organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6,8-Tetra­kis(4-ethyl­phen­yl)-3,7-di­aza­bi­cyclo­[3.3.1]nonan-9-one

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 30 April 2010; accepted 6 May 2010; online 12 May 2010)

The bicyclo­[3.3.1]nonane ring in the title compound, C39H44N2O, adopts a chair–boat conformation with the four benzene rings being directed away from the carbonyl group. The presence of C—H⋯O contacts leads to helical supra­molecular chains along the b axis.

Related literature

For background to the synthesis and stereochemistry of 3,7-diaza­bicyclo­[3.3.1]nonan-9-ones and their derivatives, see: Srikrishna & Vijaykumar (1998[Srikrishna, A. & Vijaykumar, D. (1998). Tetrahedron Lett. 39, 5833-5834.]); Pathak et al. (2007[Pathak, C., Karthikeyan, S., More, K. & Vijayakumar, V. (2007). Indian J. Heterocycl. Chem. 16, 295-296.]); Vijayakumar & Sundaravadivelu (2005[Vijayakumar, V. & Sundaravadivelu, M. (2005). Magn. Reson. Chem. 43, 479-482.]). For related structures, see: Natarajan et al. (2008[Natarajan, S., Sudhapriya, V., Vijayakumar, V., Shoba, N., Suresh, J. & Lakshman, P. L. N. (2008). Acta Cryst. E64, o2496.]); Fun et al. (2009[Fun, H.-K., Yeap, C. S., Rajesh, K., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2486-o2487.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C39H44N2O

  • Mr = 556.76

  • Monoclinic, P 21 /c

  • a = 13.381 (2) Å

  • b = 11.8217 (17) Å

  • c = 19.989 (3) Å

  • β = 99.675 (4)°

  • V = 3117.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.40 × 0.37 × 0.29 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.980

  • 29235 measured reflections

  • 7159 independent reflections

  • 5783 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.03

  • 7159 reflections

  • 389 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯O1i 0.95 2.51 3.3837 (16) 153
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The synthesis and stereochemistry of 3,7-diazabicyclo[3.3.1]nonan-9-ones and their derivatives are of much interest owing to their diverse biological activities (Srikrishna & Vijaykumar, 1998; Pathak et al., 2007). The conformational analysis of 3,7-diazabicyclo[3.3.1]nonanes (bispidines) is of interest from a theoretical view point and in particular the 2,4,6,8-tetraaryl-3,7-diazabicyclo[3.3.1]nonanes constitute an interesting case for study owing to the presence of four aryl groups (Vijayakumar & Sundaravadivelu, 2005). If all aryl groups occupy equatorial orientations, molecular models indicate their close proximity to both rings in the bicyclic systems. By contrast, if they are in the twin chair conformation, severe non-bonded interactions arise between aryl groups occupying 2,8-positions and 4,6-positions. In the present report, in continuation of studies in this area (Natarajan et al., 2008; Fun et al., 2009), the synthesis and structure determination of a new example, the title compound (I), is described.

In (I), the bicyclo[3.3.1]nonane ring adopts a chair-boat conformation with ring puckering amplitudes (Cremer & Pople, 1975) for the N1-containing ring (chair) being Q = 0.6318 (13) Å, θ = 6.38 (11) ° and φ = 183.5 (11) °. For the N2-ring, which adopts the boat form, the equivalent parameters are 0.8044 (12) Å, 88.29 (9) °, and 358.47 (9) °, respectively. The benzene rings adjacent to the N1 atom are each directed away from the carbonyl group and are effectively co-planar [dihedral angle = 6.91 (6) °]. The arrangement defines a planar facade to this side of the molecule, especially considering the ethyl groups are folded back to be orientated toward the rest of the molecule. By contrast, the benzene rings adjacent to the N2 atom are somewhat splayed with adjacent benzene rings forming dihedral angles of 54.17 (6) ° [(C8–C13)/(C16–C21)] and 48.45 (6) ° [(C24–C29)/(C32–C37)]. The dihedral angle between the (C16–C21) and (C24–C29) rings is 38.01 (6) ° so as to define a concave facade to this part of the molecule; the ethyl groups for these benzene rings are directed away from the molecule.

Despite there being two acidic N—H H atoms in the structure, neither play a significant role in the crystal packing owing to steric congestion. Rather, the carbonyl group participates in a C–H···O contact, Table 1, to generate a supramolecular chain with helical topology along the b axis, Fig. 2.

Related literature top

For background to the synthesis and stereochemistry of 3,7-diazabicyclo[3.3.1]nonan-9-ones and their derivatives, see: Srikrishna & Vijaykumar (1998); Pathak et al. (2007); Vijayakumar & Sundaravadivelu (2005). For related structures, see: Natarajan et al. (2008); Fun et al. (2009). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of acetone (0.2 ml), 4-ethylbenzaldehyde (2 ml) and dry ammonium acetate (0.6 g) were taken in a 1:4:2 molar ratio in ethanol (15 ml) and the resulting solution heated on water bath till the colour changed to red-orange. The mixture was allowed to stand for 24 h. The resultant sticky precipitate was washed with a mixture of diethyl ether and ethanol (4:1). The solid obtained was crystallized from a mixture of CHCl3-methanol (1:1) to yield (I). M.Pt: 495–497 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The amine-H atoms were refined with the distance restraint N–H = 0.91±0.1 Å, and with Uiso(H) = 1.2Uequiv(N).

Structure description top

The synthesis and stereochemistry of 3,7-diazabicyclo[3.3.1]nonan-9-ones and their derivatives are of much interest owing to their diverse biological activities (Srikrishna & Vijaykumar, 1998; Pathak et al., 2007). The conformational analysis of 3,7-diazabicyclo[3.3.1]nonanes (bispidines) is of interest from a theoretical view point and in particular the 2,4,6,8-tetraaryl-3,7-diazabicyclo[3.3.1]nonanes constitute an interesting case for study owing to the presence of four aryl groups (Vijayakumar & Sundaravadivelu, 2005). If all aryl groups occupy equatorial orientations, molecular models indicate their close proximity to both rings in the bicyclic systems. By contrast, if they are in the twin chair conformation, severe non-bonded interactions arise between aryl groups occupying 2,8-positions and 4,6-positions. In the present report, in continuation of studies in this area (Natarajan et al., 2008; Fun et al., 2009), the synthesis and structure determination of a new example, the title compound (I), is described.

In (I), the bicyclo[3.3.1]nonane ring adopts a chair-boat conformation with ring puckering amplitudes (Cremer & Pople, 1975) for the N1-containing ring (chair) being Q = 0.6318 (13) Å, θ = 6.38 (11) ° and φ = 183.5 (11) °. For the N2-ring, which adopts the boat form, the equivalent parameters are 0.8044 (12) Å, 88.29 (9) °, and 358.47 (9) °, respectively. The benzene rings adjacent to the N1 atom are each directed away from the carbonyl group and are effectively co-planar [dihedral angle = 6.91 (6) °]. The arrangement defines a planar facade to this side of the molecule, especially considering the ethyl groups are folded back to be orientated toward the rest of the molecule. By contrast, the benzene rings adjacent to the N2 atom are somewhat splayed with adjacent benzene rings forming dihedral angles of 54.17 (6) ° [(C8–C13)/(C16–C21)] and 48.45 (6) ° [(C24–C29)/(C32–C37)]. The dihedral angle between the (C16–C21) and (C24–C29) rings is 38.01 (6) ° so as to define a concave facade to this part of the molecule; the ethyl groups for these benzene rings are directed away from the molecule.

Despite there being two acidic N—H H atoms in the structure, neither play a significant role in the crystal packing owing to steric congestion. Rather, the carbonyl group participates in a C–H···O contact, Table 1, to generate a supramolecular chain with helical topology along the b axis, Fig. 2.

For background to the synthesis and stereochemistry of 3,7-diazabicyclo[3.3.1]nonan-9-ones and their derivatives, see: Srikrishna & Vijaykumar (1998); Pathak et al. (2007); Vijayakumar & Sundaravadivelu (2005). For related structures, see: Natarajan et al. (2008); Fun et al. (2009). For conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Helical supramolecular chain along the b axis in (I) mediated by C–H···O contacts, shown as orange dashed lines.
2,4,6,8-Tetrakis(4-ethylphenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one top
Crystal data top
C39H44N2OF(000) = 1200
Mr = 556.76Dx = 1.186 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9317 reflections
a = 13.381 (2) Åθ = 2.3–28.2°
b = 11.8217 (17) ŵ = 0.07 mm1
c = 19.989 (3) ÅT = 100 K
β = 99.675 (4)°Block, colourless
V = 3117.1 (8) Å30.40 × 0.37 × 0.29 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
7159 independent reflections
Radiation source: fine-focus sealed tube5783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.972, Tmax = 0.980k = 1515
29235 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.9409P]
where P = (Fo2 + 2Fc2)/3
7159 reflections(Δ/σ)max < 0.001
389 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C39H44N2OV = 3117.1 (8) Å3
Mr = 556.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.381 (2) ŵ = 0.07 mm1
b = 11.8217 (17) ÅT = 100 K
c = 19.989 (3) Å0.40 × 0.37 × 0.29 mm
β = 99.675 (4)°
Data collection top
Bruker SMART APEX
diffractometer
7159 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5783 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.980Rint = 0.033
29235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
7159 reflectionsΔρmin = 0.27 e Å3
389 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28740 (7)0.33935 (8)0.24139 (5)0.0258 (2)
N10.10571 (8)0.43495 (9)0.35954 (5)0.0176 (2)
H1N0.0682 (12)0.4050 (13)0.3883 (8)0.026*
N20.22518 (7)0.62144 (9)0.25571 (5)0.0159 (2)
H2N0.2198 (11)0.6951 (14)0.2501 (7)0.024*
C10.06877 (9)0.39020 (10)0.29151 (6)0.0171 (2)
H10.07820.30630.29230.020*
C20.13203 (9)0.44252 (10)0.24037 (6)0.0158 (2)
H20.11050.40760.19460.019*
C30.12289 (9)0.57417 (10)0.23417 (6)0.0149 (2)
H30.07690.60240.26510.018*
C40.26318 (9)0.59657 (10)0.32788 (6)0.0149 (2)
H40.21140.62120.35560.018*
C50.27729 (9)0.46582 (10)0.33456 (6)0.0160 (2)
H50.35060.44770.34980.019*
C60.21310 (9)0.41261 (10)0.38478 (6)0.0164 (2)
H60.22430.32900.38630.020*
C70.24032 (9)0.41035 (10)0.26704 (6)0.0172 (2)
C80.04266 (9)0.41626 (10)0.26868 (6)0.0175 (2)
C90.09358 (9)0.49827 (11)0.29977 (6)0.0213 (3)
H90.06030.53440.33980.026*
C100.19329 (9)0.52824 (12)0.27270 (7)0.0234 (3)
H100.22690.58430.29470.028*
C110.24389 (9)0.47706 (11)0.21398 (6)0.0214 (3)
C120.19308 (10)0.39341 (11)0.18375 (6)0.0222 (3)
H120.22650.35670.14390.027*
C130.09445 (10)0.36279 (10)0.21087 (6)0.0204 (3)
H130.06180.30470.18980.025*
C140.34976 (10)0.51291 (12)0.18224 (7)0.0267 (3)
H14A0.38000.55810.21540.032*
H14B0.39230.44480.17090.032*
C150.34962 (12)0.58247 (14)0.11839 (9)0.0382 (4)
H15A0.31030.65180.12980.057*
H15B0.41940.60220.09850.057*
H15C0.31900.53830.08560.057*
C160.08053 (9)0.60808 (10)0.16182 (6)0.0162 (2)
C170.02427 (9)0.61354 (10)0.14070 (6)0.0183 (2)
H170.06820.60430.17300.022*
C180.06514 (10)0.63238 (11)0.07294 (6)0.0216 (3)
H180.13660.63610.05970.026*
C190.00307 (10)0.64589 (10)0.02430 (6)0.0221 (3)
C200.10134 (10)0.64380 (11)0.04593 (6)0.0230 (3)
H200.14520.65520.01380.028*
C210.14298 (10)0.62529 (11)0.11384 (6)0.0205 (3)
H210.21450.62450.12730.025*
C220.04871 (12)0.66010 (12)0.04984 (7)0.0295 (3)
H22A0.00230.63780.07800.035*
H22B0.10720.60820.06090.035*
C230.08338 (14)0.77868 (13)0.06826 (8)0.0440 (4)
H23A0.13280.80220.04000.066*
H23B0.11490.78130.11620.066*
H23C0.02500.82990.06070.066*
C240.36114 (9)0.66011 (10)0.35158 (6)0.0156 (2)
C250.43406 (9)0.67254 (11)0.30988 (6)0.0192 (3)
H250.42230.64090.26560.023*
C260.52380 (9)0.73073 (11)0.33227 (6)0.0206 (3)
H260.57230.73860.30290.025*
C270.54357 (9)0.77772 (10)0.39710 (6)0.0186 (2)
C280.47053 (9)0.76542 (10)0.43854 (6)0.0180 (2)
H280.48220.79740.48280.022*
C290.38064 (9)0.70720 (10)0.41650 (6)0.0167 (2)
H290.33210.69940.44590.020*
C300.64131 (10)0.84034 (11)0.42213 (7)0.0240 (3)
H30A0.69090.82270.39200.029*
H30B0.66980.81330.46830.029*
C310.62664 (12)0.96826 (13)0.42412 (9)0.0362 (4)
H31A0.60500.99660.37790.054*
H31B0.69071.00430.44400.054*
H31C0.57470.98600.45170.054*
C320.24685 (9)0.46056 (10)0.45536 (6)0.0162 (2)
C330.34447 (9)0.43509 (10)0.48903 (6)0.0186 (2)
H330.38510.38320.46920.022*
C340.38284 (10)0.48437 (11)0.55082 (6)0.0208 (3)
H340.44980.46680.57230.025*
C350.32457 (10)0.55942 (10)0.58197 (6)0.0203 (3)
C360.22587 (10)0.58115 (11)0.54989 (6)0.0213 (3)
H360.18380.62940.57120.026*
C370.18765 (9)0.53323 (11)0.48694 (6)0.0199 (3)
H370.12050.55050.46550.024*
C380.37098 (11)0.61916 (12)0.64667 (7)0.0262 (3)
H38A0.41080.56430.67780.031*
H38B0.31640.64940.66940.031*
C390.43976 (11)0.71594 (12)0.63209 (7)0.0297 (3)
H39A0.49110.68690.60690.045*
H39B0.47320.74910.67500.045*
H39C0.39910.77400.60500.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0268 (5)0.0266 (5)0.0248 (5)0.0072 (4)0.0061 (4)0.0061 (4)
N10.0160 (5)0.0227 (5)0.0141 (5)0.0028 (4)0.0027 (4)0.0020 (4)
N20.0169 (5)0.0157 (5)0.0142 (5)0.0027 (4)0.0003 (4)0.0020 (4)
C10.0193 (6)0.0147 (5)0.0167 (6)0.0024 (4)0.0015 (5)0.0001 (4)
C20.0190 (6)0.0147 (5)0.0134 (5)0.0009 (4)0.0022 (4)0.0015 (4)
C30.0160 (5)0.0151 (5)0.0134 (5)0.0012 (4)0.0022 (4)0.0005 (4)
C40.0147 (5)0.0170 (6)0.0128 (5)0.0000 (4)0.0017 (4)0.0006 (4)
C50.0155 (5)0.0163 (6)0.0159 (6)0.0010 (4)0.0023 (4)0.0004 (5)
C60.0177 (6)0.0153 (5)0.0158 (6)0.0006 (4)0.0015 (4)0.0021 (4)
C70.0206 (6)0.0150 (5)0.0171 (6)0.0006 (4)0.0065 (5)0.0019 (5)
C80.0186 (6)0.0174 (6)0.0164 (6)0.0043 (4)0.0027 (5)0.0039 (5)
C90.0186 (6)0.0282 (7)0.0170 (6)0.0045 (5)0.0028 (5)0.0023 (5)
C100.0190 (6)0.0302 (7)0.0217 (6)0.0013 (5)0.0056 (5)0.0022 (5)
C110.0171 (6)0.0252 (6)0.0214 (6)0.0064 (5)0.0021 (5)0.0044 (5)
C120.0251 (6)0.0199 (6)0.0200 (6)0.0087 (5)0.0013 (5)0.0008 (5)
C130.0236 (6)0.0154 (6)0.0218 (6)0.0047 (5)0.0024 (5)0.0005 (5)
C140.0172 (6)0.0350 (8)0.0266 (7)0.0036 (5)0.0001 (5)0.0022 (6)
C150.0277 (7)0.0431 (9)0.0424 (9)0.0038 (7)0.0022 (6)0.0170 (7)
C160.0210 (6)0.0128 (5)0.0142 (6)0.0013 (4)0.0010 (4)0.0011 (4)
C170.0206 (6)0.0170 (6)0.0168 (6)0.0000 (5)0.0023 (5)0.0003 (5)
C180.0233 (6)0.0195 (6)0.0202 (6)0.0025 (5)0.0019 (5)0.0001 (5)
C190.0337 (7)0.0156 (6)0.0155 (6)0.0037 (5)0.0005 (5)0.0003 (5)
C200.0312 (7)0.0219 (6)0.0171 (6)0.0003 (5)0.0075 (5)0.0017 (5)
C210.0228 (6)0.0203 (6)0.0183 (6)0.0016 (5)0.0031 (5)0.0002 (5)
C220.0408 (8)0.0296 (7)0.0161 (6)0.0083 (6)0.0005 (6)0.0018 (5)
C230.0600 (11)0.0255 (8)0.0363 (9)0.0081 (7)0.0212 (8)0.0107 (7)
C240.0155 (5)0.0146 (5)0.0160 (6)0.0006 (4)0.0007 (4)0.0022 (4)
C250.0204 (6)0.0225 (6)0.0147 (6)0.0023 (5)0.0030 (5)0.0002 (5)
C260.0180 (6)0.0249 (6)0.0196 (6)0.0019 (5)0.0054 (5)0.0033 (5)
C270.0166 (6)0.0174 (6)0.0205 (6)0.0006 (4)0.0007 (5)0.0032 (5)
C280.0201 (6)0.0173 (6)0.0152 (6)0.0001 (5)0.0005 (5)0.0002 (5)
C290.0175 (6)0.0165 (6)0.0163 (6)0.0013 (4)0.0036 (4)0.0018 (5)
C300.0180 (6)0.0283 (7)0.0245 (7)0.0052 (5)0.0003 (5)0.0010 (5)
C310.0313 (8)0.0279 (8)0.0468 (9)0.0117 (6)0.0009 (7)0.0017 (7)
C320.0194 (6)0.0148 (5)0.0148 (6)0.0012 (4)0.0038 (4)0.0039 (4)
C330.0217 (6)0.0166 (6)0.0177 (6)0.0035 (5)0.0039 (5)0.0021 (5)
C340.0221 (6)0.0207 (6)0.0184 (6)0.0022 (5)0.0004 (5)0.0036 (5)
C350.0277 (6)0.0191 (6)0.0143 (6)0.0019 (5)0.0046 (5)0.0039 (5)
C360.0257 (6)0.0207 (6)0.0192 (6)0.0024 (5)0.0085 (5)0.0001 (5)
C370.0190 (6)0.0214 (6)0.0196 (6)0.0022 (5)0.0044 (5)0.0036 (5)
C380.0335 (7)0.0288 (7)0.0162 (6)0.0019 (6)0.0038 (5)0.0013 (5)
C390.0353 (8)0.0311 (7)0.0237 (7)0.0059 (6)0.0079 (6)0.0089 (6)
Geometric parameters (Å, º) top
O1—C71.2135 (15)C19—C201.3917 (19)
N1—C61.4647 (15)C19—C221.5143 (17)
N1—C11.4654 (15)C20—C211.3952 (17)
N1—H1N0.897 (16)C20—H200.9500
N2—C31.4742 (14)C21—H210.9500
N2—C41.4763 (15)C22—C231.503 (2)
N2—H2N0.880 (16)C22—H22A0.9900
C1—C81.5159 (16)C22—H22B0.9900
C1—C21.5604 (16)C23—H23A0.9800
C1—H11.0000C23—H23B0.9800
C2—C71.5063 (16)C23—H23C0.9800
C2—C31.5644 (16)C24—C251.3936 (17)
C2—H21.0000C24—C291.3957 (17)
C3—C161.5158 (16)C25—C261.3909 (17)
C3—H31.0000C25—H250.9500
C4—C241.5159 (16)C26—C271.3939 (18)
C4—C51.5603 (16)C26—H260.9500
C4—H41.0000C27—C281.3910 (18)
C5—C71.5073 (16)C27—C301.5130 (17)
C5—C61.5591 (16)C28—C291.3916 (17)
C5—H51.0000C28—H280.9500
C6—C321.5172 (16)C29—H290.9500
C6—H61.0000C30—C311.526 (2)
C8—C91.3901 (18)C30—H30A0.9900
C8—C131.3950 (17)C30—H30B0.9900
C9—C101.3985 (17)C31—H31A0.9800
C9—H90.9500C31—H31B0.9800
C10—C111.3911 (18)C31—H31C0.9800
C10—H100.9500C32—C371.3900 (17)
C11—C121.3940 (19)C32—C331.3981 (16)
C11—C141.5123 (17)C33—C341.3840 (17)
C12—C131.3880 (18)C33—H330.9500
C12—H120.9500C34—C351.3949 (18)
C13—H130.9500C34—H340.9500
C14—C151.519 (2)C35—C361.3917 (18)
C14—H14A0.9900C35—C381.5123 (18)
C14—H14B0.9900C36—C371.3962 (18)
C15—H15A0.9800C36—H360.9500
C15—H15B0.9800C37—H370.9500
C15—H15C0.9800C38—C391.5269 (19)
C16—C211.3889 (17)C38—H38A0.9900
C16—C171.3964 (16)C38—H38B0.9900
C17—C181.3909 (17)C39—H39A0.9800
C17—H170.9500C39—H39B0.9800
C18—C191.3899 (19)C39—H39C0.9800
C18—H180.9500
C6—N1—C1114.38 (10)C17—C18—H18119.5
C6—N1—H1N109.3 (10)C18—C19—C20117.86 (11)
C1—N1—H1N108.3 (10)C18—C19—C22120.48 (12)
C3—N2—C4111.13 (9)C20—C19—C22121.65 (12)
C3—N2—H2N106.6 (10)C19—C20—C21121.40 (12)
C4—N2—H2N109.2 (10)C19—C20—H20119.3
N1—C1—C8111.55 (10)C21—C20—H20119.3
N1—C1—C2109.23 (9)C16—C21—C20120.44 (12)
C8—C1—C2109.68 (9)C16—C21—H21119.8
N1—C1—H1108.8C20—C21—H21119.8
C8—C1—H1108.8C23—C22—C19113.60 (12)
C2—C1—H1108.8C23—C22—H22A108.8
C7—C2—C1105.29 (9)C19—C22—H22A108.8
C7—C2—C3109.69 (9)C23—C22—H22B108.8
C1—C2—C3113.73 (10)C19—C22—H22B108.8
C7—C2—H2109.3H22A—C22—H22B107.7
C1—C2—H2109.3C22—C23—H23A109.5
C3—C2—H2109.3C22—C23—H23B109.5
N2—C3—C16111.00 (9)H23A—C23—H23B109.5
N2—C3—C2107.31 (9)C22—C23—H23C109.5
C16—C3—C2110.51 (9)H23A—C23—H23C109.5
N2—C3—H3109.3H23B—C23—H23C109.5
C16—C3—H3109.3C25—C24—C29118.27 (11)
C2—C3—H3109.3C25—C24—C4121.40 (10)
N2—C4—C24110.15 (9)C29—C24—C4120.33 (10)
N2—C4—C5107.32 (9)C26—C25—C24120.87 (11)
C24—C4—C5112.23 (9)C26—C25—H25119.6
N2—C4—H4109.0C24—C25—H25119.6
C24—C4—H4109.0C25—C26—C27121.00 (11)
C5—C4—H4109.0C25—C26—H26119.5
C7—C5—C6105.52 (9)C27—C26—H26119.5
C7—C5—C4109.73 (9)C28—C27—C26118.00 (11)
C6—C5—C4112.51 (10)C28—C27—C30120.60 (11)
C7—C5—H5109.7C26—C27—C30121.40 (11)
C6—C5—H5109.7C27—C28—C29121.30 (11)
C4—C5—H5109.7C27—C28—H28119.3
N1—C6—C32111.99 (10)C29—C28—H28119.3
N1—C6—C5108.68 (9)C28—C29—C24120.55 (11)
C32—C6—C5109.75 (9)C28—C29—H29119.7
N1—C6—H6108.8C24—C29—H29119.7
C32—C6—H6108.8C27—C30—C31112.68 (11)
C5—C6—H6108.8C27—C30—H30A109.1
O1—C7—C2124.19 (11)C31—C30—H30A109.1
O1—C7—C5124.30 (11)C27—C30—H30B109.1
C2—C7—C5111.01 (10)C31—C30—H30B109.1
C9—C8—C13118.28 (11)H30A—C30—H30B107.8
C9—C8—C1122.57 (11)C30—C31—H31A109.5
C13—C8—C1118.94 (11)C30—C31—H31B109.5
C8—C9—C10120.74 (12)H31A—C31—H31B109.5
C8—C9—H9119.6C30—C31—H31C109.5
C10—C9—H9119.6H31A—C31—H31C109.5
C11—C10—C9120.91 (12)H31B—C31—H31C109.5
C11—C10—H10119.5C37—C32—C33118.18 (11)
C9—C10—H10119.5C37—C32—C6123.36 (11)
C10—C11—C12118.07 (12)C33—C32—C6118.38 (11)
C10—C11—C14121.40 (12)C34—C33—C32121.03 (11)
C12—C11—C14120.51 (12)C34—C33—H33119.5
C13—C12—C11121.12 (12)C32—C33—H33119.5
C13—C12—H12119.4C33—C34—C35120.98 (12)
C11—C12—H12119.4C33—C34—H34119.5
C12—C13—C8120.84 (12)C35—C34—H34119.5
C12—C13—H13119.6C36—C35—C34118.04 (11)
C8—C13—H13119.6C36—C35—C38121.96 (12)
C11—C14—C15111.77 (11)C34—C35—C38119.91 (12)
C11—C14—H14A109.3C35—C36—C37121.06 (12)
C15—C14—H14A109.3C35—C36—H36119.5
C11—C14—H14B109.3C37—C36—H36119.5
C15—C14—H14B109.3C32—C37—C36120.64 (11)
H14A—C14—H14B107.9C32—C37—H37119.7
C14—C15—H15A109.5C36—C37—H37119.7
C14—C15—H15B109.5C35—C38—C39111.14 (11)
H15A—C15—H15B109.5C35—C38—H38A109.4
C14—C15—H15C109.5C39—C38—H38A109.4
H15A—C15—H15C109.5C35—C38—H38B109.4
H15B—C15—H15C109.5C39—C38—H38B109.4
C21—C16—C17118.34 (11)H38A—C38—H38B108.0
C21—C16—C3121.71 (11)C38—C39—H39A109.5
C17—C16—C3119.74 (10)C38—C39—H39B109.5
C18—C17—C16120.82 (12)H39A—C39—H39B109.5
C18—C17—H17119.6C38—C39—H39C109.5
C16—C17—H17119.6H39A—C39—H39C109.5
C19—C18—C17121.08 (12)H39B—C39—H39C109.5
C19—C18—H18119.5
C6—N1—C1—C8179.96 (9)N2—C3—C16—C2131.23 (15)
C6—N1—C1—C258.63 (13)C2—C3—C16—C2187.71 (13)
N1—C1—C2—C758.31 (12)N2—C3—C16—C17154.06 (11)
C8—C1—C2—C7179.15 (9)C2—C3—C16—C1786.99 (13)
N1—C1—C2—C361.80 (12)C21—C16—C17—C181.90 (18)
C8—C1—C2—C360.74 (12)C3—C16—C17—C18172.98 (11)
C4—N2—C3—C16175.29 (9)C16—C17—C18—C190.23 (19)
C4—N2—C3—C263.86 (12)C17—C18—C19—C202.14 (19)
C7—C2—C3—N21.01 (12)C17—C18—C19—C22176.72 (12)
C1—C2—C3—N2118.60 (10)C18—C19—C20—C211.95 (19)
C7—C2—C3—C16122.17 (10)C22—C19—C20—C21176.90 (12)
C1—C2—C3—C16120.24 (11)C17—C16—C21—C202.09 (18)
C3—N2—C4—C24171.74 (9)C3—C16—C21—C20172.69 (11)
C3—N2—C4—C565.81 (12)C19—C20—C21—C160.17 (19)
N2—C4—C5—C74.20 (12)C18—C19—C22—C2381.21 (18)
C24—C4—C5—C7125.34 (10)C20—C19—C22—C2399.97 (16)
N2—C4—C5—C6121.35 (10)N2—C4—C24—C2538.85 (15)
C24—C4—C5—C6117.50 (11)C5—C4—C24—C2580.66 (14)
C1—N1—C6—C32179.85 (9)N2—C4—C24—C29141.59 (11)
C1—N1—C6—C558.74 (13)C5—C4—C24—C2998.90 (13)
C7—C5—C6—N158.93 (12)C29—C24—C25—C260.23 (18)
C4—C5—C6—N160.69 (12)C4—C24—C25—C26179.80 (11)
C7—C5—C6—C32178.30 (9)C24—C25—C26—C270.33 (19)
C4—C5—C6—C3262.08 (12)C25—C26—C27—C280.48 (18)
C1—C2—C7—O1106.88 (13)C25—C26—C27—C30179.50 (12)
C3—C2—C7—O1130.38 (12)C26—C27—C28—C290.56 (18)
C1—C2—C7—C565.30 (12)C30—C27—C28—C29179.42 (11)
C3—C2—C7—C557.44 (12)C27—C28—C29—C240.49 (18)
C6—C5—C7—O1106.30 (13)C25—C24—C29—C280.31 (17)
C4—C5—C7—O1132.25 (12)C4—C24—C29—C28179.88 (11)
C6—C5—C7—C265.88 (12)C28—C27—C30—C3174.32 (16)
C4—C5—C7—C255.57 (12)C26—C27—C30—C31105.70 (15)
N1—C1—C8—C916.87 (16)N1—C6—C32—C3710.32 (16)
C2—C1—C8—C9104.28 (13)C5—C6—C32—C37110.47 (13)
N1—C1—C8—C13168.51 (10)N1—C6—C32—C33173.07 (10)
C2—C1—C8—C1370.33 (14)C5—C6—C32—C3366.13 (13)
C13—C8—C9—C101.58 (18)C37—C32—C33—C342.61 (18)
C1—C8—C9—C10173.07 (11)C6—C32—C33—C34174.17 (11)
C8—C9—C10—C110.2 (2)C32—C33—C34—C351.16 (19)
C9—C10—C11—C121.33 (19)C33—C34—C35—C361.54 (18)
C9—C10—C11—C14176.85 (12)C33—C34—C35—C38175.19 (12)
C10—C11—C12—C130.73 (19)C34—C35—C36—C372.78 (19)
C14—C11—C12—C13177.46 (12)C38—C35—C36—C37173.88 (12)
C11—C12—C13—C81.04 (19)C33—C32—C37—C361.37 (18)
C9—C8—C13—C122.18 (18)C6—C32—C37—C36175.24 (11)
C1—C8—C13—C12172.67 (11)C35—C36—C37—C321.33 (19)
C10—C11—C14—C15105.45 (15)C36—C35—C38—C39100.09 (15)
C12—C11—C14—C1572.69 (16)C34—C35—C38—C3976.51 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O1i0.952.513.3837 (16)153
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC39H44N2O
Mr556.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.381 (2), 11.8217 (17), 19.989 (3)
β (°) 99.675 (4)
V3)3117.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.37 × 0.29
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
29235, 7159, 5783
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.03
No. of reflections7159
No. of parameters389
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O1i0.952.513.3837 (16)153
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to DST India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Rajesh, K., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2486–o2487.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNatarajan, S., Sudhapriya, V., Vijayakumar, V., Shoba, N., Suresh, J. & Lakshman, P. L. N. (2008). Acta Cryst. E64, o2496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPathak, C., Karthikeyan, S., More, K. & Vijayakumar, V. (2007). Indian J. Heterocycl. Chem. 16, 295–296.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrikrishna, A. & Vijaykumar, D. (1998). Tetrahedron Lett. 39, 5833–5834.  Web of Science CrossRef CAS Google Scholar
First citationVijayakumar, V. & Sundaravadivelu, M. (2005). Magn. Reson. Chem. 43, 479–482.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds