organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2,4,6-Tri­methyl-3,5-bis­­(4-oxopiperidin-1-ylmeth­yl)benz­yl]piperidin-4-one

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, bMaterials Research Centre, Indian Institute of Science, Bengaluru 560 012, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 May 2010; accepted 6 May 2010; online 12 May 2010)

In the structure of the title compound, C27H39N3O3, each of the (4-oxopiperidin-1-yl)methyl residues adopts a flattened chair conformation (with the N and carbonyl groups being oriented to either side of the central C4 plane) and they occupy positions approximately orthogonal to the central benzene ring [Cbenzene—C—Cmethyl­ene—N torsion angles 103.4 (2), −104.4 (3) and 71.9 (3)°]; further, two of these residues are oriented to one side of the central benzene ring with the third to the other side. In the crystal packing, supra­molecular layers in the ab plane are sustained by C—H⋯O inter­actions.

Related literature

For background to the biological significance of piperidin-4-one and analogous pyran and thio­pyran species, see: El-Subbagh et al. (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Alofaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); Ganellin et al. (1965[Ganellin, C. R. & Spickett, R. G. (1965). J. Med. Chem. 8, 619-625.]); Hagenbach & Gysin (1952[Hagenbach, R. E. & Gysin, H. (1952). Experimentia, 8, 184-187.]); Ileana et al. (1985[Ileana, B., Dobre, V. & Nicluescu-Duvaz, I. (1985). J. Prakt. Chem. 327, 667-674.]); Mokio et al. (1989[Mokio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421-427.]); Pathak et al. (2007[Pathak, C., Karthikeyan, S., More, K. & Vijayakumar, V. (2007). Indian J. Heterocycl. Chem. 16, 295-296.]). For a related structure, see: Vijayakumar et al. (2010[Vijayakumar, V., Rajesh, K., Suresh, J., Narasimhamurthy, T. & Lakshman, P. L. N. (2010). Acta Cryst. E66, o170.]).

[Scheme 1]

Experimental

Crystal data
  • C27H39N3O3

  • Mr = 453.61

  • Triclinic, [P \overline 1]

  • a = 7.9315 (16) Å

  • b = 12.449 (3) Å

  • c = 14.618 (3) Å

  • α = 67.641 (3)°

  • β = 87.749 (4)°

  • γ = 73.630 (3)°

  • V = 1277.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.28 × 0.21 × 0.17 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.987

  • 12284 measured reflections

  • 4490 independent reflections

  • 3008 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.183

  • S = 1.02

  • 4490 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20a⋯N3 0.96 2.46 3.184 (4) 132
C9—H9a⋯O2i 0.97 2.60 3.412 (5) 142
C21—H21b⋯O3ii 0.97 2.48 3.252 (4) 136
Symmetry codes: (i) x+1, y-1, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Piperidin-4-one and their analogous pyran and thiopyran species attract interest owing to their biological properties, viz. anti-viral, anti-tumour (El-Subbagh et al., 2000), central nervous system (Ganellin et al., 1965), local anesthetic (Hagenbach et al., 1952), anti-cancer (Ileana et al., 1985), and anti-microbial (Mokio et al., 1989; Pathak et al., 2007) activities. As a continuation of structural studies of piperidine-4-ones (Vijayakumar et al., 2010), the title compound, (I), was synthesised and characterised by X-ray crystallography.

In compound (I), Fig. 1, the (4-oxopiperidin-1-yl)methyl residues containing the N1 and N2 atoms lie to one side of the central benzene ring and that with the N3 atom to the other. Owing to the presence of methyl substituents on either side of each 4-oxopiperidin-1-yl)methyl residue, the piperidin-4-one rings adopt side-on conformations to minimise steric interactions so that the N atoms occupy positions approximately normal to the plane through the benzene rings. This is quantified by the C2–C1–C7–N1 [103.4 (2) °], C2–C3–C14–N2 [-104.4 (3) °], and C4–C5–C21–N3 [71.9 (3) °] torsion angles. Each of the six-membered piperidin-4-one rings adopts a slightly flattened chair conformation with the N and carbonyl groups lying to either side of the central C4 plane in each case. Only the amine-N3 atom forms a significant intra- or inter-molecular interaction, i.e. an intramolecular C–H···N contact, Table 1. In the crystal packing, molecules are sustained into layers by C–H···O interactions; Table 1. Layers are formed in the ab plane and stack along the c axis, Fig. 2.

Related literature top

For background to the biological interest in piperidin-4-one and analogous pyran and thiopyran species, see: El-Subbagh et al. (2000); Ganellin et al. (1965); Hagenbach et al. (1952); Ileana et al. (1985); Mokio et al. (1989); Pathak et al. (2007). For a related structure, see: Vijayakumar et al. (2010).

Experimental top

To a suspension of 1.5 equiv. of 4-piperidone hydrochloride monohydrate in benzene (20 ml), 3.0 equiv of K2CO3 was added. After stirring well for 30 min, 2,4,6-tris(bromomethyl)mesitylene (0.5 equiv) in benzene (10 ml) was added, followed by refluxing for 10 h. The completion of reaction was monitored by TLC. The reaction mixture was then allowed to cool to room temperature, filtered to remove the insoluble solids and then the filter cake was washed with dichloromethane. Excess solvents were removed under reduced pressure and the obtained crude product was purified by crystallization using 1:1 ratio of chloroform and methanol; m.pt. 483 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.96 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C).

Structure description top

Piperidin-4-one and their analogous pyran and thiopyran species attract interest owing to their biological properties, viz. anti-viral, anti-tumour (El-Subbagh et al., 2000), central nervous system (Ganellin et al., 1965), local anesthetic (Hagenbach et al., 1952), anti-cancer (Ileana et al., 1985), and anti-microbial (Mokio et al., 1989; Pathak et al., 2007) activities. As a continuation of structural studies of piperidine-4-ones (Vijayakumar et al., 2010), the title compound, (I), was synthesised and characterised by X-ray crystallography.

In compound (I), Fig. 1, the (4-oxopiperidin-1-yl)methyl residues containing the N1 and N2 atoms lie to one side of the central benzene ring and that with the N3 atom to the other. Owing to the presence of methyl substituents on either side of each 4-oxopiperidin-1-yl)methyl residue, the piperidin-4-one rings adopt side-on conformations to minimise steric interactions so that the N atoms occupy positions approximately normal to the plane through the benzene rings. This is quantified by the C2–C1–C7–N1 [103.4 (2) °], C2–C3–C14–N2 [-104.4 (3) °], and C4–C5–C21–N3 [71.9 (3) °] torsion angles. Each of the six-membered piperidin-4-one rings adopts a slightly flattened chair conformation with the N and carbonyl groups lying to either side of the central C4 plane in each case. Only the amine-N3 atom forms a significant intra- or inter-molecular interaction, i.e. an intramolecular C–H···N contact, Table 1. In the crystal packing, molecules are sustained into layers by C–H···O interactions; Table 1. Layers are formed in the ab plane and stack along the c axis, Fig. 2.

For background to the biological interest in piperidin-4-one and analogous pyran and thiopyran species, see: El-Subbagh et al. (2000); Ganellin et al. (1965); Hagenbach et al. (1952); Ileana et al. (1985); Mokio et al. (1989); Pathak et al. (2007). For a related structure, see: Vijayakumar et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit cell contents in (I) highlighting the stacking of layers (mediated by C–H···O contacts, shown as orange dashed lines) along the c axis.
1-[2,4,6-Trimethyl-3,5-bis(4-oxopiperidin-1-ylmethyl)benzyl]piperidin-4-one top
Crystal data top
C27H39N3O3Z = 2
Mr = 453.61F(000) = 492
Triclinic, P1Dx = 1.180 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9315 (16) ÅCell parameters from 969 reflections
b = 12.449 (3) Åθ = 2.9–21.9°
c = 14.618 (3) ŵ = 0.08 mm1
α = 67.641 (3)°T = 293 K
β = 87.749 (4)°Block, colourless
γ = 73.630 (3)°0.28 × 0.21 × 0.17 mm
V = 1277.0 (5) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4490 independent reflections
Radiation source: fine-focus sealed tube3008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 99
Tmin = 0.981, Tmax = 0.987k = 1414
12284 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0929P)2 + 0.3308P]
where P = (Fo2 + 2Fc2)/3
4490 reflections(Δ/σ)max = 0.007
301 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C27H39N3O3γ = 73.630 (3)°
Mr = 453.61V = 1277.0 (5) Å3
Triclinic, P1Z = 2
a = 7.9315 (16) ÅMo Kα radiation
b = 12.449 (3) ŵ = 0.08 mm1
c = 14.618 (3) ÅT = 293 K
α = 67.641 (3)°0.28 × 0.21 × 0.17 mm
β = 87.749 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4490 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3008 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.987Rint = 0.026
12284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
4490 reflectionsΔρmin = 0.14 e Å3
301 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1090 (3)0.3541 (2)0.4155 (2)0.1134 (9)
O20.5097 (3)0.4895 (2)0.2615 (2)0.1089 (8)
O31.1430 (3)0.1907 (3)0.0499 (2)0.1334 (11)
N10.2978 (2)0.20717 (17)0.36948 (14)0.0539 (5)
N20.0198 (2)0.35113 (19)0.26602 (16)0.0603 (6)
N30.6691 (2)0.18892 (18)0.05220 (14)0.0558 (5)
C10.4104 (3)0.0297 (2)0.33087 (17)0.0502 (6)
C20.3290 (3)0.0681 (2)0.35901 (17)0.0511 (6)
C30.3003 (3)0.1875 (2)0.29004 (19)0.0532 (6)
C40.3618 (3)0.2095 (2)0.19514 (18)0.0545 (6)
C50.4516 (3)0.1122 (2)0.16894 (17)0.0520 (6)
C60.4721 (3)0.0076 (2)0.23580 (18)0.0511 (6)
C70.4264 (3)0.1596 (2)0.39930 (19)0.0592 (7)
H7A0.54440.21010.39910.071*
H7B0.40880.16360.46640.071*
C80.3258 (3)0.3350 (2)0.4315 (2)0.0705 (8)
H8A0.30950.34390.49990.085*
H8B0.44620.37990.42840.085*
C90.1999 (4)0.3884 (3)0.3990 (3)0.0792 (9)
H9A0.23400.39630.33690.095*
H9B0.21000.46890.44830.095*
C100.0127 (4)0.3128 (3)0.3857 (2)0.0704 (8)
C110.0149 (3)0.1805 (2)0.3333 (2)0.0684 (7)
H11A0.13330.13730.34150.082*
H11B0.00360.16160.26300.082*
C120.1175 (3)0.1385 (2)0.37301 (19)0.0580 (6)
H12A0.10190.05310.33400.070*
H12B0.09600.14790.44100.070*
C130.2677 (3)0.0440 (3)0.46323 (19)0.0677 (7)
H13A0.14980.03750.46430.102*
H13B0.26980.10970.48190.102*
H13C0.34480.03030.50910.102*
C140.2003 (3)0.2953 (2)0.3141 (2)0.0655 (7)
H14A0.19460.26930.38540.079*
H14B0.26410.35560.29290.079*
C150.0916 (3)0.2725 (2)0.3062 (2)0.0587 (6)
H15A0.10120.25730.37610.070*
H15B0.03730.19530.30040.070*
C160.2748 (3)0.3271 (3)0.2531 (2)0.0770 (8)
H16A0.26750.32750.18660.092*
H16B0.34910.27670.28810.092*
C170.3573 (4)0.4534 (3)0.2471 (2)0.0750 (8)
C180.2391 (4)0.5317 (3)0.2223 (3)0.1045 (12)
H18A0.29270.60240.23800.125*
H18B0.22490.55970.15160.125*
C190.0583 (4)0.4656 (3)0.2789 (3)0.0860 (10)
H19A0.01890.51700.25510.103*
H19B0.06980.44930.34880.103*
C200.3263 (3)0.3379 (3)0.1196 (2)0.0757 (8)
H20A0.42420.34420.07920.114*
H20B0.31070.39260.15320.114*
H20C0.22140.35860.07840.114*
C210.5171 (3)0.1390 (3)0.06593 (18)0.0628 (7)
H21A0.55070.06480.05360.075*
H21B0.42150.19660.01740.075*
C220.6971 (4)0.2351 (3)0.0532 (2)0.0842 (10)
H22A0.58870.29250.09050.101*
H22B0.72950.16860.07580.101*
C230.8419 (4)0.2969 (4)0.0716 (3)0.1011 (12)
H23A0.86200.32530.14160.121*
H23B0.80640.36650.05300.121*
C241.0056 (4)0.2109 (3)0.0130 (2)0.0797 (9)
C250.9854 (3)0.1473 (3)0.0935 (2)0.0755 (8)
H25A0.96980.20310.12690.091*
H25B1.09130.08110.12350.091*
C260.8270 (3)0.0975 (2)0.1068 (2)0.0644 (7)
H26A0.85270.03090.08450.077*
H26B0.80710.06590.17670.077*
C270.5526 (3)0.1134 (3)0.2056 (2)0.0691 (8)
H27A0.47360.11280.15720.104*
H27B0.57260.18790.26280.104*
H27C0.66250.10670.17770.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0747 (14)0.0842 (16)0.159 (2)0.0394 (13)0.0274 (15)0.0133 (15)
O20.0508 (12)0.1078 (18)0.160 (2)0.0044 (12)0.0228 (13)0.0575 (16)
O30.0656 (14)0.245 (3)0.131 (2)0.0694 (18)0.0524 (14)0.105 (2)
N10.0428 (10)0.0519 (12)0.0582 (12)0.0119 (9)0.0099 (9)0.0137 (10)
N20.0401 (10)0.0613 (13)0.0751 (14)0.0127 (9)0.0124 (9)0.0238 (11)
N30.0351 (10)0.0699 (13)0.0532 (12)0.0180 (9)0.0068 (8)0.0122 (10)
C10.0308 (11)0.0641 (15)0.0553 (14)0.0161 (10)0.0028 (10)0.0210 (12)
C20.0303 (11)0.0717 (17)0.0548 (14)0.0155 (11)0.0042 (10)0.0276 (13)
C30.0307 (11)0.0663 (16)0.0676 (16)0.0172 (11)0.0049 (10)0.0288 (13)
C40.0301 (11)0.0641 (16)0.0664 (16)0.0170 (11)0.0025 (10)0.0193 (13)
C50.0289 (11)0.0755 (17)0.0561 (14)0.0225 (11)0.0062 (10)0.0251 (13)
C60.0305 (11)0.0688 (16)0.0632 (15)0.0209 (11)0.0105 (10)0.0312 (13)
C70.0401 (12)0.0672 (17)0.0615 (15)0.0099 (11)0.0024 (11)0.0191 (13)
C80.0538 (15)0.0587 (17)0.0804 (19)0.0076 (13)0.0117 (13)0.0137 (14)
C90.078 (2)0.0552 (17)0.100 (2)0.0240 (15)0.0208 (17)0.0225 (16)
C100.0621 (17)0.0688 (18)0.0790 (19)0.0278 (14)0.0131 (14)0.0213 (15)
C110.0518 (15)0.0663 (17)0.0783 (18)0.0207 (13)0.0024 (13)0.0157 (14)
C120.0443 (13)0.0559 (15)0.0659 (16)0.0132 (11)0.0056 (11)0.0161 (12)
C130.0547 (15)0.0854 (19)0.0636 (17)0.0163 (14)0.0091 (12)0.0327 (15)
C140.0443 (14)0.0750 (18)0.0871 (19)0.0201 (13)0.0092 (13)0.0403 (15)
C150.0414 (13)0.0625 (16)0.0712 (16)0.0131 (11)0.0062 (11)0.0262 (13)
C160.0466 (15)0.087 (2)0.098 (2)0.0117 (14)0.0010 (14)0.0419 (18)
C170.0468 (15)0.080 (2)0.085 (2)0.0035 (14)0.0067 (13)0.0281 (16)
C180.0654 (19)0.064 (2)0.153 (3)0.0025 (16)0.018 (2)0.022 (2)
C190.0603 (17)0.0647 (19)0.136 (3)0.0224 (15)0.0241 (18)0.0402 (19)
C200.0501 (15)0.0744 (19)0.086 (2)0.0166 (13)0.0093 (14)0.0149 (16)
C210.0425 (13)0.0917 (19)0.0569 (15)0.0282 (13)0.0075 (11)0.0257 (14)
C220.0580 (16)0.116 (3)0.0561 (17)0.0340 (17)0.0056 (13)0.0031 (16)
C230.079 (2)0.122 (3)0.086 (2)0.052 (2)0.0246 (18)0.008 (2)
C240.0575 (17)0.123 (3)0.092 (2)0.0536 (18)0.0352 (16)0.060 (2)
C250.0408 (14)0.105 (2)0.084 (2)0.0235 (14)0.0092 (13)0.0388 (18)
C260.0408 (13)0.0757 (18)0.0666 (16)0.0169 (12)0.0054 (11)0.0166 (14)
C270.0569 (15)0.0853 (19)0.0825 (19)0.0324 (14)0.0234 (14)0.0440 (16)
Geometric parameters (Å, º) top
O1—C101.209 (3)C13—H13A0.9600
O2—C171.205 (3)C13—H13B0.9600
O3—C241.202 (3)C13—H13C0.9600
N1—C121.455 (3)C14—H14A0.9700
N1—C81.457 (3)C14—H14B0.9700
N1—C71.468 (3)C15—C161.518 (3)
N2—C151.447 (3)C15—H15A0.9700
N2—C191.465 (3)C15—H15B0.9700
N2—C141.474 (3)C16—C171.493 (4)
N3—C261.444 (3)C16—H16A0.9700
N3—C221.457 (3)C16—H16B0.9700
N3—C211.480 (3)C17—C181.477 (4)
C1—C61.407 (3)C18—C191.526 (4)
C1—C21.409 (3)C18—H18A0.9700
C1—C71.515 (3)C18—H18B0.9700
C2—C31.402 (3)C19—H19A0.9700
C2—C131.524 (3)C19—H19B0.9700
C3—C41.404 (3)C20—H20A0.9600
C3—C141.513 (3)C20—H20B0.9600
C4—C51.402 (3)C20—H20C0.9600
C4—C201.511 (4)C21—H21A0.9700
C5—C61.405 (3)C21—H21B0.9700
C5—C211.517 (3)C22—C231.516 (4)
C6—C271.511 (3)C22—H22A0.9700
C7—H7A0.9700C22—H22B0.9700
C7—H7B0.9700C23—C241.474 (5)
C8—C91.522 (4)C23—H23A0.9700
C8—H8A0.9700C23—H23B0.9700
C8—H8B0.9700C24—C251.480 (4)
C9—C101.491 (4)C25—C261.525 (3)
C9—H9A0.9700C25—H25A0.9700
C9—H9B0.9700C25—H25B0.9700
C10—C111.482 (4)C26—H26A0.9700
C11—C121.517 (3)C26—H26B0.9700
C11—H11A0.9700C27—H27A0.9600
C11—H11B0.9700C27—H27B0.9600
C12—H12A0.9700C27—H27C0.9600
C12—H12B0.9700
C12—N1—C8109.97 (18)N2—C15—C16112.2 (2)
C12—N1—C7111.77 (19)N2—C15—H15A109.2
C8—N1—C7110.82 (19)C16—C15—H15A109.2
C15—N2—C19109.09 (19)N2—C15—H15B109.2
C15—N2—C14112.1 (2)C16—C15—H15B109.2
C19—N2—C14109.6 (2)H15A—C15—H15B107.9
C26—N3—C22109.5 (2)C17—C16—C15112.2 (2)
C26—N3—C21111.39 (19)C17—C16—H16A109.2
C22—N3—C21108.5 (2)C15—C16—H16A109.2
C6—C1—C2120.0 (2)C17—C16—H16B109.2
C6—C1—C7118.4 (2)C15—C16—H16B109.2
C2—C1—C7121.5 (2)H16A—C16—H16B107.9
C3—C2—C1119.8 (2)O2—C17—C18122.0 (3)
C3—C2—C13120.1 (2)O2—C17—C16122.6 (3)
C1—C2—C13120.0 (2)C18—C17—C16115.4 (2)
C2—C3—C4120.0 (2)C17—C18—C19112.1 (3)
C2—C3—C14121.7 (2)C17—C18—H18A109.2
C4—C3—C14118.3 (2)C19—C18—H18A109.2
C5—C4—C3120.2 (2)C17—C18—H18B109.2
C5—C4—C20119.6 (2)C19—C18—H18B109.2
C3—C4—C20120.2 (2)H18A—C18—H18B107.9
C4—C5—C6120.0 (2)N2—C19—C18111.2 (3)
C4—C5—C21118.9 (2)N2—C19—H19A109.4
C6—C5—C21121.0 (2)C18—C19—H19A109.4
C5—C6—C1119.8 (2)N2—C19—H19B109.4
C5—C6—C27120.9 (2)C18—C19—H19B109.4
C1—C6—C27119.2 (2)H19A—C19—H19B108.0
N1—C7—C1112.09 (18)C4—C20—H20A109.5
N1—C7—H7A109.2C4—C20—H20B109.5
C1—C7—H7A109.2H20A—C20—H20B109.5
N1—C7—H7B109.2C4—C20—H20C109.5
C1—C7—H7B109.2H20A—C20—H20C109.5
H7A—C7—H7B107.9H20B—C20—H20C109.5
N1—C8—C9112.0 (2)N3—C21—C5113.1 (2)
N1—C8—H8A109.2N3—C21—H21A108.9
C9—C8—H8A109.2C5—C21—H21A108.9
N1—C8—H8B109.2N3—C21—H21B108.9
C9—C8—H8B109.2C5—C21—H21B108.9
H8A—C8—H8B107.9H21A—C21—H21B107.8
C10—C9—C8112.8 (2)N3—C22—C23110.2 (3)
C10—C9—H9A109.0N3—C22—H22A109.6
C8—C9—H9A109.0C23—C22—H22A109.6
C10—C9—H9B109.0N3—C22—H22B109.6
C8—C9—H9B109.0C23—C22—H22B109.6
H9A—C9—H9B107.8H22A—C22—H22B108.1
O1—C10—C11121.5 (3)C24—C23—C22109.8 (3)
O1—C10—C9123.7 (3)C24—C23—H23A109.7
C11—C10—C9114.8 (2)C22—C23—H23A109.7
C10—C11—C12111.3 (2)C24—C23—H23B109.7
C10—C11—H11A109.4C22—C23—H23B109.7
C12—C11—H11A109.4H23A—C23—H23B108.2
C10—C11—H11B109.4O3—C24—C23122.3 (3)
C12—C11—H11B109.4O3—C24—C25122.9 (3)
H11A—C11—H11B108.0C23—C24—C25114.8 (2)
N1—C12—C11111.6 (2)C24—C25—C26110.8 (2)
N1—C12—H12A109.3C24—C25—H25A109.5
C11—C12—H12A109.3C26—C25—H25A109.5
N1—C12—H12B109.3C24—C25—H25B109.5
C11—C12—H12B109.3C26—C25—H25B109.5
H12A—C12—H12B108.0H25A—C25—H25B108.1
C2—C13—H13A109.5N3—C26—C25112.1 (2)
C2—C13—H13B109.5N3—C26—H26A109.2
H13A—C13—H13B109.5C25—C26—H26A109.2
C2—C13—H13C109.5N3—C26—H26B109.2
H13A—C13—H13C109.5C25—C26—H26B109.2
H13B—C13—H13C109.5H26A—C26—H26B107.9
N2—C14—C3112.7 (2)C6—C27—H27A109.5
N2—C14—H14A109.1C6—C27—H27B109.5
C3—C14—H14A109.1H27A—C27—H27B109.5
N2—C14—H14B109.1C6—C27—H27C109.5
C3—C14—H14B109.1H27A—C27—H27C109.5
H14A—C14—H14B107.8H27B—C27—H27C109.5
C6—C1—C2—C33.8 (3)O1—C10—C11—C12133.7 (3)
C7—C1—C2—C3173.44 (19)C9—C10—C11—C1245.6 (4)
C6—C1—C2—C13177.93 (19)C8—N1—C12—C1161.6 (3)
C7—C1—C2—C134.8 (3)C7—N1—C12—C11174.8 (2)
C1—C2—C3—C43.7 (3)C10—C11—C12—N154.7 (3)
C13—C2—C3—C4178.0 (2)C15—N2—C14—C368.0 (3)
C1—C2—C3—C14174.9 (2)C19—N2—C14—C3170.7 (2)
C13—C2—C3—C143.3 (3)C2—C3—C14—N2104.4 (3)
C2—C3—C4—C50.1 (3)C4—C3—C14—N274.3 (3)
C14—C3—C4—C5178.57 (19)C19—N2—C15—C1661.4 (3)
C2—C3—C4—C20178.1 (2)C14—N2—C15—C16177.0 (2)
C14—C3—C4—C200.6 (3)N2—C15—C16—C1751.2 (3)
C3—C4—C5—C63.4 (3)C15—C16—C17—O2137.8 (3)
C20—C4—C5—C6174.6 (2)C15—C16—C17—C1842.1 (4)
C3—C4—C5—C21179.76 (19)O2—C17—C18—C19136.7 (3)
C20—C4—C5—C212.2 (3)C16—C17—C18—C1943.1 (4)
C4—C5—C6—C13.3 (3)C15—N2—C19—C1861.9 (3)
C21—C5—C6—C1179.92 (19)C14—N2—C19—C18175.0 (2)
C4—C5—C6—C27174.0 (2)C17—C18—C19—N252.8 (4)
C21—C5—C6—C272.8 (3)C26—N3—C21—C571.4 (3)
C2—C1—C6—C50.3 (3)C22—N3—C21—C5168.0 (2)
C7—C1—C6—C5177.04 (19)C4—C5—C21—N371.9 (3)
C2—C1—C6—C27177.6 (2)C6—C5—C21—N3111.3 (2)
C7—C1—C6—C270.3 (3)C26—N3—C22—C2363.1 (3)
C12—N1—C7—C161.7 (3)C21—N3—C22—C23175.1 (3)
C8—N1—C7—C1175.3 (2)N3—C22—C23—C2457.7 (4)
C6—C1—C7—N173.9 (2)C22—C23—C24—O3126.4 (3)
C2—C1—C7—N1103.4 (2)C22—C23—C24—C2550.7 (4)
C12—N1—C8—C958.7 (3)O3—C24—C25—C26129.9 (3)
C7—N1—C8—C9177.2 (2)C23—C24—C25—C2647.2 (4)
N1—C8—C9—C1049.5 (3)C22—N3—C26—C2560.0 (3)
C8—C9—C10—O1135.9 (3)C21—N3—C26—C25180.0 (2)
C8—C9—C10—C1143.5 (4)C24—C25—C26—N351.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20a···N30.962.463.184 (4)132
C9—H9a···O2i0.972.603.412 (5)142
C21—H21b···O3ii0.972.483.252 (4)136
Symmetry codes: (i) x+1, y1, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC27H39N3O3
Mr453.61
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9315 (16), 12.449 (3), 14.618 (3)
α, β, γ (°)67.641 (3), 87.749 (4), 73.630 (3)
V3)1277.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.981, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
12284, 4490, 3008
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.183, 1.02
No. of reflections4490
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20a···N30.962.463.184 (4)132
C9—H9a···O2i0.972.603.412 (5)142
C21—H21b···O3ii0.972.483.252 (4)136
Symmetry codes: (i) x+1, y1, z; (ii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to DST India for funding through the Young Scientist Scheme (Fast Track Proposal). TN acknowledges the establishment of the CCD facility under the IRHPA-DST programme at the Indian Institute of Science, Bangalore.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Alofaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGanellin, C. R. & Spickett, R. G. (1965). J. Med. Chem. 8, 619–625.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHagenbach, R. E. & Gysin, H. (1952). Experimentia, 8, 184–187.  CrossRef CAS Google Scholar
First citationIleana, B., Dobre, V. & Nicluescu-Duvaz, I. (1985). J. Prakt. Chem. 327, 667–674.  Google Scholar
First citationMokio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421–427.  Google Scholar
First citationPathak, C., Karthikeyan, S., More, K. & Vijayakumar, V. (2007). Indian J. Heterocycl. Chem. 16, 295–296.  CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayakumar, V., Rajesh, K., Suresh, J., Narasimhamurthy, T. & Lakshman, P. L. N. (2010). Acta Cryst. E66, o170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds