metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-2-(2-benzoyl­hydrazinylidenemeth­yl)-6-meth­oxy­phenolato][2-(2-benzoyl­hydrazinylidenemeth­yl)-6-meth­oxy­phenolato]dimanganese(II) perchlorate methanol solvate

aSchool of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China, and bCollege of Earth Sciences, Jilin University, Changchun 130061, People's Republic of China
*Correspondence e-mail: zhujw@jlu.edu.cn

(Received 11 May 2010; accepted 15 May 2010; online 22 May 2010)

In the title complex, [Mn2(C15H13N2O3)3]ClO4·CH3OH, the two MnII ions are bridged by two phenolate O atoms from two ligands, forming an Mn2O2 quadrangle. Each MnII ion has a distorted octa­hedral coordination geometry. One MnII ion is coordinated by two N atoms and four O atoms from two ligands, and the other is coordinated by one N atom and five O atoms from three ligands. A dimer is formed by inter­molecular N—H⋯O hydrogen bonds. The dimers, perchlorate anions and methanol solvent mol­ecules are further connected into a chain along [[\overline{1}]01] through N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For general background to the study of Schiff base compounds, see: Ando et al. (2004[Ando, R., Yagyu, T. & Maeda, M. (2004). Inorg. Chim. Acta, 357, 2237-2244.]); Costes et al. (1995[Costes, J. P., Dominiguez-Vera, J. M. & Laurent, J. P. (1995). Polyhedron, 14, 2179-2187.]); Duda et al. (2003[Duda, D., Govindasamy, L., Agbandje-McKenna, M., Tu, C., Silverman, D. N. & McKenna, R. (2003). Acta Cryst. D59, 93-104.]); Siddall et al. (1983[Siddall, T. L., Miyaura, N. & Huffman, J. C. (1983). J. Chem. Soc. Chem. Commun. pp. 1185-1986.]). For related structures, see: Li et al. (2010[Li, S.-H., Gao, S.-K., Liu, S.-X. & Guo, Y.-N. (2010). Cryst. Growth Des. 10, 495-503.]); Huang & Li (2007[Huang, J.-S. & Li, M.-T. (2007). Acta Cryst. E63, m2170-m2171.]); Mikuriya et al. (1992[Mikuriya, M., Yamato, Y. & Tokii, T. (1992). Bull. Chem. Soc. Jpn, 65, 2624-2637.]); Yin (2008[Yin, H. (2008). Acta Cryst. C64, m324-m326.]); Yu et al. (2006[Yu, Z.-X., Qi, J.-S., Liang, K.-Z. & Sun, Y.-X. (2006). Acta Cryst. E62, m3284-m3286.]). For the ligand synthesis, see: Pouralimardan et al. (2007[Pouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599-1608.]); Sacconi (1954[Sacconi, L. (1954). Z. Anorg. Allg. Chem. 275, 249-256.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C15H13N2O3)3]ClO4·CH4O

  • Mr = 1049.19

  • Triclinic, [P \overline 1]

  • a = 12.7184 (6) Å

  • b = 13.8723 (7) Å

  • c = 15.0885 (12) Å

  • α = 100.268 (1)°

  • β = 94.030 (1)°

  • γ = 115.826 (1)°

  • V = 2324.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 173 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.906, Tmax = 0.936

  • 11959 measured reflections

  • 8138 independent reflections

  • 6183 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.05

  • 8138 reflections

  • 627 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O2 2.099 (2)
Mn1—O3 2.148 (2)
Mn1—O8 2.105 (2)
Mn1—O9 2.196 (2)
Mn1—N1 2.263 (2)
Mn1—N5 2.253 (3)
Mn2—O1 2.427 (2)
Mn2—O2 2.083 (2)
Mn2—O5 2.061 (2)
Mn2—O6 2.192 (2)
Mn2—O8 2.215 (2)
Mn2—N3 2.200 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.88 2.04 2.907 (3) 168
N4—H4A⋯O13ii 0.88 2.08 2.910 (4) 156
N6—H6A⋯O14 0.88 1.98 2.810 (4) 156
O14—H14A⋯O10iii 0.84 2.05 2.865 (4) 165
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Studies of Schiff base compounds are of great interest in various aspects of chemistry, such as homogeneous catalysts in industry, antitumor activities, photoelectric materials, catalytic materials, etc. (Ando et al., 2004; Costes et al., 1995; Duda et al., 2003; Siddall et al., 1983). The crystal structures of metal complexes with salicylaldehyde benzoylhydrazide have been attracted tremendous interest (Huang & Li, 2007; Yin, 2008; Yu et al., 2006). As a continuation of our effort in this system, we investigated a novel Schiff base, 3-methoxysalicylaldehyde benzoylhydrazide (H2L). This multidentate ligand has several O and N donors with suitable relative positions, which can coordinate to two or more metal centers. In addition, the vanillin group displays a variety of bonding geometries, such as monodentate, chelating, bidentate bridging, monodentate bridging, and chelating bridging (Li et al., 2010). We report here the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. There are two crystallographically independent MnII centers with different coordination environments in the asymmetric unit. The two MnII ions, Mnl and Mn2, are bridged by two phenolate O atoms (O2, O8) from two Schiff base ligands (Table 1). The Mn1···Mn2 separation is 3.284 (1) Å, and the Mn1—O2—Mn2 and Mn1—O8—Mn2 angles are 103.50 (9) and 98.92 (8)°, respectively. The coordination geometry of each MnII ion is distorted octahedral. The Mn1 atom is coordinated by two N atoms and four O atoms from two ligands. The square plane around the Mn1 atom is formed by O2N2 donor atoms (N1, N5, O8 and O9) and the axial positions are occupied by phenolate O2 and carbonyl O3. However, the Mn2 atom is coordinated by one N atom and five O atoms from three ligands. The distorted octahedral coordination is achieved by the equatorial plane donor atoms, methoxy O1, carbonyl O2, phenolate O8 and hydrazine N3, and the coordination of phenolate O5 and carbonyl O6 at the axial positions. In addition, the methoxy O1 is weakly bonded to Mn2 with a Mn2—O1 distance of 2.427 (2) Å, which is comparable to those reported for other binuclear MnII complexes (Mikuriya et al., 1992). In the crystal structure, two adjacent molecules participate in complementary N(hydrazine)—H···O(phenolate) hydrogen bonds, forming a dimeric structure (Fig. 2 and Table 2). The dimers, perchlorate anions and methanol solvent molecules are further connected into a chain structure through N—H···O and O—H···O hydrogen bonds (Fig. 3).

Related literature top

For general background to the study of Schiff base compounds, see: Ando et al. (2004); Costes et al. (1995); Duda et al. (2003); Siddall et al. (1983). For related structures, see: Li et al. (2010); Huang & Li (2007); Mikuriya et al. (1992); Yin (2008); Yu et al. (2006). For the ligand synthesis, see: Pouralimardan et al. (2007); Sacconi (1954).

Experimental top

The Schiff base ligand (H2L) was prepared in a similar manner to the reported procedures (Pouralimardan et al., 2007; Sacconi, 1954). The title compound was synthesized by adding Mn(ClO4)2.6H2O (36.6 mg, 0.1 mmol) and imidazole(6.8 mg, 0.1 mmol) to a solution of H2L (27.3 mg, 0.1 mmol) in methanol (15 ml). The resulting mixture was stirred for 5 h at room temperature to afford a yellow solution, which was left unperturbed to allow slow evaporation of the solvent. Yellow single crystals suitable for X-ray diffraction analysis were formed after about two weeks.

Refinement top

H atoms were placed in calculated positions and refined using a riding model, with C—H (aromatic) = 0.95 and 0.98 (methyl) Å, N—H = 0.88 Å and O—H = 0.84 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxy)Ueq(C, N, O).

Structure description top

Studies of Schiff base compounds are of great interest in various aspects of chemistry, such as homogeneous catalysts in industry, antitumor activities, photoelectric materials, catalytic materials, etc. (Ando et al., 2004; Costes et al., 1995; Duda et al., 2003; Siddall et al., 1983). The crystal structures of metal complexes with salicylaldehyde benzoylhydrazide have been attracted tremendous interest (Huang & Li, 2007; Yin, 2008; Yu et al., 2006). As a continuation of our effort in this system, we investigated a novel Schiff base, 3-methoxysalicylaldehyde benzoylhydrazide (H2L). This multidentate ligand has several O and N donors with suitable relative positions, which can coordinate to two or more metal centers. In addition, the vanillin group displays a variety of bonding geometries, such as monodentate, chelating, bidentate bridging, monodentate bridging, and chelating bridging (Li et al., 2010). We report here the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. There are two crystallographically independent MnII centers with different coordination environments in the asymmetric unit. The two MnII ions, Mnl and Mn2, are bridged by two phenolate O atoms (O2, O8) from two Schiff base ligands (Table 1). The Mn1···Mn2 separation is 3.284 (1) Å, and the Mn1—O2—Mn2 and Mn1—O8—Mn2 angles are 103.50 (9) and 98.92 (8)°, respectively. The coordination geometry of each MnII ion is distorted octahedral. The Mn1 atom is coordinated by two N atoms and four O atoms from two ligands. The square plane around the Mn1 atom is formed by O2N2 donor atoms (N1, N5, O8 and O9) and the axial positions are occupied by phenolate O2 and carbonyl O3. However, the Mn2 atom is coordinated by one N atom and five O atoms from three ligands. The distorted octahedral coordination is achieved by the equatorial plane donor atoms, methoxy O1, carbonyl O2, phenolate O8 and hydrazine N3, and the coordination of phenolate O5 and carbonyl O6 at the axial positions. In addition, the methoxy O1 is weakly bonded to Mn2 with a Mn2—O1 distance of 2.427 (2) Å, which is comparable to those reported for other binuclear MnII complexes (Mikuriya et al., 1992). In the crystal structure, two adjacent molecules participate in complementary N(hydrazine)—H···O(phenolate) hydrogen bonds, forming a dimeric structure (Fig. 2 and Table 2). The dimers, perchlorate anions and methanol solvent molecules are further connected into a chain structure through N—H···O and O—H···O hydrogen bonds (Fig. 3).

For general background to the study of Schiff base compounds, see: Ando et al. (2004); Costes et al. (1995); Duda et al. (2003); Siddall et al. (1983). For related structures, see: Li et al. (2010); Huang & Li (2007); Mikuriya et al. (1992); Yin (2008); Yu et al. (2006). For the ligand synthesis, see: Pouralimardan et al. (2007); Sacconi (1954).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The dimeric structure of the title compound, with hydrogen bonds shown as green dashed lines.
[Figure 3] Fig. 3. One-dimensional chain structure of the title compound. Hydrogen bonds are shown as dashed lines.
Bis[µ-2-(2-benzoylhydrazinylidenemethyl)-6-methoxyphenolato][2-(2- benzoylhydrazinylidenemethyl)-6-methoxyphenolato]dimanganese(II) perchlorate methanol solvate top
Crystal data top
[Mn2(C15H13N2O3)3]ClO4·CH4OZ = 2
Mr = 1049.19F(000) = 1080
Triclinic, P1Dx = 1.499 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.7184 (6) ÅCell parameters from 5673 reflections
b = 13.8723 (7) Åθ = 2.4–25.9°
c = 15.0885 (12) ŵ = 0.68 mm1
α = 100.268 (1)°T = 173 K
β = 94.030 (1)°Block, yellow
γ = 115.826 (1)°0.15 × 0.12 × 0.10 mm
V = 2324.7 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8138 independent reflections
Radiation source: fine-focus sealed tube6183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1510
Tmin = 0.906, Tmax = 0.936k = 1616
11959 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0586P)2 + 1.186P]
where P = (Fo2 + 2Fc2)/3
8138 reflections(Δ/σ)max = 0.001
627 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Mn2(C15H13N2O3)3]ClO4·CH4Oγ = 115.826 (1)°
Mr = 1049.19V = 2324.7 (2) Å3
Triclinic, P1Z = 2
a = 12.7184 (6) ÅMo Kα radiation
b = 13.8723 (7) ŵ = 0.68 mm1
c = 15.0885 (12) ÅT = 173 K
α = 100.268 (1)°0.15 × 0.12 × 0.10 mm
β = 94.030 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8138 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6183 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.936Rint = 0.021
11959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
8138 reflectionsΔρmin = 0.68 e Å3
627 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89876 (8)0.67575 (8)0.50975 (6)0.0426 (2)
Mn10.36982 (4)0.89528 (4)0.15072 (3)0.02431 (13)
Mn20.43109 (4)1.15354 (4)0.23009 (3)0.03144 (15)
N10.4807 (2)0.87719 (19)0.04411 (16)0.0228 (5)
N20.4219 (2)0.77597 (19)0.01720 (16)0.0251 (6)
H2A0.45600.75480.06000.030*
N30.3403 (2)1.2330 (2)0.31023 (17)0.0293 (6)
N40.3060 (2)1.1885 (2)0.38472 (18)0.0322 (6)
H4A0.25821.20370.41740.039*
N50.2727 (2)0.8410 (2)0.26601 (17)0.0267 (6)
N60.3164 (2)0.7859 (2)0.31286 (17)0.0294 (6)
H6A0.28180.75500.35590.035*
O10.64422 (19)1.24458 (18)0.27865 (15)0.0357 (5)
O20.50670 (18)1.05637 (16)0.17192 (15)0.0293 (5)
O30.26225 (19)0.74323 (17)0.05223 (14)0.0308 (5)
O40.4299 (2)1.3273 (2)0.00081 (16)0.0468 (7)
O50.43845 (19)1.26231 (17)0.15090 (14)0.0312 (5)
O60.42445 (19)1.10827 (19)0.36227 (15)0.0344 (5)
O70.1612 (2)1.08089 (19)0.09004 (16)0.0377 (6)
O80.27945 (18)0.99182 (17)0.16429 (14)0.0287 (5)
O90.46239 (19)0.82750 (19)0.22884 (15)0.0337 (5)
O101.0073 (2)0.6796 (2)0.54667 (19)0.0528 (7)
O110.8019 (3)0.5765 (2)0.5162 (3)0.0818 (11)
O120.9022 (3)0.6841 (4)0.4178 (2)0.0971 (13)
O130.8851 (3)0.7656 (2)0.5595 (2)0.0648 (8)
O140.1488 (2)0.6610 (2)0.41134 (19)0.0510 (7)
H14A0.11380.67900.45130.077*
C10.7174 (3)1.3365 (3)0.3523 (2)0.0494 (10)
H1A0.77371.31950.38570.074*
H1B0.66771.35180.39380.074*
H1C0.76091.40120.32800.074*
C20.6994 (3)1.2000 (3)0.2201 (2)0.0273 (7)
C30.8167 (3)1.2503 (3)0.2135 (2)0.0330 (8)
H30.86901.31940.25310.040*
C40.8587 (3)1.1981 (3)0.1472 (2)0.0378 (8)
H40.93991.23270.14120.045*
C50.7840 (3)1.0981 (3)0.0912 (2)0.0310 (7)
H50.81401.06430.04630.037*
C60.6630 (3)1.0438 (2)0.0988 (2)0.0243 (7)
C70.6198 (3)1.0971 (2)0.1639 (2)0.0238 (7)
C80.5897 (3)0.9368 (2)0.0389 (2)0.0244 (7)
H80.62390.90910.00660.029*
C90.3099 (3)0.7115 (3)0.0082 (2)0.0270 (7)
C100.2450 (3)0.6014 (3)0.0711 (2)0.0308 (7)
C110.2905 (3)0.5623 (3)0.1418 (2)0.0351 (8)
H110.36780.60750.15200.042*
C120.2250 (4)0.4588 (3)0.1973 (3)0.0487 (10)
H120.25670.43380.24630.058*
C130.1160 (4)0.3924 (4)0.1825 (3)0.0705 (14)
H130.07100.32120.22150.085*
C140.0703 (4)0.4277 (4)0.1116 (4)0.0882 (19)
H140.00520.38010.09990.106*
C150.1342 (4)0.5327 (3)0.0570 (3)0.0615 (12)
H150.10110.55770.00900.074*
C160.4032 (4)1.3346 (4)0.0898 (3)0.0576 (11)
H16A0.31721.29610.10990.086*
H16B0.44081.30060.13040.086*
H16C0.43311.41220.09190.086*
C170.3771 (3)1.3615 (3)0.0659 (2)0.0399 (9)
C180.3230 (4)1.4265 (3)0.0576 (3)0.0507 (10)
H180.32111.45130.00300.061*
C190.2704 (4)1.4567 (3)0.1289 (3)0.0573 (12)
H190.23411.50290.12350.069*
C200.2720 (4)1.4192 (3)0.2055 (3)0.0509 (10)
H200.23611.43980.25360.061*
C210.3251 (3)1.3508 (3)0.2163 (2)0.0349 (8)
C220.3833 (3)1.3234 (3)0.1464 (2)0.0325 (8)
C230.3085 (3)1.3055 (3)0.2952 (2)0.0357 (8)
H230.27131.33070.33970.043*
C240.3494 (3)1.1208 (3)0.4046 (2)0.0298 (7)
C250.3037 (3)1.0616 (3)0.4763 (2)0.0309 (7)
C260.1919 (3)1.0360 (3)0.4984 (2)0.0372 (8)
H260.14301.06140.47000.045*
C270.1522 (3)0.9736 (3)0.5616 (2)0.0459 (9)
H270.07470.95400.57520.055*
C280.2237 (4)0.9395 (3)0.6051 (3)0.0506 (10)
H280.19580.89770.64950.061*
C290.3351 (4)0.9651 (3)0.5852 (3)0.0496 (10)
H290.38480.94210.61590.060*
C300.3739 (3)1.0248 (3)0.5200 (3)0.0436 (9)
H300.45001.04100.50470.052*
C310.1054 (3)1.1402 (3)0.0565 (3)0.0461 (9)
H31A0.02341.08890.02790.069*
H31B0.14861.17690.01120.069*
H31C0.10591.19540.10730.069*
C320.1105 (3)1.0228 (3)0.1532 (2)0.0317 (8)
C330.0058 (3)1.0108 (3)0.1813 (2)0.0404 (9)
H330.03581.04570.15740.049*
C340.0395 (3)0.9480 (3)0.2444 (2)0.0413 (9)
H340.11200.94000.26330.050*
C350.0195 (3)0.8980 (3)0.2794 (2)0.0352 (8)
H350.01210.85580.32290.042*
C360.1272 (3)0.9079 (3)0.2519 (2)0.0284 (7)
C370.1759 (3)0.9730 (3)0.1888 (2)0.0273 (7)
C380.1829 (3)0.8511 (2)0.2921 (2)0.0282 (7)
H380.15130.81910.34080.034*
C390.4151 (3)0.7819 (3)0.2892 (2)0.0295 (7)
C400.4667 (3)0.7237 (3)0.3367 (2)0.0304 (7)
C410.4082 (3)0.6553 (3)0.3924 (3)0.0431 (9)
H410.33180.64510.40310.052*
C420.4614 (3)0.6021 (3)0.4321 (3)0.0507 (10)
H420.42100.55480.47000.061*
C430.5727 (4)0.6170 (3)0.4175 (3)0.0477 (10)
H430.60800.57890.44430.057*
C440.6327 (3)0.6870 (3)0.3641 (2)0.0416 (9)
H440.71010.69860.35500.050*
C450.5795 (3)0.7404 (3)0.3238 (2)0.0342 (8)
H450.62070.78880.28700.041*
C460.0717 (4)0.5557 (4)0.3563 (4)0.0767 (15)
H46A0.10380.54290.30070.115*
H46B0.00640.55150.33980.115*
H46C0.06400.49960.39020.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0341 (5)0.0521 (6)0.0478 (5)0.0259 (4)0.0126 (4)0.0075 (4)
Mn10.0245 (3)0.0270 (3)0.0250 (3)0.0148 (2)0.0078 (2)0.00504 (19)
Mn20.0328 (3)0.0336 (3)0.0319 (3)0.0191 (2)0.0108 (2)0.0045 (2)
N10.0270 (14)0.0203 (13)0.0225 (13)0.0124 (11)0.0055 (11)0.0036 (10)
N20.0286 (15)0.0252 (14)0.0216 (13)0.0137 (12)0.0065 (11)0.0013 (11)
N30.0305 (15)0.0319 (15)0.0262 (14)0.0150 (12)0.0094 (12)0.0046 (12)
N40.0356 (16)0.0368 (16)0.0322 (15)0.0218 (13)0.0167 (13)0.0086 (12)
N50.0258 (14)0.0299 (14)0.0271 (14)0.0159 (12)0.0062 (11)0.0043 (11)
N60.0303 (15)0.0369 (16)0.0291 (14)0.0194 (13)0.0112 (12)0.0136 (12)
O10.0300 (13)0.0326 (13)0.0369 (13)0.0115 (10)0.0088 (10)0.0036 (10)
O20.0227 (12)0.0262 (12)0.0380 (13)0.0121 (10)0.0108 (10)0.0002 (10)
O30.0291 (12)0.0310 (12)0.0310 (12)0.0140 (10)0.0096 (10)0.0015 (10)
O40.0661 (18)0.0687 (18)0.0340 (13)0.0499 (16)0.0220 (13)0.0228 (13)
O50.0357 (13)0.0332 (12)0.0311 (12)0.0197 (11)0.0111 (10)0.0095 (10)
O60.0314 (13)0.0426 (14)0.0345 (13)0.0213 (11)0.0101 (10)0.0082 (11)
O70.0361 (13)0.0443 (14)0.0446 (14)0.0265 (12)0.0085 (11)0.0157 (12)
O80.0234 (11)0.0343 (12)0.0337 (12)0.0171 (10)0.0087 (10)0.0084 (10)
O90.0299 (13)0.0480 (14)0.0355 (13)0.0237 (11)0.0135 (10)0.0205 (11)
O100.0397 (15)0.0699 (19)0.0589 (17)0.0322 (14)0.0091 (13)0.0198 (15)
O110.0371 (17)0.0475 (18)0.150 (3)0.0131 (14)0.0151 (19)0.014 (2)
O120.098 (3)0.190 (4)0.0464 (19)0.100 (3)0.0219 (18)0.033 (2)
O130.0533 (18)0.0531 (17)0.095 (2)0.0311 (15)0.0346 (17)0.0086 (16)
O140.0425 (15)0.0571 (18)0.0637 (18)0.0250 (14)0.0296 (14)0.0238 (14)
C10.048 (2)0.051 (2)0.036 (2)0.019 (2)0.0038 (18)0.0115 (18)
C20.0303 (18)0.0305 (17)0.0271 (16)0.0190 (15)0.0068 (14)0.0070 (14)
C30.0256 (18)0.0294 (18)0.0377 (19)0.0100 (15)0.0008 (15)0.0016 (15)
C40.0227 (18)0.042 (2)0.049 (2)0.0153 (16)0.0102 (16)0.0070 (17)
C50.0264 (18)0.0385 (19)0.0347 (18)0.0210 (16)0.0093 (14)0.0063 (15)
C60.0265 (17)0.0291 (17)0.0238 (16)0.0173 (14)0.0069 (13)0.0082 (13)
C70.0214 (16)0.0285 (17)0.0248 (16)0.0138 (14)0.0050 (13)0.0073 (13)
C80.0275 (17)0.0295 (17)0.0234 (16)0.0189 (14)0.0084 (13)0.0065 (13)
C90.0298 (18)0.0278 (17)0.0268 (17)0.0163 (15)0.0053 (14)0.0064 (13)
C100.0296 (18)0.0285 (17)0.0333 (18)0.0132 (15)0.0053 (14)0.0047 (14)
C110.036 (2)0.0324 (19)0.0339 (19)0.0155 (16)0.0062 (15)0.0014 (15)
C120.051 (2)0.040 (2)0.049 (2)0.021 (2)0.0105 (19)0.0056 (18)
C130.057 (3)0.041 (2)0.079 (3)0.004 (2)0.014 (2)0.019 (2)
C140.055 (3)0.052 (3)0.104 (4)0.010 (2)0.031 (3)0.024 (3)
C150.046 (2)0.043 (2)0.070 (3)0.005 (2)0.023 (2)0.012 (2)
C160.076 (3)0.079 (3)0.040 (2)0.050 (3)0.019 (2)0.021 (2)
C170.046 (2)0.046 (2)0.040 (2)0.0293 (19)0.0168 (17)0.0145 (17)
C180.072 (3)0.058 (3)0.047 (2)0.046 (2)0.021 (2)0.024 (2)
C190.086 (3)0.060 (3)0.059 (3)0.059 (3)0.023 (2)0.022 (2)
C200.073 (3)0.053 (2)0.048 (2)0.045 (2)0.022 (2)0.0129 (19)
C210.040 (2)0.0361 (19)0.0350 (19)0.0234 (17)0.0111 (16)0.0069 (15)
C220.0320 (19)0.0300 (18)0.0377 (19)0.0164 (15)0.0082 (15)0.0065 (15)
C230.041 (2)0.0362 (19)0.0359 (19)0.0247 (17)0.0124 (16)0.0029 (15)
C240.0245 (17)0.0315 (18)0.0279 (17)0.0111 (14)0.0031 (14)0.0010 (14)
C250.0309 (18)0.0310 (18)0.0292 (17)0.0134 (15)0.0093 (14)0.0035 (14)
C260.034 (2)0.042 (2)0.0322 (18)0.0165 (17)0.0067 (15)0.0046 (16)
C270.036 (2)0.052 (2)0.041 (2)0.0116 (18)0.0108 (17)0.0122 (18)
C280.061 (3)0.046 (2)0.046 (2)0.021 (2)0.017 (2)0.0185 (19)
C290.057 (3)0.053 (2)0.052 (2)0.033 (2)0.011 (2)0.022 (2)
C300.044 (2)0.050 (2)0.046 (2)0.0287 (19)0.0134 (18)0.0125 (18)
C310.042 (2)0.043 (2)0.062 (3)0.0269 (19)0.0021 (19)0.0165 (19)
C320.0263 (18)0.0353 (19)0.0351 (18)0.0183 (15)0.0033 (15)0.0013 (15)
C330.034 (2)0.056 (2)0.042 (2)0.0321 (19)0.0059 (16)0.0061 (18)
C340.0263 (19)0.055 (2)0.045 (2)0.0235 (18)0.0099 (16)0.0029 (18)
C350.0274 (18)0.0365 (19)0.0384 (19)0.0139 (16)0.0096 (15)0.0014 (15)
C360.0223 (16)0.0312 (17)0.0291 (17)0.0137 (14)0.0036 (13)0.0026 (14)
C370.0229 (17)0.0287 (17)0.0276 (17)0.0138 (14)0.0021 (13)0.0045 (13)
C380.0241 (17)0.0288 (17)0.0287 (17)0.0109 (14)0.0077 (14)0.0015 (14)
C390.0311 (18)0.0306 (17)0.0274 (17)0.0149 (15)0.0054 (14)0.0063 (14)
C400.0318 (18)0.0296 (17)0.0315 (18)0.0159 (15)0.0055 (14)0.0065 (14)
C410.036 (2)0.049 (2)0.049 (2)0.0191 (18)0.0078 (17)0.0239 (19)
C420.042 (2)0.053 (2)0.060 (3)0.019 (2)0.0020 (19)0.030 (2)
C430.059 (3)0.043 (2)0.050 (2)0.032 (2)0.003 (2)0.0135 (19)
C440.045 (2)0.051 (2)0.038 (2)0.0332 (19)0.0008 (17)0.0027 (17)
C450.040 (2)0.041 (2)0.0289 (18)0.0257 (17)0.0073 (15)0.0061 (15)
C460.054 (3)0.058 (3)0.120 (4)0.028 (3)0.023 (3)0.016 (3)
Geometric parameters (Å, º) top
Cl1—O121.414 (3)C12—C131.351 (6)
Cl1—O111.418 (3)C12—H120.9500
Cl1—O131.422 (3)C13—C141.368 (6)
Cl1—O101.428 (3)C13—H130.9500
Mn1—O22.099 (2)C14—C151.381 (6)
Mn1—O32.148 (2)C14—H140.9500
Mn1—O82.105 (2)C15—H150.9500
Mn1—O92.196 (2)C16—H16A0.9800
Mn1—N12.263 (2)C16—H16B0.9800
Mn1—N52.253 (3)C16—H16C0.9800
Mn2—O12.427 (2)C17—C181.367 (5)
Mn2—O22.083 (2)C17—C221.419 (5)
Mn2—O52.061 (2)C18—C191.403 (5)
Mn2—O62.192 (2)C18—H180.9500
Mn2—O82.215 (2)C19—C201.351 (5)
Mn2—N32.200 (3)C19—H190.9500
Mn1—Mn23.284 (1)C20—C211.407 (5)
N1—C81.285 (4)C20—H200.9500
N1—N21.383 (3)C21—C221.420 (4)
N2—C91.344 (4)C21—C231.430 (5)
N2—H2A0.8800C23—H230.9500
N3—C231.284 (4)C24—C251.473 (4)
N3—N41.384 (4)C25—C261.388 (5)
N4—C241.343 (4)C25—C301.388 (5)
N4—H4A0.8800C26—C271.376 (5)
N5—C381.289 (4)C26—H260.9500
N5—N61.377 (3)C27—C281.372 (5)
N6—C391.350 (4)C27—H270.9500
N6—H6A0.8800C28—C291.372 (6)
O1—C21.388 (4)C28—H280.9500
O1—C11.429 (4)C29—C301.378 (5)
O2—C71.320 (3)C29—H290.9500
O3—C91.249 (4)C30—H300.9500
O4—C171.358 (4)C31—H31A0.9800
O4—C161.418 (4)C31—H31B0.9800
O5—C221.322 (4)C31—H31C0.9800
O6—C241.242 (4)C32—C331.375 (4)
O7—C321.372 (4)C32—C371.424 (4)
O7—C311.430 (4)C33—C341.391 (5)
O8—C371.320 (4)C33—H330.9500
O9—C391.242 (4)C34—C351.361 (5)
O14—C461.410 (5)C34—H340.9500
O14—H14A0.8400C35—C361.416 (4)
C1—H1A0.9800C35—H350.9500
C1—H1B0.9800C36—C371.417 (5)
C1—H1C0.9800C36—C381.445 (4)
C2—C31.364 (4)C38—H380.9500
C2—C71.404 (4)C39—C401.483 (4)
C3—C41.401 (5)C40—C451.383 (5)
C3—H30.9500C40—C411.385 (5)
C4—C51.365 (5)C41—C421.377 (5)
C4—H40.9500C41—H410.9500
C5—C61.412 (4)C42—C431.380 (5)
C5—H50.9500C42—H420.9500
C6—C71.410 (4)C43—C441.376 (5)
C6—C81.444 (4)C43—H430.9500
C8—H80.9500C44—C451.384 (5)
C9—C101.480 (4)C44—H440.9500
C10—C151.373 (5)C45—H450.9500
C10—C111.385 (4)C46—H46A0.9800
C11—C121.374 (5)C46—H46B0.9800
C11—H110.9500C46—H46C0.9800
O12—Cl1—O11111.2 (3)C12—C13—H13120.0
O12—Cl1—O13108.7 (2)C14—C13—H13120.0
O11—Cl1—O13108.39 (19)C13—C14—C15119.8 (4)
O12—Cl1—O10108.54 (18)C13—C14—H14120.1
O11—Cl1—O10109.91 (18)C15—C14—H14120.1
O13—Cl1—O10110.12 (18)C10—C15—C14120.9 (4)
O2—Mn1—O876.87 (8)C10—C15—H15119.6
O2—Mn1—O3145.50 (8)C14—C15—H15119.6
O8—Mn1—O3109.15 (8)O4—C16—H16A109.5
O2—Mn1—O998.66 (9)O4—C16—H16B109.5
O8—Mn1—O9143.09 (8)H16A—C16—H16B109.5
O3—Mn1—O995.20 (9)O4—C16—H16C109.5
O2—Mn1—N5119.63 (9)H16A—C16—H16C109.5
O8—Mn1—N579.31 (9)H16B—C16—H16C109.5
O3—Mn1—N594.72 (9)O4—C17—C18125.1 (3)
O9—Mn1—N571.21 (8)O4—C17—C22113.2 (3)
O2—Mn1—N177.63 (8)C18—C17—C22121.7 (3)
O8—Mn1—N1128.89 (9)C17—C18—C19120.5 (4)
O3—Mn1—N172.54 (8)C17—C18—H18119.7
O9—Mn1—N184.16 (8)C19—C18—H18119.7
N5—Mn1—N1151.29 (9)C20—C19—C18119.1 (3)
O5—Mn2—O2109.55 (9)C20—C19—H19120.4
O5—Mn2—O6150.92 (8)C18—C19—H19120.4
O2—Mn2—O696.68 (8)C19—C20—C21122.2 (3)
O5—Mn2—N382.02 (9)C19—C20—H20118.9
O2—Mn2—N3168.30 (9)C21—C20—H20118.9
O6—Mn2—N372.45 (9)C20—C21—C22119.4 (3)
O5—Mn2—O8107.68 (8)C20—C21—C23117.0 (3)
O2—Mn2—O874.83 (8)C22—C21—C23123.5 (3)
O6—Mn2—O890.80 (8)O5—C22—C17118.9 (3)
N3—Mn2—O8100.50 (9)O5—C22—C21124.1 (3)
O5—Mn2—O192.92 (9)C17—C22—C21117.0 (3)
O2—Mn2—O168.95 (8)N3—C23—C21124.6 (3)
O6—Mn2—O184.77 (8)N3—C23—H23117.7
N3—Mn2—O1113.22 (9)C21—C23—H23117.7
O8—Mn2—O1142.67 (7)O6—C24—N4120.1 (3)
C8—N1—N2117.0 (2)O6—C24—C25121.8 (3)
C8—N1—Mn1131.2 (2)N4—C24—C25118.1 (3)
N2—N1—Mn1111.15 (17)C26—C25—C30118.8 (3)
C9—N2—N1116.7 (2)C26—C25—C24123.2 (3)
C9—N2—H2A121.6C30—C25—C24117.9 (3)
N1—N2—H2A121.6C27—C26—C25119.8 (3)
C23—N3—N4117.4 (3)C27—C26—H26120.1
C23—N3—Mn2130.8 (2)C25—C26—H26120.1
N4—N3—Mn2111.61 (18)C28—C27—C26120.5 (4)
C24—N4—N3116.6 (2)C28—C27—H27119.7
C24—N4—H4A121.7C26—C27—H27119.7
N3—N4—H4A121.7C29—C28—C27120.7 (4)
C38—N5—N6116.8 (3)C29—C28—H28119.7
C38—N5—Mn1130.1 (2)C27—C28—H28119.7
N6—N5—Mn1113.08 (18)C28—C29—C30119.0 (4)
C39—N6—N5116.4 (3)C28—C29—H29120.5
C39—N6—H6A121.8C30—C29—H29120.5
N5—N6—H6A121.8C29—C30—C25121.2 (4)
C2—O1—C1118.0 (3)C29—C30—H30119.4
C2—O1—Mn2111.43 (18)C25—C30—H30119.4
C1—O1—Mn2130.5 (2)O7—C31—H31A109.5
C7—O2—Mn2122.82 (18)O7—C31—H31B109.5
C7—O2—Mn1133.25 (18)H31A—C31—H31B109.5
Mn2—O2—Mn1103.50 (9)O7—C31—H31C109.5
C9—O3—Mn1118.2 (2)H31A—C31—H31C109.5
C17—O4—C16118.2 (3)H31B—C31—H31C109.5
C22—O5—Mn2133.1 (2)O7—C32—C33125.0 (3)
C24—O6—Mn2114.7 (2)O7—C32—C37113.9 (3)
C32—O7—C31117.1 (3)C33—C32—C37121.1 (3)
C37—O8—Mn1131.7 (2)C32—C33—C34120.5 (3)
C37—O8—Mn2116.67 (18)C32—C33—H33119.8
Mn1—O8—Mn298.92 (8)C34—C33—H33119.8
C39—O9—Mn1118.4 (2)C35—C34—C33120.3 (3)
C46—O14—H14A109.5C35—C34—H34119.8
O1—C1—H1A109.5C33—C34—H34119.8
O1—C1—H1B109.5C34—C35—C36120.9 (3)
H1A—C1—H1B109.5C34—C35—H35119.5
O1—C1—H1C109.5C36—C35—H35119.5
H1A—C1—H1C109.5C35—C36—C37119.6 (3)
H1B—C1—H1C109.5C35—C36—C38117.0 (3)
C3—C2—O1125.1 (3)C37—C36—C38123.4 (3)
C3—C2—C7122.3 (3)O8—C37—C36123.1 (3)
O1—C2—C7112.5 (3)O8—C37—C32119.3 (3)
C2—C3—C4118.8 (3)C36—C37—C32117.5 (3)
C2—C3—H3120.6N5—C38—C36124.2 (3)
C4—C3—H3120.6N5—C38—H38117.9
C5—C4—C3120.6 (3)C36—C38—H38117.9
C5—C4—H4119.7O9—C39—N6120.1 (3)
C3—C4—H4119.7O9—C39—C40120.6 (3)
C4—C5—C6121.3 (3)N6—C39—C40119.3 (3)
C4—C5—H5119.4C45—C40—C41119.6 (3)
C6—C5—H5119.4C45—C40—C39117.0 (3)
C7—C6—C5118.3 (3)C41—C40—C39123.4 (3)
C7—C6—C8123.4 (3)C42—C41—C40119.7 (4)
C5—C6—C8118.3 (3)C42—C41—H41120.1
O2—C7—C2118.6 (3)C40—C41—H41120.1
O2—C7—C6122.7 (3)C41—C42—C43120.6 (4)
C2—C7—C6118.7 (3)C41—C42—H42119.7
N1—C8—C6123.4 (3)C43—C42—H42119.7
N1—C8—H8118.3C44—C43—C42120.1 (3)
C6—C8—H8118.3C44—C43—H43120.0
O3—C9—N2120.9 (3)C42—C43—H43120.0
O3—C9—C10120.8 (3)C43—C44—C45119.5 (3)
N2—C9—C10118.3 (3)C43—C44—H44120.3
C15—C10—C11118.0 (3)C45—C44—H44120.3
C15—C10—C9117.9 (3)C40—C45—C44120.5 (3)
C11—C10—C9124.0 (3)C40—C45—H45119.7
C12—C11—C10120.7 (3)C44—C45—H45119.7
C12—C11—H11119.6O14—C46—H46A109.5
C10—C11—H11119.6O14—C46—H46B109.5
C13—C12—C11120.4 (4)H46A—C46—H46B109.5
C13—C12—H12119.8O14—C46—H46C109.5
C11—C12—H12119.8H46A—C46—H46C109.5
C12—C13—C14120.1 (4)H46B—C46—H46C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.882.042.907 (3)168
N4—H4A···O13ii0.882.082.910 (4)156
N6—H6A···O140.881.982.810 (4)156
O14—H14A···O10iii0.842.052.865 (4)165
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+2, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn2(C15H13N2O3)3]ClO4·CH4O
Mr1049.19
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)12.7184 (6), 13.8723 (7), 15.0885 (12)
α, β, γ (°)100.268 (1), 94.030 (1), 115.826 (1)
V3)2324.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.906, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
11959, 8138, 6183
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.05
No. of reflections8138
No. of parameters627
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.68

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Mn1—O22.099 (2)Mn2—O12.427 (2)
Mn1—O32.148 (2)Mn2—O22.083 (2)
Mn1—O82.105 (2)Mn2—O52.061 (2)
Mn1—O92.196 (2)Mn2—O62.192 (2)
Mn1—N12.263 (2)Mn2—O82.215 (2)
Mn1—N52.253 (3)Mn2—N32.200 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.882.042.907 (3)168
N4—H4A···O13ii0.882.082.910 (4)156
N6—H6A···O140.881.982.810 (4)156
O14—H14A···O10iii0.842.052.865 (4)165
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+2, z+1; (iii) x1, y, z.
 

Acknowledgements

The authors thank Changchun University of Science and Technology for a research grant and Fujian Normal University for a technology grant.

References

First citationAndo, R., Yagyu, T. & Maeda, M. (2004). Inorg. Chim. Acta, 357, 2237–2244.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostes, J. P., Dominiguez-Vera, J. M. & Laurent, J. P. (1995). Polyhedron, 14, 2179–2187.  CrossRef CAS Web of Science Google Scholar
First citationDuda, D., Govindasamy, L., Agbandje-McKenna, M., Tu, C., Silverman, D. N. & McKenna, R. (2003). Acta Cryst. D59, 93–104.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, J.-S. & Li, M.-T. (2007). Acta Cryst. E63, m2170–m2171.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, S.-H., Gao, S.-K., Liu, S.-X. & Guo, Y.-N. (2010). Cryst. Growth Des. 10, 495–503.  Web of Science CrossRef CAS Google Scholar
First citationMikuriya, M., Yamato, Y. & Tokii, T. (1992). Bull. Chem. Soc. Jpn, 65, 2624–2637.  CrossRef CAS Web of Science Google Scholar
First citationPouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSacconi, L. (1954). Z. Anorg. Allg. Chem. 275, 249–256.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddall, T. L., Miyaura, N. & Huffman, J. C. (1983). J. Chem. Soc. Chem. Commun. pp. 1185–1986.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationYin, H. (2008). Acta Cryst. C64, m324–m326.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYu, Z.-X., Qi, J.-S., Liang, K.-Z. & Sun, Y.-X. (2006). Acta Cryst. E62, m3284–m3286.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds