C17—C16—C151.9 (5)
C12—C7—C8—C90.1 (4)C10—C11—C12—C70.2 (5)
C6—C7—C8—C9178.1 (3)C8—C7—C12—C110.4 (4)
C12—C7—C8—S1178.2 (2)C6—C7—C12—C11177.7 (3)
C6—C7—C8—S13.6 (4)O1—N1—C1—C2179.6 (3)
S2—S1—C8—C910.4 (2)C5—N1—C1—C21.3 (5)
S2—S1—C8—C7167.9 (2)C5—C4—C3—C20.4 (4)
C12—C11—C10—C90.3 (5)C5—C4—C3—C3i179.8 (3)
C8—C9—C10—C110.7 (5)N1—C1—C2—C30.8 (5)
C16—C17—C18—C130.5 (5)C4—C3—C2—C10.1 (5)
C14—C13—C18—C172.2 (5)C3i—C3—C2—C1179.8 (3)
S2—C13—C18—C17177.2 (3)C1—N1—C5—C40.9 (5)
C15—C14—C19—O49.3 (5)O1—N1—C5—C4179.3 (3)
C13—C14—C19—O4170.6 (4)C3—C4—C5—N10.1 (5)
C15—C14—C19—O5167.4 (3)
Symmetry code: (i) x+1/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H55···O1ii0.821.772.583 (3)174
O3—H3···O1iii0.821.862.672 (3)170
O5—H55···N1ii0.822.503.255 (3)154
C17—H17···O2iv0.932.593.359 (4)140
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x, y, z+1; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10O4S2·0.5C10H8N2O2
Mr400.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)21.314 (2), 10.5621 (8), 16.005 (8)
β (°) 105.412 (8)
V3)3473.5 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.951, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
3066, 2781, 2658
Rint0.046
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.192, 1.11
No. of reflections2781
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.47

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), TEXSAN (Molecular Structure Corporation, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H55···O1i0.821.772.583 (3)173.8
O3—H3···O1ii0.821.862.672 (3)170.1
O5—H55···N1i0.822.503.255 (3)153.9
C17—H17···O2iii0.932.593.359 (4)139.8
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z+1; (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF also wishes to thank the Universidad del Valle, Colombia, and the Instituto de Física de São Carlos, Brasil, for partial financial support. LR acknowledges CNPq Brazil for a research fellowship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGortner, R. A. & Hoffman, W. F. (1941). Org. Synth. Coll. 1, 1941.  Google Scholar
First citationLou, B.-Y. & Huang, Y.-B. (2007). Acta Cryst. C63, o246–o248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationMolecular Structure Corporation (1995). TEXSAN/TEXRAY. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationMoreno-Fuquen, R., Font i Carot, M., Garriga, M., Cano, F., Martinez-Ripoll, M., Valderrama-Naranjo, J. & Serratto, L. M. (2003). Acta Cryst. E59, o495–o497.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationReddy, L. S., Babu, N. J. & Nangia, A. (2006). Chem. Commun. pp. 1369–1371.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds