metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(di­methyl­ammonium) di-μ6-oxido-tetra-μ3-oxido-tetra­deca-μ2-oxido-octa­oxidodeca­vanadate(V) monohydrate

aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: luliping@sxu.edu.cn, miaoli@sxu.edu.cn

(Received 27 April 2010; accepted 5 May 2010; online 8 May 2010)

In the title compound, (C2H8N)6[V10O28]·H2O, the [V10O28]6− polymetalate anion has crystallographic mirror symmetry with six V atoms and 12 O atoms lying on the mirror plane. Each of the VV atoms adopts a distorted octa­hedral geometry. Eight terminal O atoms are bonded to VV atoms with double bonds and the others act as bridging atoms. In the crystal structure, a network of N—H⋯O and O—H⋯O hydrogen bonds helps to establish the packing.

Related literature

For the biological activity of oxovanadates and vanadium complexes, see: Pacigová et al. (2007[Pacigová, S., Rakovský, E., Sivák, M. & Žák, Z. (2007). Acta Cryst. C63, m419-m422.]); Yuan, Lu, Gao et al. (2009[Yuan, C.-X., Lu, L.-P., Gao, X.-L., Wu, Y.-B., Guo, M.-L., Li, Y., Fu, X.-Q. & Zhu, M.-L. (2009). J. Biol. Inorg. Chem. 14, 841-851.]). For a related structure, see: Yuan, Lu, Zhu et al. (2009[Yuan, C., Lu, L., Zhu, M., Ma, Q. & Wu, Y. (2009). Acta Cryst. E65, m267-m268.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H8N)6[V10O28]·H2O

  • Mr = 1251.98

  • Orthorhombic, C m c a

  • a = 13.6149 (18) Å

  • b = 18.629 (3) Å

  • c = 30.235 (2) Å

  • V = 7668.5 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.42 mm−1

  • T = 203 K

  • 0.35 × 0.11 × 0.05 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.484, Tmax = 0.888

  • 18064 measured reflections

  • 3464 independent reflections

  • 2951 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.096

  • wR(F2) = 0.177

  • S = 1.26

  • 3464 reflections

  • 296 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.70 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O21—H21B⋯O10i 0.85 2.30 2.950 (19) 133
O21—H21A⋯O16 0.85 2.26 3.101 (18) 171
N4—H4D⋯O5ii 0.91 1.77 2.673 (8) 170
N4—H4E⋯O5 0.91 1.77 2.673 (8) 170
N2—H2D⋯O6 0.91 1.88 2.759 (10) 162
N2—H2E⋯O6iii 0.91 2.22 2.986 (10) 141
N2—H2E⋯O7iii 0.91 2.05 2.812 (9) 140
N1—H1A⋯O8iv 0.91 1.86 2.732 (10) 161
N1—H1B⋯O3 0.91 1.79 2.674 (10) 164
Symmetry codes: (i) [x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Oxovanadates(V) and peroxovanadium compounds are of great interest in biochemistry and medicine because of their diverse biological activites (Pacigová et al., 2007). Of them, decavanadates have shown high affinity for selected kinases and phosphorylase and have been used to facilitate crystallization of proteins. Vanadium complexes can inhibit effectively activity of protein tyrosine phosphatase (Yuan, Lu, Gao et al., 2009). In our previous work, (C5H7N2)6[V10O28].2H2O was reported (Yuan, Lu, Zhu et al., 2009). Herein, we report the structure of the title compound.

The title compound consists of a [V10O28]6- polyanion, six dimethylaminium cations and one water molecule (Fig. 1). The polyanion is constructed by ten edge-sharing VO6 octahedra. Six V atoms and twelve O atoms lie on the mirror plane at x = 1/2. Different coordination O atoms existing in the anion result in differnet V—O bond distances. The V—O(terminal) double bond distances range from 1.551 (10) to 1.576 (6) Å, shorter than those in (C5H7N2)6[V10O28].2H2O (Yuan, Lu, Zhu et al., 2009). The V—O(µ3) single bond distances range from 1.638 (10) to 2.066 (10) Å. The V—O (µ2) single bond distances range from 1.897 (6) to 1.991 (6)Å. The V—O (µ6) single bond distances are more longer [2.137 (8) to 2.275 (9)Å].

A three-dimensional supramolecular hydrogen-bonding network is observed in the crystal structure and details are given in Table 1 and Fig. 2.

Related literature top

For the biological activity of oxovanadates and vanadium complexes, see: Pacigová et al. (2007); Yuan, Lu, Gao et al. (2009). For a related structure, see: Yuan, Lu, Zhu et al. (2009).

Experimental top

A mixture containing 1.5 mmol each of VO(acac)2 (acac = acetylacetone), 1,10-phenanthroline and 2-(2-hydroxylphenyl)benzimidazole in methanol (24 ml) was refluxed for 30 min. Light green precipitate was filtrated and collected. The solid was dissolved in dimethylformamide. The solvent was slowly evaporated for one month and yellow crystals of the title compound were obtained.

Refinement top

The highest residual electron density was found 0.48 and 0.72 Å from H3D and N3 and the deepest hole 1.02 Å from O15. H atoms except those of water were included in calculated positions and treated as riding atoms, with C—H = 0.97 and N—H = 0.91 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C,N). H atoms attached to water molecule were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = Ueq(O).

Structure description top

Oxovanadates(V) and peroxovanadium compounds are of great interest in biochemistry and medicine because of their diverse biological activites (Pacigová et al., 2007). Of them, decavanadates have shown high affinity for selected kinases and phosphorylase and have been used to facilitate crystallization of proteins. Vanadium complexes can inhibit effectively activity of protein tyrosine phosphatase (Yuan, Lu, Gao et al., 2009). In our previous work, (C5H7N2)6[V10O28].2H2O was reported (Yuan, Lu, Zhu et al., 2009). Herein, we report the structure of the title compound.

The title compound consists of a [V10O28]6- polyanion, six dimethylaminium cations and one water molecule (Fig. 1). The polyanion is constructed by ten edge-sharing VO6 octahedra. Six V atoms and twelve O atoms lie on the mirror plane at x = 1/2. Different coordination O atoms existing in the anion result in differnet V—O bond distances. The V—O(terminal) double bond distances range from 1.551 (10) to 1.576 (6) Å, shorter than those in (C5H7N2)6[V10O28].2H2O (Yuan, Lu, Zhu et al., 2009). The V—O(µ3) single bond distances range from 1.638 (10) to 2.066 (10) Å. The V—O (µ2) single bond distances range from 1.897 (6) to 1.991 (6)Å. The V—O (µ6) single bond distances are more longer [2.137 (8) to 2.275 (9)Å].

A three-dimensional supramolecular hydrogen-bonding network is observed in the crystal structure and details are given in Table 1 and Fig. 2.

For the biological activity of oxovanadates and vanadium complexes, see: Pacigová et al. (2007); Yuan, Lu, Gao et al. (2009). For a related structure, see: Yuan, Lu, Zhu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 3/2-x, y, 3/2-z; (ii) 1-x, y, z.]
[Figure 2] Fig. 2. The crystal packing in the title compound. Hydrogen bonds are indicated by dashed lines. [Red, O; green, V; blue, N; gray, C and green open circle, H.]
Hexakis(dimethylammonium) di-µ6-oxido-tetra-µ3-oxido- tetradeca-µ2-oxido-octaoxidodecavanadate(V) monohydrate top
Crystal data top
(C2H8N)6[V10O28]·H2OF(000) = 5008
Mr = 1251.98Dx = 2.169 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 1649 reflections
a = 13.6149 (18) Åθ = 2.3–22.0°
b = 18.629 (3) ŵ = 2.42 mm1
c = 30.235 (2) ÅT = 203 K
V = 7668.5 (16) Å3Needle, yellow
Z = 80.35 × 0.11 × 0.05 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
3464 independent reflections
Radiation source: fine-focus sealed tube2951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1516
Tmin = 0.484, Tmax = 0.888k = 2222
18064 measured reflectionsl = 3528
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.096Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0331P)2 + 151.3848P]
where P = (Fo2 + 2Fc2)/3
3464 reflections(Δ/σ)max = 0.001
296 parametersΔρmax = 1.70 e Å3
6 restraintsΔρmin = 0.83 e Å3
Crystal data top
(C2H8N)6[V10O28]·H2OV = 7668.5 (16) Å3
Mr = 1251.98Z = 8
Orthorhombic, CmcaMo Kα radiation
a = 13.6149 (18) ŵ = 2.42 mm1
b = 18.629 (3) ÅT = 203 K
c = 30.235 (2) Å0.35 × 0.11 × 0.05 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
3464 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2951 reflections with I > 2σ(I)
Tmin = 0.484, Tmax = 0.888Rint = 0.078
18064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0966 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0331P)2 + 151.3848P]
where P = (Fo2 + 2Fc2)/3
3464 reflectionsΔρmax = 1.70 e Å3
296 parametersΔρmin = 0.83 e Å3
Special details top

Refinement. The structure was phased by direct methods. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The Ueq of N3 is large. It is resulted from the severe systematic disorder of N3 atom, which is located at crystallographic mirror symmetry. ISOR instruction was employed to have ellipsoids of site N3 be restraint to more appropriate values. So, 6 restraints were used for anisotropic refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.66109 (11)0.75463 (8)0.90694 (5)0.0247 (4)
V20.66020 (10)0.61321 (8)0.86058 (5)0.0238 (4)
V30.50000.86507 (12)0.89222 (8)0.0312 (6)
V40.50000.72904 (12)0.83754 (7)0.0236 (5)
V50.50000.58253 (13)0.79179 (7)0.0263 (5)
V60.50000.78222 (13)0.97603 (8)0.0290 (6)
V70.50000.63836 (11)0.92977 (7)0.0197 (5)
V80.50000.50136 (12)0.87744 (8)0.0295 (6)
O10.7763 (4)0.7541 (4)0.9081 (2)0.0376 (17)
O20.7759 (4)0.6129 (4)0.8602 (2)0.0385 (17)
O30.6330 (5)0.8441 (3)0.8900 (2)0.0338 (17)
O40.6366 (4)0.7163 (3)0.8497 (2)0.0245 (14)
O50.6308 (4)0.5943 (3)0.8034 (2)0.0266 (14)
O60.6325 (4)0.7704 (3)0.9642 (2)0.0269 (15)
O70.6361 (4)0.6511 (3)0.91878 (19)0.0218 (13)
O80.6329 (4)0.5241 (3)0.8785 (2)0.0273 (14)
O90.50000.9456 (5)0.8775 (4)0.047 (3)
O100.50000.8170 (5)0.8307 (3)0.035 (2)
O110.50000.6906 (5)0.7888 (3)0.031 (2)
O120.50000.5657 (6)0.7412 (3)0.049 (3)
O130.50000.8687 (5)0.9508 (3)0.034 (2)
O140.50000.7460 (4)0.9052 (3)0.0171 (17)
O150.50000.6211 (4)0.8632 (3)0.0229 (19)
O160.50000.4958 (5)0.8191 (3)0.031 (2)
O170.50000.8004 (5)1.0263 (3)0.041 (3)
O180.50000.6771 (5)0.9790 (3)0.027 (2)
O190.50000.5509 (5)0.9370 (3)0.030 (2)
O200.50000.4213 (5)0.8915 (4)0.048 (3)
O210.50000.3555 (9)0.7640 (5)0.119 (6)
H21A0.50000.39110.78160.119*
H21B0.50000.37170.73770.119*
N10.7294 (6)0.9384 (4)0.8394 (3)0.037 (2)
H1A0.76350.97190.85510.044*
H1B0.69130.91340.85880.044*
C10.6667 (9)0.9744 (7)0.8076 (4)0.058 (3)
H1C0.70611.00650.78950.087*
H1D0.61701.00190.82310.087*
H1E0.63530.93900.78880.087*
C20.7972 (10)0.8902 (7)0.8190 (5)0.066 (4)
H2A0.76150.85090.80540.099*
H2B0.84190.87140.84110.099*
H2C0.83430.91560.79650.099*
N20.7745 (6)0.8610 (4)0.9977 (3)0.040 (2)
H2D0.73840.82660.98390.048*
H2E0.81450.83861.01750.048*
C30.8341 (10)0.8966 (7)0.9655 (4)0.063 (4)
H3A0.79240.92300.94520.094*
H3B0.87200.86130.94920.094*
H3C0.87840.92960.98030.094*
C40.7104 (10)0.9067 (7)1.0209 (4)0.061 (4)
H4A0.74840.94051.03830.092*
H4B0.66910.87841.04030.092*
H4C0.66970.93271.00000.092*
N30.00000.6868 (16)0.8841 (10)0.177 (12)
H3D0.05300.69040.90230.177*0.50
H3E0.05300.69040.90230.177*0.50
C50.00000.7485 (9)0.8640 (6)0.052 (4)
H5A0.06650.76690.86260.052*0.50
H5B0.04120.78210.88000.052*0.50
H5C0.02540.74220.83430.052*0.50
C60.00000.6194 (9)0.8737 (6)0.060 (5)
H6A0.05880.59670.88520.060*0.50
H6B0.05760.59630.88610.060*0.50
H6C0.00000.61470.84170.060*
N40.75000.6685 (6)0.75000.040 (3)
H4D0.78490.63960.73150.047*0.50
H4E0.71510.63960.76850.047*0.50
C70.8174 (10)0.7099 (7)0.7757 (4)0.066 (4)
H7A0.84890.74530.75690.099*
H7B0.86680.67850.78830.099*
H7C0.78220.73410.79930.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0161 (8)0.0257 (8)0.0322 (9)0.0038 (7)0.0006 (7)0.0023 (7)
V20.0152 (7)0.0285 (8)0.0277 (9)0.0032 (6)0.0005 (7)0.0034 (7)
V30.0291 (13)0.0183 (12)0.0462 (16)0.0000.0000.0019 (11)
V40.0233 (12)0.0268 (12)0.0207 (12)0.0000.0000.0065 (10)
V50.0235 (12)0.0358 (13)0.0198 (12)0.0000.0000.0055 (10)
V60.0265 (12)0.0349 (13)0.0255 (13)0.0000.0000.0098 (11)
V70.0175 (10)0.0250 (11)0.0167 (11)0.0000.0000.0037 (9)
V80.0340 (13)0.0195 (11)0.0351 (14)0.0000.0000.0020 (10)
O10.018 (3)0.044 (4)0.051 (5)0.008 (3)0.001 (3)0.006 (4)
O20.017 (3)0.057 (5)0.041 (4)0.006 (3)0.003 (3)0.002 (4)
O30.031 (4)0.027 (3)0.044 (4)0.014 (3)0.001 (3)0.004 (3)
O40.020 (3)0.026 (3)0.027 (3)0.000 (3)0.001 (3)0.003 (3)
O50.025 (3)0.025 (3)0.030 (4)0.003 (3)0.007 (3)0.006 (3)
O60.020 (3)0.033 (4)0.028 (3)0.006 (3)0.003 (3)0.009 (3)
O70.020 (3)0.024 (3)0.021 (3)0.000 (3)0.008 (3)0.004 (3)
O80.023 (3)0.023 (3)0.035 (4)0.011 (3)0.002 (3)0.000 (3)
O90.042 (6)0.035 (6)0.063 (8)0.0000.0000.001 (5)
O100.037 (6)0.032 (5)0.035 (6)0.0000.0000.009 (4)
O110.021 (5)0.035 (5)0.035 (6)0.0000.0000.010 (4)
O120.052 (7)0.071 (8)0.023 (6)0.0000.0000.014 (5)
O130.036 (5)0.030 (5)0.038 (6)0.0000.0000.012 (5)
O140.016 (4)0.012 (4)0.023 (5)0.0000.0000.004 (4)
O150.019 (4)0.028 (5)0.022 (5)0.0000.0000.006 (4)
O160.035 (5)0.034 (5)0.024 (5)0.0000.0000.003 (4)
O170.039 (6)0.050 (6)0.034 (6)0.0000.0000.018 (5)
O180.023 (5)0.041 (5)0.017 (5)0.0000.0000.004 (4)
O190.033 (5)0.025 (5)0.033 (6)0.0000.0000.008 (4)
O200.053 (7)0.029 (6)0.062 (8)0.0000.0000.004 (5)
O210.172 (18)0.101 (13)0.084 (13)0.0000.0000.009 (10)
N10.045 (5)0.030 (4)0.036 (5)0.017 (4)0.001 (4)0.004 (4)
C10.066 (8)0.060 (8)0.048 (7)0.017 (7)0.014 (7)0.009 (6)
C20.069 (9)0.055 (8)0.074 (10)0.017 (7)0.000 (7)0.015 (7)
N20.047 (5)0.035 (5)0.039 (5)0.013 (4)0.029 (5)0.011 (4)
C30.080 (10)0.059 (8)0.049 (8)0.018 (7)0.014 (7)0.017 (6)
C40.064 (9)0.052 (7)0.068 (9)0.013 (7)0.022 (7)0.008 (7)
N30.207 (15)0.163 (14)0.160 (15)0.0000.0000.003 (10)
C50.036 (9)0.045 (10)0.075 (13)0.0000.0000.003 (10)
C60.057 (11)0.045 (10)0.078 (14)0.0000.0000.042 (10)
N40.044 (7)0.035 (7)0.040 (7)0.0000.019 (6)0.000
C70.068 (9)0.065 (8)0.064 (9)0.013 (7)0.032 (7)0.031 (7)
Geometric parameters (Å, º) top
V1—O11.569 (6)V8—O152.272 (9)
V1—O31.784 (7)O21—H21A0.8500
V1—O61.799 (6)O21—H21B0.8500
V1—O41.902 (6)N1—C21.428 (13)
V1—O71.991 (6)N1—C11.452 (14)
V1—O142.200 (2)N1—H1A0.9100
V2—O21.576 (6)N1—H1B0.9100
V2—O81.785 (6)C1—H1C0.9700
V2—O51.810 (6)C1—H1D0.9700
V2—O71.924 (6)C1—H1E0.9700
V2—O41.975 (6)C2—H2A0.9700
V2—O152.188 (2)C2—H2B0.9700
V3—O91.565 (10)C2—H2C0.9700
V3—O131.771 (10)N2—C41.406 (14)
V3—O31.854 (7)N2—C31.431 (14)
V3—O102.066 (10)N2—H2D0.9100
V3—O142.254 (8)N2—H2E0.9100
V4—O111.638 (10)C3—H3A0.9700
V4—O101.651 (9)C3—H3B0.9700
V4—O41.910 (6)C3—H3C0.9700
V4—O142.071 (8)C4—H4A0.9700
V4—O152.155 (8)C4—H4B0.9700
V5—O121.561 (10)C4—H4C0.9700
V5—O161.814 (9)N3—C61.29 (3)
V5—O51.829 (6)N3—C51.30 (3)
V5—O112.015 (9)N3—H3D0.9100
V5—O152.275 (9)N3—H3E0.9100
V6—O171.556 (10)C5—H5A0.9700
V6—O131.782 (10)C5—H5B0.9700
V6—O61.852 (6)C5—H5C0.9700
V6—O181.961 (9)C6—H6A0.9700
V6—O142.244 (8)C6—H6B0.9700
V7—O191.643 (9)C6—H6C0.9700
V7—O181.655 (8)N4—C7i1.428 (13)
V7—O71.897 (6)N4—C71.428 (13)
V7—O152.039 (9)N4—H4D0.9100
V7—O142.137 (8)N4—H4E0.9100
V8—O201.551 (10)C7—H7A0.9700
V8—O161.766 (9)C7—H7B0.9700
V8—O81.858 (6)C7—H7C0.9700
V8—O192.025 (10)
O1—V1—O3103.1 (3)O20—V8—O16102.6 (5)
O1—V1—O6101.3 (3)O20—V8—O8102.41 (19)
O3—V1—O694.4 (3)O16—V8—O891.8 (2)
O1—V1—O4101.1 (3)O20—V8—O8ii102.41 (19)
O3—V1—O493.0 (3)O16—V8—O8ii91.8 (2)
O6—V1—O4154.0 (3)O8—V8—O8ii153.5 (4)
O1—V1—O799.3 (3)O20—V8—O19101.2 (5)
O3—V1—O7156.8 (3)O16—V8—O19156.2 (4)
O6—V1—O787.0 (3)O8—V8—O1983.1 (2)
O4—V1—O776.7 (2)O8ii—V8—O1983.1 (2)
O1—V1—O14175.5 (3)O20—V8—O15175.0 (5)
O3—V1—O1481.3 (3)O16—V8—O1582.4 (4)
O6—V1—O1479.5 (3)O8—V8—O1577.24 (19)
O4—V1—O1477.1 (3)O8ii—V8—O1577.24 (19)
O7—V1—O1476.3 (3)O19—V8—O1573.8 (3)
O2—V2—O8102.0 (3)O20—V8—V2ii134.48 (5)
O2—V2—O5102.3 (3)O16—V8—V2ii82.7 (2)
O8—V2—O593.6 (3)O8—V8—V2ii122.8 (2)
O2—V2—O7100.3 (3)O8ii—V8—V2ii32.15 (18)
O8—V2—O791.6 (3)O19—V8—V2ii80.65 (18)
O5—V2—O7155.2 (3)O15—V8—V2ii45.55 (4)
O2—V2—O499.5 (3)V1—O3—V3113.4 (3)
O8—V2—O4157.0 (3)V1—O4—V4107.4 (3)
O5—V2—O489.7 (3)V1—O4—V2100.6 (3)
O7—V2—O476.6 (2)V4—O4—V2108.1 (3)
O2—V2—O15176.0 (4)V2—O5—V5114.9 (3)
O8—V2—O1581.0 (3)V1—O6—V6114.6 (3)
O5—V2—O1580.1 (3)V7—O7—V2106.3 (3)
O7—V2—O1576.8 (3)V7—O7—V1108.7 (3)
O4—V2—O1577.2 (3)V2—O7—V199.3 (3)
O9—V3—O13104.4 (5)V2—O8—V8114.2 (3)
O9—V3—O3ii101.1 (2)V4—O10—V3108.5 (5)
O13—V3—O3ii92.5 (2)V4—O11—V5113.3 (5)
O9—V3—O3101.1 (2)V3—O13—V6113.2 (5)
O13—V3—O392.5 (2)V4—O14—V7101.6 (3)
O3ii—V3—O3155.3 (4)V4—O14—V192.0 (2)
O9—V3—O1099.1 (5)V7—O14—V193.49 (19)
O13—V3—O10156.5 (4)V4—O14—V1ii92.0 (2)
O3ii—V3—O1082.9 (2)V7—O14—V1ii93.49 (19)
O3—V3—O1082.9 (2)V1—O14—V1ii171.2 (4)
O9—V3—O14173.5 (5)V4—O14—V6171.2 (4)
O13—V3—O1482.1 (4)V7—O14—V687.2 (3)
O3ii—V3—O1478.4 (2)V1—O14—V687.5 (2)
O3—V3—O1478.4 (2)V1ii—O14—V687.5 (2)
O10—V3—O1474.4 (3)V4—O14—V388.7 (3)
O9—V3—V1ii133.66 (5)V7—O14—V3169.8 (4)
O13—V3—V1ii83.1 (2)V1—O14—V386.08 (19)
O3ii—V3—V1ii32.60 (19)V1ii—O14—V386.08 (19)
O3—V3—V1ii124.5 (2)V6—O14—V382.5 (3)
O10—V3—V1ii80.70 (18)V7—O15—V4102.0 (4)
O14—V3—V1ii46.22 (4)V7—O15—V2ii92.6 (2)
O11—V4—O10108.7 (5)V4—O15—V2ii92.9 (2)
O11—V4—O496.8 (2)V7—O15—V292.6 (2)
O10—V4—O498.5 (2)V4—O15—V292.9 (2)
O11—V4—O4ii96.8 (2)V2ii—O15—V2171.3 (5)
O10—V4—O4ii98.5 (2)V7—O15—V888.1 (3)
O4—V4—O4ii153.5 (4)V4—O15—V8169.8 (4)
O11—V4—O14162.8 (4)V2ii—O15—V886.6 (2)
O10—V4—O1488.5 (4)V2—O15—V886.6 (2)
O4—V4—O1480.13 (19)V7—O15—V5170.7 (4)
O4ii—V4—O1480.13 (19)V4—O15—V587.3 (3)
O11—V4—O1585.2 (4)V2ii—O15—V586.8 (2)
O10—V4—O15166.1 (4)V2—O15—V586.8 (2)
O4—V4—O1579.34 (19)V8—O15—V582.5 (3)
O4ii—V4—O1579.34 (19)V8—O16—V5113.7 (5)
O14—V4—O1577.7 (3)V7—O18—V6113.2 (5)
O11—V4—V1ii133.00 (8)V7—O19—V8109.4 (5)
O10—V4—V1ii86.1 (2)H21A—O21—H21B108.0
O4—V4—V1ii125.6 (2)C2—N1—C1112.5 (9)
O4ii—V4—V1ii36.19 (19)C2—N1—H1A109.1
O14—V4—V1ii45.69 (4)C1—N1—H1A109.1
O15—V4—V1ii84.21 (17)C2—N1—H1B109.1
O12—V5—O16105.5 (5)C1—N1—H1B109.1
O12—V5—O5ii102.2 (2)H1A—N1—H1B107.8
O16—V5—O5ii91.1 (2)N1—C1—H1C109.5
O12—V5—O5102.2 (2)N1—C1—H1D109.5
O16—V5—O591.1 (2)H1C—C1—H1D109.5
O5ii—V5—O5153.9 (4)N1—C1—H1E109.5
O12—V5—O1199.0 (5)H1C—C1—H1E109.5
O16—V5—O11155.5 (4)H1D—C1—H1E109.5
O5ii—V5—O1183.6 (2)N1—C2—H2A109.5
O5—V5—O1183.6 (2)N1—C2—H2B109.5
O12—V5—O15173.2 (5)H2A—C2—H2B109.5
O16—V5—O1581.3 (3)N1—C2—H2C109.5
O5ii—V5—O1577.3 (2)H2A—C2—H2C109.5
O5—V5—O1577.3 (2)H2B—C2—H2C109.5
O11—V5—O1574.2 (3)C4—N2—C3114.2 (10)
O12—V5—V2ii134.56 (5)C4—N2—H2D108.7
O16—V5—V2ii81.8 (2)C3—N2—H2D108.7
O5ii—V5—V2ii32.34 (19)C4—N2—H2E108.7
O5—V5—V2ii122.7 (2)C3—N2—H2E108.7
O11—V5—V2ii81.0 (2)H2D—N2—H2E107.6
O15—V5—V2ii45.40 (4)N2—C3—H3A109.5
O17—V6—O13102.8 (5)N2—C3—H3B109.5
O17—V6—O6ii102.4 (2)H3A—C3—H3B109.5
O13—V6—O6ii91.4 (2)N2—C3—H3C109.5
O17—V6—O6102.4 (2)H3A—C3—H3C109.5
O13—V6—O691.4 (2)H3B—C3—H3C109.5
O6ii—V6—O6153.8 (4)N2—C4—H4A109.5
O17—V6—O1899.9 (5)N2—C4—H4B109.5
O13—V6—O18157.3 (4)H4A—C4—H4B109.5
O6ii—V6—O1883.7 (2)N2—C4—H4C109.5
O6—V6—O1883.7 (2)H4A—C4—H4C109.5
O17—V6—O14175.1 (5)H4B—C4—H4C109.5
O13—V6—O1482.1 (4)C6—N3—C5138 (3)
O6ii—V6—O1477.30 (19)C6—N3—H3D102.6
O6—V6—O1477.30 (19)C5—N3—H3D102.5
O18—V6—O1475.1 (3)C6—N3—H3E102.6
O17—V6—V1ii134.43 (4)C5—N3—H3E102.5
O13—V6—V1ii81.9 (2)H3D—N3—H3E105.0
O6ii—V6—V1ii32.18 (19)N3—C5—H5A109.5
O6—V6—V1ii123.0 (2)N3—C5—H5B109.8
O18—V6—V1ii82.20 (18)H5A—C5—H5B109.5
O14—V6—V1ii45.67 (4)N3—C5—H5C109.1
O19—V7—O18108.1 (5)H5A—C5—H5C109.5
O19—V7—O7ii98.49 (19)H5B—C5—H5C109.5
O18—V7—O7ii95.91 (19)N3—C6—H6A109.6
O19—V7—O798.49 (19)N3—C6—H6B109.6
O18—V7—O795.91 (19)H6A—C6—H6B109.5
O7ii—V7—O7155.1 (4)N3—C6—H6C109.3
O19—V7—O1588.6 (4)H6A—C6—H6C108.6
O18—V7—O15163.2 (4)H6B—C6—H6C110.3
O7ii—V7—O1581.19 (18)C7i—N4—C7114.6 (14)
O7—V7—O1581.19 (18)C7i—N4—H4D108.6
O19—V7—O14167.4 (4)C7—N4—H4D108.6
O18—V7—O1484.5 (4)C7i—N4—H4E108.6
O7ii—V7—O1479.73 (18)C7—N4—H4E108.6
O7—V7—O1479.73 (18)H4D—N4—H4E107.6
O15—V7—O1478.8 (3)N4—C7—H7A109.5
O19—V7—V2ii86.5 (2)N4—C7—H7B109.5
O18—V7—V2ii133.03 (8)H7A—C7—H7B109.5
O7ii—V7—V2ii37.15 (17)N4—C7—H7C109.5
O7—V7—V2ii126.58 (19)H7A—C7—H7C109.5
O15—V7—V2ii45.60 (4)H7B—C7—H7C109.5
O14—V7—V2ii84.63 (16)
O1—V1—O3—V3172.9 (4)O3—V3—O13—V677.9 (2)
O6—V1—O3—V370.1 (4)O11—V4—O14—V194.0 (2)
O4—V1—O3—V385.0 (4)O10—V4—O14—V186.0 (2)
O7—V1—O3—V322.6 (9)O4—V4—O14—V112.8 (2)
O14—V1—O3—V38.6 (4)O15—V4—O14—V194.0 (2)
O9—V3—O3—V1178.2 (5)O11—V4—O14—V1ii94.0 (2)
O13—V3—O3—V173.0 (4)O10—V4—O14—V1ii86.0 (2)
O3ii—V3—O3—V128.6 (13)O4—V4—O14—V1ii175.1 (3)
O10—V3—O3—V183.9 (4)O15—V4—O14—V1ii94.0 (2)
O14—V3—O3—V18.4 (4)O19—V7—O14—V192.7 (2)
V1ii—V3—O3—V110.4 (5)O18—V7—O14—V187.3 (2)
O1—V1—O4—V4169.4 (3)O7ii—V7—O14—V1175.7 (3)
O3—V1—O4—V465.5 (3)O7—V7—O14—V19.8 (3)
O6—V1—O4—V441.0 (7)O15—V7—O14—V192.7 (2)
O7—V1—O4—V493.5 (3)O19—V7—O14—V1ii92.7 (2)
O14—V1—O4—V414.8 (3)O18—V7—O14—V1ii87.3 (2)
O1—V1—O4—V277.6 (3)O7ii—V7—O14—V1ii9.8 (3)
O3—V1—O4—V2178.5 (3)O7—V7—O14—V1ii175.7 (3)
O6—V1—O4—V272.1 (7)O15—V7—O14—V1ii92.7 (2)
O7—V1—O4—V219.5 (2)O3—V1—O14—V482.1 (3)
O14—V1—O4—V298.2 (3)O6—V1—O14—V4178.3 (3)
O11—V4—O4—V1178.5 (4)O4—V1—O14—V413.0 (3)
O10—V4—O4—V171.3 (4)O7—V1—O14—V492.3 (3)
O4ii—V4—O4—V157.9 (9)O3—V1—O14—V7176.2 (3)
O14—V4—O4—V115.6 (3)O6—V1—O14—V780.0 (3)
O15—V4—O4—V194.8 (3)O4—V1—O14—V788.7 (3)
V1ii—V4—O4—V119.9 (4)O7—V1—O14—V79.4 (3)
O11—V4—O4—V270.7 (4)O6—V1—O14—V67.0 (3)
O10—V4—O4—V2179.2 (4)O4—V1—O14—V6175.7 (3)
O4ii—V4—O4—V249.9 (10)O7—V1—O14—V696.5 (3)
O14—V4—O4—V292.2 (3)O3—V1—O14—V36.5 (3)
O15—V4—O4—V213.1 (3)O6—V1—O14—V389.7 (3)
V1ii—V4—O4—V287.9 (3)O4—V1—O14—V3101.6 (3)
O2—V2—O4—V178.2 (3)O7—V1—O14—V3179.2 (3)
O8—V2—O4—V180.9 (7)O6—V6—O14—V786.7 (2)
O5—V2—O4—V1179.4 (3)O6—V6—O14—V16.9 (2)
O7—V2—O4—V120.2 (2)O6ii—V6—O14—V1ii6.9 (2)
O15—V2—O4—V199.5 (3)O6—V6—O14—V1ii179.6 (3)
O2—V2—O4—V4169.3 (3)O3—V3—O14—V485.8 (2)
O8—V2—O4—V431.6 (9)O3—V3—O14—V794.2 (2)
O5—V2—O4—V466.9 (3)O13—V3—O14—V187.9 (2)
O7—V2—O4—V492.3 (3)O3ii—V3—O14—V1177.8 (3)
O15—V2—O4—V413.0 (3)O3—V3—O14—V16.3 (3)
O2—V2—O5—V5174.9 (4)O10—V3—O14—V192.1 (2)
O8—V2—O5—V571.8 (4)O13—V3—O14—V1ii87.9 (2)
O7—V2—O5—V530.0 (8)O3ii—V3—O14—V1ii6.3 (3)
O4—V2—O5—V585.5 (3)O3—V3—O14—V1ii177.8 (3)
O15—V2—O5—V58.4 (4)O10—V3—O14—V1ii92.1 (2)
O12—V5—O5—V2178.8 (5)O3—V3—O14—V694.2 (2)
O16—V5—O5—V272.7 (4)O7—V7—O15—V2ii174.7 (3)
O5ii—V5—O5—V222.2 (11)O14—V7—O15—V2ii93.5 (2)
O11—V5—O5—V283.3 (4)O19—V7—O15—V286.5 (2)
O15—V5—O5—V28.2 (3)O18—V7—O15—V293.5 (2)
V2ii—V5—O5—V28.3 (4)O7ii—V7—O15—V2174.7 (3)
O1—V1—O6—V6175.2 (4)O7—V7—O15—V212.3 (3)
O3—V1—O6—V670.9 (4)O14—V7—O15—V293.5 (2)
O4—V1—O6—V635.3 (8)O4—V4—O15—V782.1 (2)
O7—V1—O6—V685.9 (3)O14—V4—O15—V70.0
O14—V1—O6—V69.4 (3)O11—V4—O15—V2ii86.7 (2)
O17—V6—O6—V1175.8 (5)O10—V4—O15—V2ii93.3 (2)
O13—V6—O6—V172.4 (4)O4—V4—O15—V2ii175.4 (3)
O6ii—V6—O6—V123.8 (12)O4ii—V4—O15—V2ii11.2 (3)
O18—V6—O6—V185.4 (4)O14—V4—O15—V2ii93.3 (2)
O14—V6—O6—V19.3 (3)V1ii—V4—O15—V2ii47.5 (2)
O19—V7—O7—V272.7 (4)O11—V4—O15—V286.7 (2)
O18—V7—O7—V2177.9 (4)O10—V4—O15—V293.3 (2)
O7ii—V7—O7—V259.9 (9)O4—V4—O15—V211.2 (3)
O15—V7—O7—V214.6 (3)O4ii—V4—O15—V2175.4 (3)
O14—V7—O7—V294.7 (3)O14—V4—O15—V293.3 (2)
O19—V7—O7—V1178.7 (4)O4—V4—O15—V897.9 (2)
O18—V7—O7—V171.9 (4)O4—V4—O15—V597.9 (2)
O7ii—V7—O7—V146.1 (10)O8—V2—O15—V781.5 (3)
O15—V7—O7—V191.5 (3)O5—V2—O15—V7176.8 (3)
O14—V7—O7—V111.4 (3)O7—V2—O15—V712.3 (3)
O2—V2—O7—V7169.1 (3)O4—V2—O15—V791.3 (3)
O8—V2—O7—V766.6 (3)O8—V2—O15—V4176.3 (3)
O5—V2—O7—V735.6 (7)O5—V2—O15—V481.0 (3)
O4—V2—O7—V793.5 (3)O7—V2—O15—V489.9 (3)
O15—V2—O7—V713.8 (3)O4—V2—O15—V410.9 (3)
O2—V2—O7—V178.2 (3)O8—V2—O15—V86.5 (3)
O8—V2—O7—V1179.3 (3)O5—V2—O15—V888.8 (3)
O5—V2—O7—V177.1 (7)O7—V2—O15—V8100.3 (3)
O4—V2—O7—V119.2 (2)O4—V2—O15—V8179.2 (3)
O15—V2—O7—V198.9 (3)O8—V2—O15—V589.2 (3)
O1—V1—O7—V7169.8 (3)O5—V2—O15—V56.2 (3)
O3—V1—O7—V725.5 (9)O7—V2—O15—V5177.0 (3)
O6—V1—O7—V768.7 (3)O4—V2—O15—V598.1 (3)
O4—V1—O7—V790.9 (3)O8—V8—O15—V786.5 (2)
O14—V1—O7—V711.2 (3)O8ii—V8—O15—V786.5 (2)
O1—V1—O7—V279.4 (3)O8—V8—O15—V493.5 (2)
O3—V1—O7—V285.3 (7)O8ii—V8—O15—V493.5 (2)
O6—V1—O7—V2179.6 (3)O16—V8—O15—V2ii87.2 (2)
O4—V1—O7—V219.9 (2)O8—V8—O15—V2ii179.2 (3)
O14—V1—O7—V299.6 (3)O8ii—V8—O15—V2ii6.3 (3)
O2—V2—O8—V8174.0 (4)O19—V8—O15—V2ii92.8 (2)
O5—V2—O8—V870.6 (4)O16—V8—O15—V287.2 (2)
O7—V2—O8—V885.1 (4)O8—V8—O15—V26.3 (3)
O4—V2—O8—V827.1 (9)O8ii—V8—O15—V2179.2 (3)
O15—V2—O8—V88.7 (4)O19—V8—O15—V292.8 (2)
O20—V8—O8—V2176.6 (5)O8—V8—O15—V593.5 (2)
O16—V8—O8—V273.4 (4)O5—V5—O15—V486.9 (2)
O8ii—V8—O8—V224.1 (12)O16—V5—O15—V2ii87.0 (2)
O19—V8—O8—V283.3 (4)O5—V5—O15—V2ii179.9 (3)
O15—V8—O8—V28.5 (3)O16—V5—O15—V287.0 (2)
O4—V4—O10—V379.8 (2)O5—V5—O15—V26.1 (3)
O3ii—V3—O10—V479.9 (2)O11—V5—O15—V293.0 (2)
O3—V3—O10—V479.9 (2)O5—V5—O15—V893.1 (2)
O5—V5—O11—V478.6 (2)O6—V6—O18—V778.5 (2)
O15—V5—O11—V40.0V1ii—V6—O18—V746.10 (4)
Symmetry codes: (i) x+3/2, y, z+3/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21B···O10iii0.852.302.950 (19)133
O21—H21A···O160.852.263.101 (18)171
N4—H4D···O5i0.911.772.673 (8)170
N4—H4E···O50.911.772.673 (8)170
N2—H2D···O60.911.882.759 (10)162
N2—H2E···O6iv0.912.222.986 (10)141
N2—H2E···O7iv0.912.052.812 (9)140
N1—H1A···O8v0.911.862.732 (10)161
N1—H1B···O30.911.792.674 (10)164
Symmetry codes: (i) x+3/2, y, z+3/2; (iii) x, y1/2, z+3/2; (iv) x+3/2, y+3/2, z+2; (v) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula(C2H8N)6[V10O28]·H2O
Mr1251.98
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)203
a, b, c (Å)13.6149 (18), 18.629 (3), 30.235 (2)
V3)7668.5 (16)
Z8
Radiation typeMo Kα
µ (mm1)2.42
Crystal size (mm)0.35 × 0.11 × 0.05
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.484, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
18064, 3464, 2951
Rint0.078
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.096, 0.177, 1.26
No. of reflections3464
No. of parameters296
No. of restraints6
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0331P)2 + 151.3848P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.70, 0.83

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21B···O10i0.852.302.950 (19)133
O21—H21A···O160.852.263.101 (18)171
N4—H4D···O5ii0.911.772.673 (8)170
N4—H4E···O50.911.772.673 (8)170
N2—H2D···O60.911.882.759 (10)162
N2—H2E···O6iii0.912.222.986 (10)141
N2—H2E···O7iii0.912.052.812 (9)140
N1—H1A···O8iv0.911.862.732 (10)161
N1—H1B···O30.911.792.674 (10)164
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+3/2, y, z+3/2; (iii) x+3/2, y+3/2, z+2; (iv) x+3/2, y+1/2, z.
 

Acknowledgements

MZ acknowledges the National Natural Science Foundation of China (No. 20471033) and the Natural Science Foundation of Shanxi Province (No. 2010011011-2), LL thanks the Overseas Returned Scholar Foundation of Shanxi Province in 2008 and SF thanks the Natural Science Foundation for Young Scientists of Shanxi Province (No. 2010021010-1) and the Doctoral Startup Foundation of Shanxi University for financial support.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPacigová, S., Rakovský, E., Sivák, M. & Žák, Z. (2007). Acta Cryst. C63, m419–m422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, C.-X., Lu, L.-P., Gao, X.-L., Wu, Y.-B., Guo, M.-L., Li, Y., Fu, X.-Q. & Zhu, M.-L. (2009). J. Biol. Inorg. Chem. 14, 841–851.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYuan, C., Lu, L., Zhu, M., Ma, Q. & Wu, Y. (2009). Acta Cryst. E65, m267–m268.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds