metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(9-amino­acridinium) bis­­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)nickelate(II) trihydrate

aDepartment of Chemistry, Faculty of Sciences, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran, and bDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5292, USA
*Correspondence e-mail: zderik@yahoo.com

(Received 28 April 2010; accepted 7 May 2010; online 15 May 2010)

The title compound, (C13H11N2)2[Ni(C7H3NO4)2]·3H2O, consists of a mononuclear anionic complex, two 9-amino­acridinium cations and three uncoordinated water mol­ecules. Two pyridine-2,6-dicarboxyl­ate (pydc) ligands are bound to the NiII ion, giving an NiN2O4 bonded set. The coordination geometry around the NiII atom is distorted octa­hedral. There are two types of robust O—H⋯O hydrogen-bond synthons, namely R66(24) and R24(8), which link the complex anions and water mol­ecules to each other. N—H⋯O hydrogen bonds connect the stacks of anions and cations in the structure. Other inter­molecular inter­actions, including weak C—H⋯O hydrogen bonds, ππ [shortest centroid–centroid distance = 3.336 (7) Å] and C—O⋯π [O⋯centroid distance = 3.562 (10) Å] inter­actions, connect the various components.

Related literature

For related structures containing [Ni(pydc)2]2− species, see: Aghabozorg et al. (2008[Aghabozorg, H., Heidari, M., Bagheri, S., Attar Gharamaleki, J. & Ghadermazi, M. (2008). Acta Cryst. E64, m874-m875.], 2009[Aghabozorg, H., Sadr-Khanlou, E., Shokrollahi, A., Ghaedi, M. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 55-70. ]); Attar Gharamaleki et al. (2009[Attar Gharamaleki, J., Aghabozorg, H., Derikvand, Z. & Yousefi, M. (2009). Acta Cryst. E65, m824-m825.]); Cui et al. (2009[Cui, S., Zhao, Y., Zhang, J., Liu, Q. & Zhang, Y. (2009). Synth. Met. 159, 2191-2193.]); Hadadzadeh et al. (2010[Hadadzadeh, H., Rezvani, A. R., Karimi Abdolmaleki, M., Ghasemi, Kh., Esfandiari, H. & Daryanavard, M. (2010). J. Chem. Crystallogr. 40, 48-57.]); Safaei-Ghomi et al. (2009[Safaei-Ghomi, J., Aghabozorg, H., Motyeian, E. & Ghadermazi, M. (2009). Acta Cryst. E65, m2-m3.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H11N2)2[Ni(C7H3NO4)2]·3H2O

  • Mr = 833.44

  • Triclinic, [P \overline 1]

  • a = 10.7939 (10) Å

  • b = 13.3335 (12) Å

  • c = 13.9370 (13) Å

  • α = 102.288 (2)°

  • β = 103.609 (2)°

  • γ = 105.482 (2)°

  • V = 1795.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 90 K

  • 0.36 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.809, Tmax = 0.887

  • 29993 measured reflections

  • 11816 independent reflections

  • 10951 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.076

  • S = 1.04

  • 11816 reflections

  • 659 parameters

  • All H-atom parameters refined

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2Wi 0.873 (18) 2.053 (18) 2.8793 (12) 157.6 (16)
N3—H3B⋯O7ii 0.878 (17) 2.109 (17) 2.9337 (11) 156.1 (15)
N4—H4A⋯O6 0.884 (17) 1.838 (17) 2.7214 (11) 178.1 (16)
N5—H5A⋯O3iii 0.894 (17) 1.925 (17) 2.7945 (11) 163.9 (16)
N5—H5B⋯O5 0.889 (17) 2.046 (17) 2.9096 (11) 163.6 (15)
N6—H6A⋯O3W 0.836 (18) 1.863 (18) 2.6903 (11) 170.3 (18)
O1W—H1A⋯O7 0.83 (2) 1.99 (2) 2.8138 (11) 171 (2)
O1W—H1B⋯O7iv 0.861 (19) 1.955 (19) 2.8161 (11) 178.7 (17)
O2W—H2A⋯O8v 0.813 (19) 2.067 (19) 2.8717 (11) 170.1 (17)
O2W—H2B⋯O2 0.79 (2) 2.02 (2) 2.8033 (11) 177 (2)
O3W—H3C⋯O3vi 0.79 (2) 1.97 (2) 2.7595 (11) 169.8 (19)
O3W—H3D⋯O1Wvii 0.856 (19) 1.879 (19) 2.7328 (11) 175.4 (17)
C30—H30⋯O3iii 0.931 (16) 2.437 (16) 3.3386 (12) 163 (14)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z+1; (iii) -x+1, -y, -z; (iv) -x, -y+1, -z; (v) -x, -y, -z; (vi) x, y, z+1; (vii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

9-Aminoacridine is a highly fluorescent dye clinically used as a topical antiseptic and experimentally as a mutagen, an intracellular pH indicator and as a MALDI matrix. Acridine and related derivatives bind to DNA and RNA due to their abilities to intercalate. Many complexes containing pyridine-2,6-dicarboxylate (pydc), NiII ions and various bases have been reported (Aghabozorg et al., 2008, 2009; Attar Gharamaleki et al., 2009; Cui et al., 2009; Hadadzadeh et al., 2010; Safaei-Ghomi et al., 2009).

The asymmetric unit of the title compound consists of one [Ni(pydc)2]2- anion, two 9-aminoacridinuum cations and three uncoordinated water molecules (Fig. 1). In the synthesis, two carboxylic acid protons are transferred to the endocyclic N atoms of 9-aminoacridines. Two pydc ligands are bound to the metal ion to give a NiN2O4 bonded set, using all the coordination sites of the pydc ligand. The resulting coordination polyhedron can be described as distorted octahedral. In the anionic complex, the Ni—N bond distances [1.9648 (8) and 1.9760 (8) Å] are shorter than the Ni—O bond distances [2.1003 (7), 2.1120 (7), 2.1360 (7) and 2.1776 (7) Å]. It is worth pointing out that there are two types of robust hydrogen bond synthons, namely R66(24) and R24(8), which link the complex anions and water molecules to each other, as shown in Fig. 2. The dihedral angle between two coordinated pydc ligands is 85.14 (3)°, which shows that two ligands are almost perpendicular to each other. A feature of the title compound is the presence of ππ and C—O···π interactions. The shortest ππ distance is 3.336 (7) Å and C—O···π distances is 3.562 (10) Å (Fig. 3). Another feature in this crystal structure is intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds with D···A distances ranging from 2.6903 (11) to 3.3386 (12)Å (Table 1).

The packing consists of distinctive stacks of cations and anions that propagate along the a direction. These stacks are connected to each other by N—H···O hydrogen bonds, as shown in Fig. 4. This crystal structure is comparable to (H3O)+(creatH)+[Ni(pydc)2].3H2O (creat = creatinine) (Attar Gharamaleki et al., 2009).

Related literature top

For related structures containing [Ni(pydc)2]2- species, see: Aghabozorg et al. (2008, 2009); Attar Gharamaleki et al. (2009); Cui et al. (2009); Hadadzadeh et al. (2010); Safaei-Ghomi et al. (2009).

Experimental top

An aqueous solution of Ni(NO3)2.6H2O (145 mg, 0.5 mmol) in distilled water (5 ml) was added to methanolic solution of pyridine-2,6-dicarboxylic acid (167 mg, 1 mmol) in water (20 ml) and 9-aminoacridine (194 mg, 1 mmol) in methanol (5 ml) under stirring at 80°C in a 1:2:2 molar ratio. The green colored precipitated product was obtained. The precipitation was dissolved in solution of H2O/DMSO in a volume ratio of 1:2 (5/10 ml). Green block crystals, suitable for X-ray characterization, were obtained after 4 d at room temperature.

Refinement top

All H atoms were located in difference Fourier maps and refined isotropically.

Structure description top

9-Aminoacridine is a highly fluorescent dye clinically used as a topical antiseptic and experimentally as a mutagen, an intracellular pH indicator and as a MALDI matrix. Acridine and related derivatives bind to DNA and RNA due to their abilities to intercalate. Many complexes containing pyridine-2,6-dicarboxylate (pydc), NiII ions and various bases have been reported (Aghabozorg et al., 2008, 2009; Attar Gharamaleki et al., 2009; Cui et al., 2009; Hadadzadeh et al., 2010; Safaei-Ghomi et al., 2009).

The asymmetric unit of the title compound consists of one [Ni(pydc)2]2- anion, two 9-aminoacridinuum cations and three uncoordinated water molecules (Fig. 1). In the synthesis, two carboxylic acid protons are transferred to the endocyclic N atoms of 9-aminoacridines. Two pydc ligands are bound to the metal ion to give a NiN2O4 bonded set, using all the coordination sites of the pydc ligand. The resulting coordination polyhedron can be described as distorted octahedral. In the anionic complex, the Ni—N bond distances [1.9648 (8) and 1.9760 (8) Å] are shorter than the Ni—O bond distances [2.1003 (7), 2.1120 (7), 2.1360 (7) and 2.1776 (7) Å]. It is worth pointing out that there are two types of robust hydrogen bond synthons, namely R66(24) and R24(8), which link the complex anions and water molecules to each other, as shown in Fig. 2. The dihedral angle between two coordinated pydc ligands is 85.14 (3)°, which shows that two ligands are almost perpendicular to each other. A feature of the title compound is the presence of ππ and C—O···π interactions. The shortest ππ distance is 3.336 (7) Å and C—O···π distances is 3.562 (10) Å (Fig. 3). Another feature in this crystal structure is intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds with D···A distances ranging from 2.6903 (11) to 3.3386 (12)Å (Table 1).

The packing consists of distinctive stacks of cations and anions that propagate along the a direction. These stacks are connected to each other by N—H···O hydrogen bonds, as shown in Fig. 4. This crystal structure is comparable to (H3O)+(creatH)+[Ni(pydc)2].3H2O (creat = creatinine) (Attar Gharamaleki et al., 2009).

For related structures containing [Ni(pydc)2]2- species, see: Aghabozorg et al. (2008, 2009); Attar Gharamaleki et al. (2009); Cui et al. (2009); Hadadzadeh et al. (2010); Safaei-Ghomi et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the two types of robust hydrogen bond synthons, R66(24) and R24(8), which link the complex anions and water molecules to each other.
[Figure 3] Fig. 3. A view of the extensive ππ stacking interactions (dashed lines) between aromatic rings of 9-aminoacridinium ions and the C—O···π interaction (dashed line) between C7—O3 and the centroid of the pyridyl ring of a neighboring pydc ligand. [Distances: (i) 3.336; (ii) 3.834; (iii) 3.429; (iv) 3.621; (v) 3.562 Å.]
[Figure 4] Fig. 4. A view showing how the cations and anions are connected by N—H···O hydrogen bonds (dashed lines).
Bis(9-aminoacridinium) bis(pyridine-2,6-dicarboxylato- κ3O2,N,O6)nickelate(II) trihydrate top
Crystal data top
(C13H11N2)2[Ni(C7H3NO4)2]·3H2OZ = 2
Mr = 833.44F(000) = 864
Triclinic, P1Dx = 1.542 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7939 (10) ÅCell parameters from 9659 reflections
b = 13.3335 (12) Åθ = 2.9–31.5°
c = 13.9370 (13) ŵ = 0.62 mm1
α = 102.288 (2)°T = 90 K
β = 103.609 (2)°Block, green
γ = 105.482 (2)°0.36 × 0.24 × 0.20 mm
V = 1795.6 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
11816 independent reflections
Radiation source: fine-focus sealed tube10951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 0.83 pixels mm-1θmax = 31.5°, θmin = 2.8°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1919
Tmin = 0.809, Tmax = 0.887l = 2020
29993 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.076All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.6602P]
where P = (Fo2 + 2Fc2)/3
11816 reflections(Δ/σ)max = 0.008
659 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
(C13H11N2)2[Ni(C7H3NO4)2]·3H2Oγ = 105.482 (2)°
Mr = 833.44V = 1795.6 (3) Å3
Triclinic, P1Z = 2
a = 10.7939 (10) ÅMo Kα radiation
b = 13.3335 (12) ŵ = 0.62 mm1
c = 13.9370 (13) ÅT = 90 K
α = 102.288 (2)°0.36 × 0.24 × 0.20 mm
β = 103.609 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
11816 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
10951 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.887Rint = 0.015
29993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.076All H-atom parameters refined
S = 1.04Δρmax = 0.48 e Å3
11816 reflectionsΔρmin = 0.34 e Å3
659 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.359601 (12)0.243203 (9)0.083985 (9)0.01101 (3)
O10.24161 (7)0.20633 (6)0.18019 (5)0.01602 (13)
O20.09729 (8)0.06546 (6)0.20554 (6)0.01894 (14)
O30.47436 (8)0.07283 (6)0.14184 (5)0.01698 (13)
O40.45471 (7)0.21101 (5)0.02971 (5)0.01462 (12)
O50.54671 (7)0.27912 (6)0.20078 (5)0.01500 (12)
O60.73195 (8)0.42266 (7)0.30005 (6)0.02066 (15)
O70.14490 (7)0.42729 (6)0.04067 (5)0.01533 (13)
O80.20247 (7)0.28295 (5)0.01471 (5)0.01506 (12)
N10.28850 (8)0.08335 (6)0.03374 (6)0.01215 (13)
N20.43332 (8)0.40357 (6)0.11994 (6)0.01076 (13)
C10.17544 (10)0.10551 (8)0.16048 (7)0.01420 (16)
C20.20048 (9)0.02963 (7)0.07382 (7)0.01305 (15)
C30.14477 (10)0.08340 (8)0.03748 (8)0.01671 (17)
H30.0808 (16)0.1233 (13)0.0667 (12)0.026 (4)*
C40.18596 (11)0.13846 (8)0.03952 (8)0.01748 (17)
H40.1504 (15)0.2174 (13)0.0647 (12)0.023 (4)*
C50.27985 (10)0.08048 (8)0.07890 (7)0.01533 (16)
H50.3120 (16)0.1156 (13)0.1310 (12)0.024 (4)*
C60.32823 (9)0.03235 (7)0.04062 (7)0.01215 (15)
C70.42722 (9)0.11096 (7)0.07411 (7)0.01279 (15)
C80.61936 (10)0.37940 (8)0.23293 (7)0.01360 (15)
C90.55891 (9)0.45375 (7)0.18393 (7)0.01160 (15)
C100.62363 (9)0.56455 (8)0.20244 (7)0.01367 (15)
H100.7148 (16)0.5980 (13)0.2491 (12)0.025 (4)*
C110.55385 (10)0.62207 (7)0.15184 (7)0.01395 (16)
H110.5949 (15)0.6953 (12)0.1617 (11)0.019 (3)*
C120.42193 (9)0.56827 (7)0.08503 (7)0.01255 (15)
H120.3741 (15)0.6076 (12)0.0478 (11)0.019 (3)*
C130.36452 (9)0.45752 (7)0.07089 (7)0.01066 (14)
C140.22569 (9)0.38391 (7)0.00075 (7)0.01211 (15)
N31.01535 (9)0.30800 (7)0.73932 (6)0.01601 (15)
H3A1.0262 (18)0.2447 (15)0.7348 (13)0.035 (4)*
H3B1.0349 (16)0.3518 (14)0.8016 (13)0.028 (4)*
N40.85905 (8)0.38995 (6)0.47807 (6)0.01216 (13)
H4A0.8176 (17)0.4019 (13)0.4211 (13)0.029 (4)*
C150.96750 (9)0.33591 (7)0.65564 (7)0.01238 (15)
C160.92971 (9)0.43231 (7)0.66353 (7)0.01277 (15)
C170.94175 (10)0.50324 (8)0.75957 (7)0.01699 (17)
H170.9776 (15)0.4885 (12)0.8207 (12)0.022 (4)*
C180.89975 (11)0.59228 (8)0.76344 (8)0.01865 (18)
H180.9081 (15)0.6410 (12)0.8279 (12)0.023 (4)*
C190.84486 (10)0.61508 (8)0.67144 (8)0.01701 (17)
H190.8169 (17)0.6750 (13)0.6743 (13)0.029 (4)*
C200.83206 (10)0.54841 (8)0.57722 (8)0.01467 (16)
H200.7949 (15)0.5620 (12)0.5123 (12)0.024 (4)*
C210.87392 (9)0.45595 (7)0.57219 (7)0.01210 (15)
C220.89545 (9)0.29898 (7)0.46724 (7)0.01138 (14)
C230.87734 (9)0.23509 (8)0.36660 (7)0.01369 (15)
H230.8404 (15)0.2582 (12)0.3080 (11)0.019 (3)*
C240.91252 (10)0.14290 (8)0.35392 (7)0.01527 (16)
H240.9000 (16)0.1003 (13)0.2858 (12)0.027 (4)*
C250.96692 (9)0.11129 (8)0.44075 (8)0.01504 (16)
H250.9882 (15)0.0445 (12)0.4304 (11)0.021 (4)*
C260.98706 (9)0.17326 (8)0.53888 (7)0.01362 (15)
H261.0261 (15)0.1520 (12)0.5973 (11)0.020 (3)*
C270.95095 (9)0.26932 (7)0.55488 (7)0.01163 (15)
N50.54540 (8)0.10654 (7)0.29830 (6)0.01346 (14)
H5B0.5307 (17)0.1587 (14)0.2716 (12)0.028 (4)*
H5A0.5530 (17)0.0488 (14)0.2569 (13)0.032 (4)*
N60.66618 (8)0.17508 (7)0.61591 (6)0.01321 (14)
H6A0.6815 (18)0.1842 (14)0.6793 (14)0.035 (4)*
C280.58088 (9)0.12538 (7)0.39986 (7)0.01094 (14)
C290.63617 (9)0.05563 (7)0.44931 (7)0.01157 (14)
C300.65177 (9)0.04016 (7)0.39368 (7)0.01397 (15)
H300.6252 (15)0.0608 (12)0.3218 (12)0.020 (3)*
C310.70392 (10)0.10461 (8)0.44482 (8)0.01636 (17)
H310.7130 (15)0.1690 (13)0.4074 (12)0.021 (3)*
C320.74404 (9)0.07552 (8)0.55373 (8)0.01687 (17)
H320.7815 (15)0.1210 (12)0.5896 (12)0.023 (4)*
C330.73293 (9)0.01756 (8)0.61017 (8)0.01544 (16)
H330.7632 (16)0.0396 (13)0.6863 (12)0.027 (4)*
C340.67789 (9)0.08377 (7)0.55852 (7)0.01229 (15)
C350.60723 (9)0.23954 (7)0.57198 (7)0.01228 (15)
C360.58907 (10)0.32831 (8)0.63673 (7)0.01603 (17)
H360.6224 (16)0.3430 (13)0.7095 (13)0.027 (4)*
C370.52273 (11)0.38982 (8)0.59321 (8)0.01782 (17)
H370.5095 (16)0.4525 (13)0.6367 (12)0.026 (4)*
C380.47143 (10)0.36511 (8)0.48487 (8)0.01641 (17)
H380.4195 (15)0.4061 (12)0.4546 (11)0.021 (4)*
C390.49140 (9)0.28085 (7)0.42143 (7)0.01346 (15)
H390.4518 (14)0.2641 (12)0.3479 (11)0.017 (3)*
C400.56196 (9)0.21681 (7)0.46364 (7)0.01130 (14)
O1W0.11651 (8)0.63289 (6)0.02097 (6)0.01961 (14)
H1A0.132 (2)0.5745 (16)0.0089 (15)0.045 (5)*
H1B0.0366 (19)0.6155 (14)0.0272 (13)0.033 (4)*
O2W0.08266 (9)0.12483 (7)0.21495 (6)0.02072 (15)
H2A0.1191 (18)0.1637 (15)0.1557 (14)0.033 (4)*
H2B0.031 (2)0.0729 (16)0.2114 (15)0.041 (5)*
O3W0.68638 (9)0.20630 (7)0.81693 (6)0.02351 (16)
H3C0.628 (2)0.1734 (16)0.8358 (14)0.039 (5)*
H3D0.7472 (19)0.2544 (15)0.8698 (14)0.035 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01530 (6)0.00874 (5)0.01001 (5)0.00488 (4)0.00442 (4)0.00317 (4)
O10.0215 (3)0.0127 (3)0.0155 (3)0.0059 (3)0.0089 (3)0.0036 (2)
O20.0230 (3)0.0193 (3)0.0185 (3)0.0069 (3)0.0120 (3)0.0076 (3)
O30.0217 (3)0.0153 (3)0.0143 (3)0.0052 (3)0.0095 (3)0.0019 (2)
O40.0214 (3)0.0106 (3)0.0139 (3)0.0057 (2)0.0081 (2)0.0042 (2)
O50.0196 (3)0.0138 (3)0.0142 (3)0.0080 (2)0.0048 (2)0.0067 (2)
O60.0178 (3)0.0236 (4)0.0188 (3)0.0065 (3)0.0008 (3)0.0105 (3)
O70.0145 (3)0.0158 (3)0.0152 (3)0.0072 (2)0.0014 (2)0.0044 (2)
O80.0166 (3)0.0112 (3)0.0148 (3)0.0038 (2)0.0018 (2)0.0030 (2)
N10.0163 (3)0.0105 (3)0.0107 (3)0.0052 (3)0.0048 (3)0.0036 (3)
N20.0133 (3)0.0105 (3)0.0097 (3)0.0054 (3)0.0039 (3)0.0033 (2)
C10.0173 (4)0.0153 (4)0.0121 (4)0.0071 (3)0.0054 (3)0.0050 (3)
C20.0164 (4)0.0120 (4)0.0121 (4)0.0051 (3)0.0053 (3)0.0050 (3)
C30.0208 (4)0.0128 (4)0.0166 (4)0.0036 (3)0.0074 (3)0.0052 (3)
C40.0230 (5)0.0107 (4)0.0166 (4)0.0031 (3)0.0063 (3)0.0029 (3)
C50.0212 (4)0.0113 (4)0.0131 (4)0.0053 (3)0.0055 (3)0.0026 (3)
C60.0162 (4)0.0107 (3)0.0101 (3)0.0051 (3)0.0042 (3)0.0033 (3)
C70.0165 (4)0.0121 (4)0.0105 (3)0.0052 (3)0.0044 (3)0.0041 (3)
C80.0162 (4)0.0161 (4)0.0122 (4)0.0082 (3)0.0054 (3)0.0071 (3)
C90.0138 (4)0.0126 (4)0.0101 (3)0.0058 (3)0.0041 (3)0.0046 (3)
C100.0135 (4)0.0137 (4)0.0127 (4)0.0035 (3)0.0028 (3)0.0043 (3)
C110.0161 (4)0.0113 (4)0.0147 (4)0.0040 (3)0.0049 (3)0.0048 (3)
C120.0151 (4)0.0116 (4)0.0130 (4)0.0062 (3)0.0050 (3)0.0048 (3)
C130.0124 (4)0.0107 (3)0.0097 (3)0.0051 (3)0.0036 (3)0.0032 (3)
C140.0132 (4)0.0129 (4)0.0101 (3)0.0045 (3)0.0034 (3)0.0033 (3)
N30.0186 (4)0.0169 (4)0.0116 (3)0.0068 (3)0.0016 (3)0.0047 (3)
N40.0133 (3)0.0124 (3)0.0116 (3)0.0051 (3)0.0034 (3)0.0045 (3)
C150.0101 (3)0.0132 (4)0.0124 (4)0.0028 (3)0.0022 (3)0.0039 (3)
C160.0118 (4)0.0128 (4)0.0125 (4)0.0035 (3)0.0027 (3)0.0031 (3)
C170.0185 (4)0.0167 (4)0.0134 (4)0.0055 (3)0.0031 (3)0.0022 (3)
C180.0203 (4)0.0162 (4)0.0168 (4)0.0055 (3)0.0052 (3)0.0008 (3)
C190.0168 (4)0.0133 (4)0.0206 (4)0.0056 (3)0.0064 (3)0.0029 (3)
C200.0142 (4)0.0130 (4)0.0178 (4)0.0054 (3)0.0050 (3)0.0054 (3)
C210.0107 (3)0.0116 (4)0.0135 (4)0.0032 (3)0.0038 (3)0.0036 (3)
C220.0101 (3)0.0120 (3)0.0125 (4)0.0036 (3)0.0038 (3)0.0044 (3)
C230.0142 (4)0.0154 (4)0.0121 (4)0.0054 (3)0.0043 (3)0.0046 (3)
C240.0156 (4)0.0162 (4)0.0149 (4)0.0064 (3)0.0062 (3)0.0034 (3)
C250.0136 (4)0.0147 (4)0.0186 (4)0.0066 (3)0.0059 (3)0.0049 (3)
C260.0119 (4)0.0143 (4)0.0160 (4)0.0055 (3)0.0042 (3)0.0060 (3)
C270.0100 (3)0.0124 (4)0.0124 (4)0.0036 (3)0.0030 (3)0.0043 (3)
N50.0185 (4)0.0127 (3)0.0107 (3)0.0076 (3)0.0045 (3)0.0037 (3)
N60.0130 (3)0.0163 (3)0.0101 (3)0.0042 (3)0.0037 (3)0.0043 (3)
C280.0096 (3)0.0113 (3)0.0118 (3)0.0029 (3)0.0037 (3)0.0035 (3)
C290.0105 (3)0.0121 (4)0.0128 (4)0.0038 (3)0.0038 (3)0.0049 (3)
C300.0131 (4)0.0127 (4)0.0165 (4)0.0047 (3)0.0045 (3)0.0047 (3)
C310.0142 (4)0.0140 (4)0.0228 (4)0.0058 (3)0.0060 (3)0.0075 (3)
C320.0121 (4)0.0184 (4)0.0235 (5)0.0054 (3)0.0056 (3)0.0126 (4)
C330.0120 (4)0.0197 (4)0.0167 (4)0.0048 (3)0.0042 (3)0.0105 (3)
C340.0095 (3)0.0145 (4)0.0130 (4)0.0027 (3)0.0037 (3)0.0057 (3)
C350.0112 (3)0.0132 (4)0.0117 (4)0.0025 (3)0.0045 (3)0.0032 (3)
C360.0180 (4)0.0159 (4)0.0127 (4)0.0037 (3)0.0067 (3)0.0016 (3)
C370.0224 (4)0.0149 (4)0.0179 (4)0.0068 (3)0.0107 (4)0.0026 (3)
C380.0186 (4)0.0141 (4)0.0191 (4)0.0072 (3)0.0083 (3)0.0052 (3)
C390.0145 (4)0.0131 (4)0.0141 (4)0.0054 (3)0.0054 (3)0.0046 (3)
C400.0112 (3)0.0115 (3)0.0113 (3)0.0036 (3)0.0042 (3)0.0030 (3)
O1W0.0175 (3)0.0149 (3)0.0243 (4)0.0041 (3)0.0058 (3)0.0040 (3)
O2W0.0258 (4)0.0174 (3)0.0157 (3)0.0039 (3)0.0037 (3)0.0055 (3)
O3W0.0238 (4)0.0272 (4)0.0120 (3)0.0023 (3)0.0057 (3)0.0041 (3)
Geometric parameters (Å, º) top
Ni1—N11.9648 (8)C18—H180.959 (15)
Ni1—N21.9760 (8)C19—C201.3732 (14)
Ni1—O12.1003 (7)C19—H190.923 (17)
Ni1—O42.1120 (7)C20—C211.4158 (12)
Ni1—O52.1360 (7)C20—H200.974 (15)
Ni1—O82.1776 (7)C22—C271.4124 (12)
O1—C11.2770 (12)C22—C231.4158 (12)
O2—C11.2420 (12)C23—C241.3692 (13)
O3—C71.2523 (11)C23—H230.969 (15)
O4—C71.2655 (11)C24—C251.4148 (13)
O5—C81.2741 (12)C24—H240.955 (16)
O6—C81.2434 (12)C25—C261.3725 (13)
O7—C141.2580 (11)C25—H250.968 (15)
O8—C141.2642 (11)C26—C271.4240 (12)
N1—C21.3359 (12)C26—H260.960 (15)
N1—C61.3361 (11)N5—C281.3249 (11)
N2—C91.3318 (12)N5—H5B0.889 (17)
N2—C131.3385 (11)N5—H5A0.894 (17)
C1—C21.5280 (13)N6—C351.3606 (12)
C2—C31.3919 (13)N6—C341.3613 (12)
C3—C41.3970 (14)N6—H6A0.836 (18)
C3—H30.977 (16)C28—C291.4393 (12)
C4—C51.3963 (14)C28—C401.4405 (12)
C4—H40.971 (16)C29—C341.4157 (12)
C5—C61.3888 (12)C29—C301.4197 (12)
C5—H50.963 (16)C30—C311.3760 (13)
C6—C71.5176 (13)C30—H300.930 (15)
C8—C91.5162 (12)C31—C321.4116 (14)
C9—C101.3925 (13)C31—H310.947 (15)
C10—C111.3934 (13)C32—C331.3717 (14)
C10—H100.965 (16)C32—H320.973 (15)
C11—C121.3984 (13)C33—C341.4141 (13)
C11—H110.923 (15)C33—H330.985 (16)
C12—C131.3906 (12)C35—C401.4104 (12)
C12—H120.971 (15)C35—C361.4163 (13)
C13—C141.5164 (12)C36—C371.3691 (14)
N3—C151.3301 (12)C36—H360.950 (16)
N3—H3A0.873 (18)C37—C381.4116 (14)
N3—H3B0.878 (17)C37—H370.987 (16)
N4—C221.3612 (11)C38—C391.3736 (13)
N4—C211.3620 (12)C38—H380.970 (15)
N4—H4A0.884 (17)C39—C401.4161 (12)
C15—C271.4349 (12)C39—H390.963 (14)
C15—C161.4392 (13)O1W—H1A0.83 (2)
C16—C211.4121 (12)O1W—H1B0.861 (19)
C16—C171.4201 (13)O2W—H2A0.813 (19)
C17—C181.3746 (14)O2W—H2B0.79 (2)
C17—H170.934 (15)O3W—H3C0.79 (2)
C18—C191.4115 (15)O3W—H3D0.856 (19)
N1—Ni1—N2173.93 (3)C18—C17—H17119.7 (9)
N1—Ni1—O178.42 (3)C16—C17—H17119.4 (9)
N2—Ni1—O1107.10 (3)C17—C18—C19120.21 (9)
N1—Ni1—O478.42 (3)C17—C18—H18121.5 (9)
N2—Ni1—O496.15 (3)C19—C18—H18118.3 (9)
O1—Ni1—O4156.71 (3)C20—C19—C18120.50 (9)
N1—Ni1—O5104.16 (3)C20—C19—H19119.5 (10)
N2—Ni1—O578.28 (3)C18—C19—H19120.0 (10)
O1—Ni1—O594.00 (3)C19—C20—C21119.82 (9)
O4—Ni1—O589.26 (3)C19—C20—H20122.5 (9)
N1—Ni1—O8100.69 (3)C21—C20—H20117.6 (9)
N2—Ni1—O876.88 (3)N4—C21—C16120.52 (8)
O1—Ni1—O892.00 (3)N4—C21—C20119.08 (8)
O4—Ni1—O894.68 (3)C16—C21—C20120.40 (8)
O5—Ni1—O8155.12 (3)N4—C22—C27120.54 (8)
C1—O1—Ni1115.38 (6)N4—C22—C23118.77 (8)
C7—O4—Ni1114.59 (6)C27—C22—C23120.69 (8)
C8—O5—Ni1114.08 (6)C24—C23—C22119.72 (8)
C14—O8—Ni1114.13 (6)C24—C23—H23121.5 (9)
C2—N1—C6122.34 (8)C22—C23—H23118.8 (9)
C2—N1—Ni1118.90 (6)C23—C24—C25120.38 (9)
C6—N1—Ni1118.75 (6)C23—C24—H24119.2 (10)
C9—N2—C13121.37 (8)C25—C24—H24120.4 (10)
C9—N2—Ni1118.02 (6)C26—C25—C24120.59 (9)
C13—N2—Ni1120.08 (6)C26—C25—H25120.0 (9)
O2—C1—O1126.47 (9)C24—C25—H25119.4 (9)
O2—C1—C2118.90 (8)C25—C26—C27120.51 (8)
O1—C1—C2114.61 (8)C25—C26—H26119.9 (9)
N1—C2—C3120.31 (8)C27—C26—H26119.6 (9)
N1—C2—C1112.49 (8)C22—C27—C26118.10 (8)
C3—C2—C1127.18 (8)C22—C27—C15119.12 (8)
C2—C3—C4118.28 (9)C26—C27—C15122.79 (8)
C2—C3—H3120.8 (9)C28—N5—H5B119.4 (10)
C4—C3—H3120.9 (9)C28—N5—H5A121.4 (11)
C5—C4—C3120.26 (9)H5B—N5—H5A117.9 (15)
C5—C4—H4119.9 (9)C35—N6—C34122.20 (8)
C3—C4—H4119.8 (9)C35—N6—H6A118.9 (12)
C6—C5—C4118.08 (9)C34—N6—H6A117.8 (12)
C6—C5—H5119.2 (9)N5—C28—C29121.91 (8)
C4—C5—H5122.7 (9)N5—C28—C40119.80 (8)
N1—C6—C5120.68 (8)C29—C28—C40118.29 (8)
N1—C6—C7112.46 (8)C34—C29—C30118.18 (8)
C5—C6—C7126.86 (8)C34—C29—C28118.75 (8)
O3—C7—O4125.73 (9)C30—C29—C28123.06 (8)
O3—C7—C6118.52 (8)C31—C30—C29120.68 (9)
O4—C7—C6115.76 (8)C31—C30—H30119.1 (9)
O6—C8—O5127.62 (9)C29—C30—H30120.2 (9)
O6—C8—C9117.00 (8)C30—C31—C32120.25 (9)
O5—C8—C9115.38 (8)C30—C31—H31120.4 (9)
N2—C9—C10121.18 (8)C32—C31—H31119.3 (9)
N2—C9—C8113.61 (8)C33—C32—C31120.72 (9)
C10—C9—C8125.21 (8)C33—C32—H32119.3 (9)
C9—C10—C11118.31 (8)C31—C32—H32120.0 (9)
C9—C10—H10118.8 (9)C32—C33—C34119.59 (9)
C11—C10—H10122.9 (9)C32—C33—H33121.2 (9)
C10—C11—C12119.83 (8)C34—C33—H33119.2 (9)
C10—C11—H11120.2 (9)N6—C34—C33118.67 (8)
C12—C11—H11120.0 (9)N6—C34—C29120.76 (8)
C13—C12—C11118.26 (8)C33—C34—C29120.56 (9)
C13—C12—H12121.7 (9)N6—C35—C40120.56 (8)
C11—C12—H12120.0 (9)N6—C35—C36118.90 (8)
N2—C13—C12121.04 (8)C40—C35—C36120.52 (8)
N2—C13—C14112.51 (7)C37—C36—C35119.41 (9)
C12—C13—C14126.41 (8)C37—C36—H36121.7 (10)
O7—C14—O8125.99 (9)C35—C36—H36118.9 (10)
O7—C14—C13118.26 (8)C36—C37—C38120.74 (9)
O8—C14—C13115.75 (8)C36—C37—H37120.9 (9)
C15—N3—H3A121.6 (12)C38—C37—H37118.3 (9)
C15—N3—H3B121.1 (11)C39—C38—C37120.27 (9)
H3A—N3—H3B117.2 (15)C39—C38—H38119.4 (9)
C22—N4—C21122.33 (8)C37—C38—H38120.3 (9)
C22—N4—H4A117.4 (11)C38—C39—C40120.57 (9)
C21—N4—H4A120.0 (11)C38—C39—H39118.2 (8)
N3—C15—C27120.41 (8)C40—C39—H39121.1 (8)
N3—C15—C16121.15 (8)C35—C40—C39118.39 (8)
C27—C15—C16118.44 (8)C35—C40—C28119.18 (8)
C21—C16—C17118.21 (8)C39—C40—C28122.30 (8)
C21—C16—C15119.03 (8)H1A—O1W—H1B104.2 (17)
C17—C16—C15122.73 (8)H2A—O2W—H2B105.1 (18)
C18—C17—C16120.87 (9)H3C—O3W—H3D108.3 (17)
N1—Ni1—O1—C13.81 (7)C9—N2—C13—C14178.01 (8)
N2—Ni1—O1—C1173.57 (7)Ni1—N2—C13—C146.49 (10)
O4—Ni1—O1—C110.03 (12)C11—C12—C13—N20.10 (13)
O5—Ni1—O1—C1107.47 (7)C11—C12—C13—C14177.60 (8)
O8—Ni1—O1—C196.69 (7)Ni1—O8—C14—O7172.58 (7)
N1—Ni1—O4—C71.21 (7)Ni1—O8—C14—C137.53 (10)
N2—Ni1—O4—C7178.46 (7)N2—C13—C14—O7170.84 (8)
O1—Ni1—O4—C75.00 (12)C12—C13—C14—O711.29 (14)
O5—Ni1—O4—C7103.41 (7)N2—C13—C14—O89.27 (11)
O8—Ni1—O4—C7101.19 (7)C12—C13—C14—O8168.60 (9)
N1—Ni1—O5—C8170.05 (6)N3—C15—C16—C21177.27 (9)
N2—Ni1—O5—C84.26 (6)C27—C15—C16—C212.02 (13)
O1—Ni1—O5—C8110.90 (6)N3—C15—C16—C170.48 (14)
O4—Ni1—O5—C892.18 (6)C27—C15—C16—C17179.76 (9)
O8—Ni1—O5—C87.38 (11)C21—C16—C17—C180.23 (14)
N1—Ni1—O8—C14177.64 (6)C15—C16—C17—C18177.54 (9)
N2—Ni1—O8—C143.33 (6)C16—C17—C18—C190.57 (16)
O1—Ni1—O8—C14103.77 (7)C17—C18—C19—C200.39 (16)
O4—Ni1—O8—C1498.56 (7)C18—C19—C20—C210.13 (15)
O5—Ni1—O8—C140.19 (11)C22—N4—C21—C160.55 (13)
O1—Ni1—N1—C23.91 (7)C22—N4—C21—C20179.16 (8)
O4—Ni1—N1—C2178.59 (7)C17—C16—C21—N4179.41 (8)
O5—Ni1—N1—C295.16 (7)C15—C16—C21—N41.56 (13)
O8—Ni1—N1—C285.94 (7)C17—C16—C21—C200.30 (13)
O1—Ni1—N1—C6177.21 (7)C15—C16—C21—C20178.15 (8)
O4—Ni1—N1—C60.29 (7)C19—C20—C21—N4179.24 (9)
O5—Ni1—N1—C685.96 (7)C19—C20—C21—C160.48 (14)
O8—Ni1—N1—C692.93 (7)C21—N4—C22—C270.01 (13)
O1—Ni1—N2—C997.94 (7)C21—N4—C22—C23179.65 (8)
O4—Ni1—N2—C980.63 (7)N4—C22—C23—C24179.61 (8)
O5—Ni1—N2—C97.33 (6)C27—C22—C23—C240.74 (13)
O8—Ni1—N2—C9174.02 (7)C22—C23—C24—C250.06 (14)
O1—Ni1—N2—C1390.26 (7)C23—C24—C25—C260.96 (14)
O4—Ni1—N2—C1391.17 (7)C24—C25—C26—C271.28 (14)
O5—Ni1—N2—C13179.13 (7)N4—C22—C27—C26179.94 (8)
O8—Ni1—N2—C132.22 (6)C23—C22—C27—C260.42 (13)
Ni1—O1—C1—O2178.27 (8)N4—C22—C27—C150.51 (13)
Ni1—O1—C1—C23.09 (10)C23—C22—C27—C15179.85 (8)
C6—N1—C2—C30.99 (14)C25—C26—C27—C220.60 (13)
Ni1—N1—C2—C3177.85 (7)C25—C26—C27—C15178.82 (9)
C6—N1—C2—C1177.73 (8)N3—C15—C27—C22177.79 (8)
Ni1—N1—C2—C13.44 (10)C16—C15—C27—C221.50 (12)
O2—C1—C2—N1178.73 (9)N3—C15—C27—C261.62 (14)
O1—C1—C2—N10.02 (12)C16—C15—C27—C26179.09 (8)
O2—C1—C2—C30.13 (15)N5—C28—C29—C34176.98 (8)
O1—C1—C2—C3178.62 (9)C40—C28—C29—C344.17 (12)
N1—C2—C3—C41.59 (15)N5—C28—C29—C302.62 (14)
C1—C2—C3—C4176.92 (9)C40—C28—C29—C30176.22 (8)
C2—C3—C4—C50.51 (15)C34—C29—C30—C311.09 (13)
C3—C4—C5—C61.13 (15)C28—C29—C30—C31179.30 (9)
C2—N1—C6—C50.74 (14)C29—C30—C31—C320.67 (14)
Ni1—N1—C6—C5179.58 (7)C30—C31—C32—C330.61 (14)
C2—N1—C6—C7179.35 (8)C31—C32—C33—C341.41 (14)
Ni1—N1—C6—C70.52 (10)C35—N6—C34—C33176.15 (8)
C4—C5—C6—N11.78 (14)C35—N6—C34—C294.00 (13)
C4—C5—C6—C7178.33 (9)C32—C33—C34—N6179.19 (8)
Ni1—O4—C7—O3178.14 (8)C32—C33—C34—C290.96 (13)
Ni1—O4—C7—C61.82 (10)C30—C29—C34—N6179.57 (8)
N1—C6—C7—O3178.38 (8)C28—C29—C34—N60.06 (13)
C5—C6—C7—O31.52 (14)C30—C29—C34—C330.28 (13)
N1—C6—C7—O41.58 (12)C28—C29—C34—C33179.91 (8)
C5—C6—C7—O4178.52 (9)C34—N6—C35—C403.45 (13)
Ni1—O5—C8—O6179.89 (8)C34—N6—C35—C36175.03 (8)
Ni1—O5—C8—C90.92 (10)N6—C35—C36—C37176.16 (9)
C13—N2—C9—C100.07 (13)C40—C35—C36—C372.32 (14)
Ni1—N2—C9—C10171.76 (7)C35—C36—C37—C380.56 (15)
C13—N2—C9—C8179.37 (8)C36—C37—C38—C392.15 (15)
Ni1—N2—C9—C88.94 (10)C37—C38—C39—C400.84 (15)
O6—C8—C9—N2174.13 (8)N6—C35—C40—C39174.90 (8)
O5—C8—C9—N24.96 (12)C36—C35—C40—C393.55 (13)
O6—C8—C9—C105.13 (14)N6—C35—C40—C281.02 (13)
O5—C8—C9—C10175.78 (9)C36—C35—C40—C28179.47 (8)
N2—C9—C10—C110.28 (13)C38—C39—C40—C351.97 (13)
C8—C9—C10—C11179.49 (8)C38—C39—C40—C28177.75 (9)
C9—C10—C11—C120.39 (14)N5—C28—C40—C35176.42 (8)
C10—C11—C12—C130.31 (13)C29—C28—C40—C354.71 (12)
C9—N2—C13—C120.02 (13)N5—C28—C40—C397.83 (13)
Ni1—N2—C13—C12171.51 (7)C29—C28—C40—C39171.04 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2Wi0.873 (18)2.053 (18)2.8793 (12)157.6 (16)
N3—H3B···O7ii0.878 (17)2.109 (17)2.9337 (11)156.1 (15)
N4—H4A···O60.884 (17)1.838 (17)2.7214 (11)178.1 (16)
N5—H5A···O3iii0.894 (17)1.925 (17)2.7945 (11)163.9 (16)
N5—H5B···O50.889 (17)2.046 (17)2.9096 (11)163.6 (15)
N6—H6A···O3W0.836 (18)1.863 (18)2.6903 (11)170.3 (18)
O1W—H1A···O70.83 (2)1.99 (2)2.8138 (11)171 (2)
O1W—H1B···O7iv0.861 (19)1.955 (19)2.8161 (11)178.7 (17)
O2W—H2A···O8v0.813 (19)2.067 (19)2.8717 (11)170.1 (17)
O2W—H2B···O20.79 (2)2.02 (2)2.8033 (11)177 (2)
O3W—H3C···O3vi0.79 (2)1.97 (2)2.7595 (11)169.8 (19)
O3W—H3D···O1Wvii0.856 (19)1.879 (19)2.7328 (11)175.4 (17)
C30—H30···O3iii0.931 (16)2.437 (16)3.3386 (12)163 (14)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y+1, z; (v) x, y, z; (vi) x, y, z+1; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C13H11N2)2[Ni(C7H3NO4)2]·3H2O
Mr833.44
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)10.7939 (10), 13.3335 (12), 13.9370 (13)
α, β, γ (°)102.288 (2), 103.609 (2), 105.482 (2)
V3)1795.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.36 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.809, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
29993, 11816, 10951
Rint0.015
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.04
No. of reflections11816
No. of parameters659
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.48, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2Wi0.873 (18)2.053 (18)2.8793 (12)157.6 (16)
N3—H3B···O7ii0.878 (17)2.109 (17)2.9337 (11)156.1 (15)
N4—H4A···O60.884 (17)1.838 (17)2.7214 (11)178.1 (16)
N5—H5A···O3iii0.894 (17)1.925 (17)2.7945 (11)163.9 (16)
N5—H5B···O50.889 (17)2.046 (17)2.9096 (11)163.6 (15)
N6—H6A···O3W0.836 (18)1.863 (18)2.6903 (11)170.3 (18)
O1W—H1A···O70.83 (2)1.99 (2)2.8138 (11)171 (2)
O1W—H1B···O7iv0.861 (19)1.955 (19)2.8161 (11)178.7 (17)
O2W—H2A···O8v0.813 (19)2.067 (19)2.8717 (11)170.1 (17)
O2W—H2B···O20.79 (2)2.02 (2)2.8033 (11)177 (2)
O3W—H3C···O3vi0.79 (2)1.97 (2)2.7595 (11)169.8 (19)
O3W—H3D···O1Wvii0.856 (19)1.879 (19)2.7328 (11)175.4 (17)
C30—H30···O3iii0.931 (16)2.437 (16)3.3386 (12)163 (14)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y+1, z; (v) x, y, z; (vi) x, y, z+1; (vii) x+1, y+1, z+1.
 

References

First citationAghabozorg, H., Heidari, M., Bagheri, S., Attar Gharamaleki, J. & Ghadermazi, M. (2008). Acta Cryst. E64, m874–m875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Sadr-Khanlou, E., Shokrollahi, A., Ghaedi, M. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 55–70.   CrossRef CAS Google Scholar
First citationAttar Gharamaleki, J., Aghabozorg, H., Derikvand, Z. & Yousefi, M. (2009). Acta Cryst. E65, m824–m825.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, S., Zhao, Y., Zhang, J., Liu, Q. & Zhang, Y. (2009). Synth. Met. 159, 2191–2193.  Web of Science CrossRef CAS Google Scholar
First citationHadadzadeh, H., Rezvani, A. R., Karimi Abdolmaleki, M., Ghasemi, Kh., Esfandiari, H. & Daryanavard, M. (2010). J. Chem. Crystallogr. 40, 48–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSafaei-Ghomi, J., Aghabozorg, H., Motyeian, E. & Ghadermazi, M. (2009). Acta Cryst. E65, m2–m3.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds