organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-N-(3,5-Di­bromo-4-meth­oxy­phen­yl)-2-(hy­droxy­imino)acetamide

aInstituto de Química, Departamento de Quimica Orgânica, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CT, Bloco A, Rio de Janeiro 21949-900, RJ, Brazil, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 May 2010; accepted 19 May 2010; online 22 May 2010)

The title compound, C9H8Br2N2O3, is planar (r.m.s. deviation = 0.030 Å) with the exception of the terminal methyl group which lies out of the plane [1.219 (3) Å]. The conformation about the C=N double bond [1.268 (3) Å] is E. An intra­molecular N—H⋯N hydrogen bond occurs. Linear supra­molecular chains along the b axis mediated by O—H⋯O hydrogen-bonding inter­actions feature in the crystal structure. These chains are also stabilized by weak C—H⋯N contacts.

Related literature

For the preparation of isonitro­soacetanilides from aniline derivatives, see: Garden et al. (1997[Garden, S. J., Torres, J. C., Ferreira, A. A., Silva, R. B. & Pinto, A. C. (1997). Tetrahedron Lett. 38, 1501-1504.]). For the use of isonitro­soacetanilides as precursors of pharmacologically important heterocyclic compounds, see: da Silva et al. (2001[Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]); Garden et al. (2002[Garden, S. J., da Silva, R. B. & Pinto, A. C. (2002). Tetrahedron, 58, 8399-8412.]); Matheus et al. (2007[Matheus, M. E., Violante, F. D., Garden, S. J., Pinto, A. C. & Fernandes, P. D. (2007). Eur. J. Pharmacol. 556, 200-206.]); Maronas et al. (2008[Maronas, P. A., Sudo, R. T., Correa, M. B., Pinto, A. C., Garden, S. J., Trachez, M. M. & Zapata-Sudo, G. (2008). Clin. Exp. Pharmacol. Physiol. 35, 1091-1096.]). For related structures, see: Briansó et al. (1974[Briansó, J. L., Miravitlles, C., Plana, F. & Font-Altaba, M. (1974). Estud. Geol. (Madrid), 30, 423-428.]); Plana et al. (1976[Plana, F., Briansó, J. L., Miravitlles, C., Solans, X., Font-Altaba, M., Dideberg, O., Declercq, J. P. & Germain, G. (1976). Acta Cryst. B32, 2660-2664.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8Br2N2O3

  • Mr = 351.98

  • Monoclinic, P 21 /n

  • a = 10.3841 (2) Å

  • b = 8.8535 (1) Å

  • c = 13.0164 (3) Å

  • β = 106.356 (1)°

  • V = 1148.24 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.05 mm−1

  • T = 120 K

  • 0.20 × 0.10 × 0.01 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.715, Tmax = 1.000

  • 14309 measured reflections

  • 2643 independent reflections

  • 2306 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.090

  • S = 1.16

  • 2643 reflections

  • 149 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N2 0.88 2.30 2.702 (3) 108
O2—H2o⋯O1i 0.84 1.83 2.672 (3) 175
C2—H2⋯N2ii 0.95 2.51 3.345 (3) 146
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Isonitrosoacetanilides, readily available from aniline derivatives (Garden et al., 1997), have found use as precursors of pharmacologically important heterocyclic compounds (da Silva et al., 2001; Garden et al., 2002; Matheus et al., 2007; Maronas et al., 2008).

The molecular structure of (I), Fig. 1, is essentially planar with the exception of the terminal methyl group. Thus, the r.m.s. deviation of all non-hydrogen atoms, excluding the methyl-C9 atom, is 0.030 Å; the C9 atom lies 1.219 (3) Å out of the plane. The conformation about the C2N2 double bond [1.268 (3) Å] is E. The observed planarity is partially stabilised by an intramolecular N–H···N hydrogen bond (Table 1). There two other methoxy substituted 2-(hydroxyimino)-N-arylacetamide structures available for comparison,i.e. o-OMe (Plana et al., 1976) and p-OMe (Briansó et al., 1974) derivatives. The geometric parameters in these match closely those in (I). The major difference in the three structures relate to the non-planarity of (I) compared to the planarity in the literature structures. The proximity of the OMe group to two bromido substituents in (I) is the likely explanation for the deviation from planarity in (I). The crystal packing is dominated by O–H···O hydrogen bonding interactions that lead to the formation of a supramolecular linear chain along the b axis, Fig. 2 and Table 1. These chains are also stabilised by weak C–H···N contacts, Table 1.

Related literature top

For the preparation of isonitrosoacetanilides from aniline derivatives, see: Garden et al. (1997). For the use of isonitrosoacetanilides as precursors of pharmacologically important heterocyclic compounds, see: da Silva et al. (2001); Garden et al. (2002); Matheus et al. (2007); Maronas et al. (2008). For related structures, see: Briansó et al. (1974); Plana et al. (1976).

Experimental top

The compound was prepared as previously reported from 3,5-dibromo-4-methoxyaniline, hydroxylamine.hydrogen sulfate in aqueous ethanol, containing sodium sulfate and CCl3CH(OH)2 (Garden et al., 1997). The sample for the crystallographic study was recrystallised from EtOH, m.p. 463 K.

Refinement top

The O-, N- and C-bound H atoms were geometrically placed (O–H = 0.84 Å, N–H = 0.88 Å and C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(parent atom).

Structure description top

Isonitrosoacetanilides, readily available from aniline derivatives (Garden et al., 1997), have found use as precursors of pharmacologically important heterocyclic compounds (da Silva et al., 2001; Garden et al., 2002; Matheus et al., 2007; Maronas et al., 2008).

The molecular structure of (I), Fig. 1, is essentially planar with the exception of the terminal methyl group. Thus, the r.m.s. deviation of all non-hydrogen atoms, excluding the methyl-C9 atom, is 0.030 Å; the C9 atom lies 1.219 (3) Å out of the plane. The conformation about the C2N2 double bond [1.268 (3) Å] is E. The observed planarity is partially stabilised by an intramolecular N–H···N hydrogen bond (Table 1). There two other methoxy substituted 2-(hydroxyimino)-N-arylacetamide structures available for comparison,i.e. o-OMe (Plana et al., 1976) and p-OMe (Briansó et al., 1974) derivatives. The geometric parameters in these match closely those in (I). The major difference in the three structures relate to the non-planarity of (I) compared to the planarity in the literature structures. The proximity of the OMe group to two bromido substituents in (I) is the likely explanation for the deviation from planarity in (I). The crystal packing is dominated by O–H···O hydrogen bonding interactions that lead to the formation of a supramolecular linear chain along the b axis, Fig. 2 and Table 1. These chains are also stabilised by weak C–H···N contacts, Table 1.

For the preparation of isonitrosoacetanilides from aniline derivatives, see: Garden et al. (1997). For the use of isonitrosoacetanilides as precursors of pharmacologically important heterocyclic compounds, see: da Silva et al. (2001); Garden et al. (2002); Matheus et al. (2007); Maronas et al. (2008). For related structures, see: Briansó et al. (1974); Plana et al. (1976).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of a supramolecular array in (I) aligned along the b axis. The O–H···O hydrogen bonding interactions are shown as orange dashed lines. Colour code: Br, olive; O, red; N, blue; C, grey; and H, green.
(2E)-N-(3,5-Dibromo-4-methoxyphenyl)-2-(hydroxyimino)acetamide top
Crystal data top
C9H8Br2N2O3F(000) = 680
Mr = 351.98Dx = 2.036 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2760 reflections
a = 10.3841 (2) Åθ = 2.9–27.5°
b = 8.8535 (1) ŵ = 7.05 mm1
c = 13.0164 (3) ÅT = 120 K
β = 106.356 (1)°Plate, colourless
V = 1148.24 (4) Å30.20 × 0.10 × 0.01 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2643 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2306 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.036
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1110
Tmin = 0.715, Tmax = 1.000l = 1616
14309 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0437P]
where P = (Fo2 + 2Fc2)/3
2643 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.77 e Å3
1 restraintΔρmin = 0.86 e Å3
Crystal data top
C9H8Br2N2O3V = 1148.24 (4) Å3
Mr = 351.98Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3841 (2) ŵ = 7.05 mm1
b = 8.8535 (1) ÅT = 120 K
c = 13.0164 (3) Å0.20 × 0.10 × 0.01 mm
β = 106.356 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2643 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2306 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 1.000Rint = 0.036
14309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.090H-atom parameters constrained
S = 1.16Δρmax = 0.77 e Å3
2643 reflectionsΔρmin = 0.86 e Å3
149 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.51024 (3)0.51328 (3)0.64286 (2)0.03073 (12)
Br20.57429 (3)1.12760 (3)0.76735 (2)0.03212 (12)
O10.6650 (2)0.4317 (2)1.04372 (14)0.0253 (4)
O20.7998 (2)0.6540 (2)1.37265 (15)0.0268 (4)
H2O0.81500.74161.39790.040*
O30.50326 (19)0.8555 (2)0.61613 (15)0.0248 (4)
N20.7577 (2)0.6746 (2)1.26323 (17)0.0228 (5)
N10.6742 (2)0.6890 (2)1.04718 (16)0.0234 (5)
H1N0.69160.76641.09140.028*
C10.6888 (3)0.5517 (3)1.0935 (2)0.0216 (5)
C20.7347 (3)0.5508 (3)1.2123 (2)0.0235 (5)
H20.74690.45771.25010.028*
C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)
C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)
H40.59950.51180.87550.027*
C50.5590 (3)0.6618 (3)0.7514 (2)0.0218 (5)
C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)
C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)
C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)
H80.65620.95240.96450.029*
C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)
H9A0.66830.94310.58940.050*
H9B0.56350.87760.48400.050*
H9C0.65440.76450.57040.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0466 (2)0.02593 (18)0.01798 (18)0.00608 (11)0.00633 (13)0.00244 (9)
Br20.0420 (2)0.01905 (17)0.0298 (2)0.00089 (10)0.00100 (13)0.00607 (10)
O10.0388 (11)0.0189 (9)0.0175 (9)0.0002 (8)0.0067 (8)0.0009 (7)
O20.0400 (11)0.0222 (9)0.0154 (9)0.0022 (8)0.0033 (8)0.0001 (7)
O30.0255 (9)0.0305 (10)0.0166 (9)0.0010 (7)0.0031 (7)0.0081 (7)
N20.0274 (12)0.0235 (11)0.0159 (11)0.0009 (8)0.0033 (8)0.0000 (8)
N10.0321 (12)0.0184 (10)0.0165 (11)0.0005 (9)0.0015 (9)0.0004 (8)
C10.0235 (12)0.0220 (12)0.0181 (13)0.0011 (10)0.0042 (10)0.0000 (10)
C20.0307 (14)0.0196 (12)0.0193 (13)0.0001 (10)0.0054 (10)0.0011 (10)
C30.0243 (12)0.0209 (12)0.0190 (13)0.0013 (10)0.0046 (10)0.0015 (9)
C40.0246 (13)0.0197 (12)0.0215 (14)0.0008 (9)0.0056 (10)0.0028 (9)
C50.0214 (12)0.0250 (12)0.0184 (13)0.0019 (10)0.0045 (10)0.0018 (10)
C60.0188 (12)0.0261 (13)0.0195 (13)0.0009 (10)0.0022 (10)0.0053 (10)
C70.0255 (13)0.0184 (12)0.0248 (14)0.0010 (10)0.0028 (10)0.0060 (10)
C80.0267 (13)0.0244 (13)0.0189 (13)0.0024 (10)0.0024 (10)0.0001 (9)
C90.0345 (16)0.0420 (16)0.0244 (15)0.0030 (12)0.0103 (12)0.0102 (12)
Geometric parameters (Å, º) top
Br1—C51.892 (3)C2—H20.9500
Br2—C71.894 (3)C3—C41.390 (4)
O1—C11.233 (3)C3—C81.390 (4)
O2—N21.379 (3)C4—C51.385 (3)
O2—H2o0.8400C4—H40.9500
O3—C61.368 (3)C5—C61.394 (4)
O3—C91.445 (3)C6—C71.395 (4)
N2—C21.268 (3)C7—C81.386 (4)
N1—C11.346 (3)C8—H80.9500
N1—C31.417 (3)C9—H9A0.9800
N1—H1N0.8800C9—H9B0.9800
C1—C21.484 (4)C9—H9C0.9800
N2—O2—H2o104.6C4—C5—C6122.8 (2)
C6—O3—C9113.1 (2)C4—C5—Br1118.79 (19)
C2—N2—O2112.6 (2)C6—C5—Br1118.39 (19)
C1—N1—C3128.6 (2)O3—C6—C5121.4 (2)
C1—N1—H1N115.7O3—C6—C7121.7 (2)
C3—N1—H1N115.7C5—C6—C7116.8 (2)
O1—C1—N1124.3 (2)C8—C7—C6121.9 (2)
O1—C1—C2120.1 (2)C8—C7—Br2119.2 (2)
N1—C1—C2115.7 (2)C6—C7—Br2118.81 (19)
N2—C2—C1119.9 (2)C7—C8—C3119.3 (2)
N2—C2—H2120.0C7—C8—H8120.4
C1—C2—H2120.0C3—C8—H8120.4
C4—C3—C8120.6 (2)O3—C9—H9A109.5
C4—C3—N1122.4 (2)O3—C9—H9B109.5
C8—C3—N1117.0 (2)H9A—C9—H9B109.5
C5—C4—C3118.5 (2)O3—C9—H9C109.5
C5—C4—H4120.7H9A—C9—H9C109.5
C3—C4—H4120.7H9B—C9—H9C109.5
C3—N1—C1—O12.1 (4)C4—C5—C6—O3175.0 (2)
C3—N1—C1—C2178.9 (2)Br1—C5—C6—O33.8 (3)
O2—N2—C2—C1179.9 (2)C4—C5—C6—C71.3 (4)
O1—C1—C2—N2179.2 (3)Br1—C5—C6—C7179.86 (19)
N1—C1—C2—N20.2 (4)O3—C6—C7—C8176.2 (2)
C1—N1—C3—C42.9 (4)C5—C6—C7—C80.1 (4)
C1—N1—C3—C8178.4 (3)O3—C6—C7—Br21.3 (4)
C8—C3—C4—C50.7 (4)C5—C6—C7—Br2177.56 (18)
N1—C3—C4—C5179.3 (2)C6—C7—C8—C30.8 (4)
C3—C4—C5—C61.7 (4)Br2—C7—C8—C3176.7 (2)
C3—C4—C5—Br1179.57 (19)C4—C3—C8—C70.5 (4)
C9—O3—C6—C588.4 (3)N1—C3—C8—C7178.2 (2)
C9—O3—C6—C795.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···N20.882.302.702 (3)108
O2—H2o···O1i0.841.832.672 (3)175
C2—H2···N2ii0.952.513.345 (3)146
Symmetry codes: (i) x+3/2, y+1/2, z+5/2; (ii) x+3/2, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC9H8Br2N2O3
Mr351.98
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.3841 (2), 8.8535 (1), 13.0164 (3)
β (°) 106.356 (1)
V3)1148.24 (4)
Z4
Radiation typeMo Kα
µ (mm1)7.05
Crystal size (mm)0.20 × 0.10 × 0.01
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.715, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14309, 2643, 2306
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.090, 1.16
No. of reflections2643
No. of parameters149
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.86

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···N20.882.302.702 (3)108
O2—H2o···O1i0.841.832.672 (3)175
C2—H2···N2ii0.952.513.345 (3)146
Symmetry codes: (i) x+3/2, y+1/2, z+5/2; (ii) x+3/2, y1/2, z+5/2.
 

Footnotes

Additional correspondence author, e-mail: garden@iq.ufrj.br.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. SJG thanks CNPq and FAPERJ for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBriansó, J. L., Miravitlles, C., Plana, F. & Font-Altaba, M. (1974). Estud. Geol. (Madrid), 30, 423–428.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarden, S. J., da Silva, R. B. & Pinto, A. C. (2002). Tetrahedron, 58, 8399–8412.  Web of Science CrossRef CAS Google Scholar
First citationGarden, S. J., Torres, J. C., Ferreira, A. A., Silva, R. B. & Pinto, A. C. (1997). Tetrahedron Lett. 38, 1501–1504.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMaronas, P. A., Sudo, R. T., Correa, M. B., Pinto, A. C., Garden, S. J., Trachez, M. M. & Zapata-Sudo, G. (2008). Clin. Exp. Pharmacol. Physiol. 35, 1091–1096.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatheus, M. E., Violante, F. D., Garden, S. J., Pinto, A. C. & Fernandes, P. D. (2007). Eur. J. Pharmacol. 556, 200–206.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPlana, F., Briansó, J. L., Miravitlles, C., Solans, X., Font-Altaba, M., Dideberg, O., Declercq, J. P. & Germain, G. (1976). Acta Cryst. B32, 2660–2664.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds