metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ4-bis­­(4-pyridyl­carbon­yl)piperazine-κ4N:N′:O:O′]bis­­(thio­cyanato-κN)cobalt(II)]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 12 May 2010; accepted 21 May 2010; online 29 May 2010)

In the title compound, [Co(NCS)2(C16H16N4O2)]n, the octa­hedrally coordinated CoII ion lies on a crystallographic inversion center, with trans isothio­cyanate ligands. Pyridyl N-donor atoms and formyl O-donor atoms from exotetra­dentate bis­(4-pyridyl­carbon­yl)piperazine (4-bpfp) ligands link the Co(NCS)2 units into a [Co(NCS)2(4-bpfp)]n coordination polymer layer that is oriented parallel to (101). The layers stack along [010] to construct the pseudo-three-dimensional structure.

Related literature

For divalent metal isophthalate coordination polymers containing bis­(4-pyridylmeth­yl)piperazine ligands, see: Martin et al. (2007[Martin, D. P., Braverman, M. A. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 2609-2619.]). For a cobalt isothio­cyanate coordination polymer containing bis­(4-pyridylmeth­yl)piperazine ligands, see: Martin et al. (2009[Martin, D. P., Knapp, W. R., Supkowski, R. M. & LaDuca, R. L. (2009). Inorg. Chim. Acta, 362, 1559-1564.]). For the preparation of 4-bpfp, see: Hou et al. (2003[Hou, H., Song, Y., Xu, H., Wei, Y., Fan, Y., Zhu, Y., Li, L. & Du, C. (2003). Macromolecules, 36, 999-1008.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(C16H16N4O2)]

  • Mr = 471.44

  • Triclinic, [P \overline 1]

  • a = 7.7410 (14) Å

  • b = 7.8943 (15) Å

  • c = 9.801 (3) Å

  • α = 101.080 (2)°

  • β = 102.264 (2)°

  • γ = 119.136 (2)°

  • V = 479.58 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 173 K

  • 0.42 × 0.19 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.643, Tmax = 0.928

  • 6955 measured reflections

  • 1753 independent reflections

  • 1646 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.18

  • 1753 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 2.1739 (19)
Co1—N3 2.026 (2)
Co1—O1i 2.2034 (16)
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently our group has been investigating the synthesis of divalent metal coordination polymers containing aromatic dicarboxylate and bis(4-pyridyl-methyl)piperazine ligands (Martin et al., 2007). To probe the structural effect of the presence of hydrogen-bond accepting formyl oxygen atoms in a similar ligand, we attempted to prepare a cobalt phthalate coordination polymer containing bis(4-pyridylcarbonyl)piperazine (4-bpfp). Use of cobalt(II) thiocyanate as the metal precursor afforded pink plates of the title compound.

The title compound crystallizes in the centrosymmetric triclinic space group with an asymmetric unit consisting of a CoII ion on a crystallographic inversion center, one isothiocyanate ligand bound via its N atom, and one-half of a 4-bpfp molecule. The coordination environment at Co is a slightly distorted [CoN4O2] octahedron (Fig. 1), with trans isothiocyanate ligands, trans pyridyl N atom donors from two 4-bpfp ligands, and trans formyl O atom donors from two other 4-bpfp ligands.

Each 4-bpfp ligand is exotetradentate, ligating to Co atoms through both pyridyl N atoms and both formyl O atoms. As a result, [Co(NCS)2(4-bpfp)]n coordination polymer layers are formed (Fig. 2), which are oriented parallel to the ac crystal planes. Fourteen-membered [CoOC4N]2 circuits, whose centroids rest on crystallographic inversion centers, are evident within the layer motifs. The Co···Co distances across these circuits denote the a lattice parameter. The through-ligand Co···Co distances across the full span of the 4-bpfp ligands measure 16.471 (4) Å.

Adjacent [Co(NCS)2(4-bpfp)]n layers stack in an AAA pattern along the b direction (Fig. 3), with the isothiocyanate ligands projecting above and below the layer planes. Crystal packing forces cause aggregation of the layer motifs into pseudo three-dimensional crystal structure of the title compound.

Related literature top

For divalent metal isophthalate coordination polymers containing bis(4-pyridyl-methyl)piperazine ligands, see: Martin et al. (2007). For a cobalt isothiocyanate coordination polymer containing bis(4-pyridyl-methyl)piperazine ligands, see: Martin et al. (2009). For the preparation of 4-bpfp, see: Hou, et al. (2003).

Experimental top

All starting materials were obtained commercially, except for 4-bpfp, which was prepared by a published procedure (Hou et al., 2003). Cobalt(II) thiocyanate (130 mg, 0.74 mmol), phthalic acid (123 mg, 0.74 mmol) and 4-bpfp (110 mg, 0.37 mmol) were placed into 10 ml H2O in a 23 ml Teflon-lined Parr acid digestion bomb. The bomb was heated at 393 K for 48 h and was then allowed to cool to room temperature. Pink plates of the title compound were obtained along with a white powdery solid.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.93 (CH) and 0.97 (CH2) Å, and refined in a riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

Recently our group has been investigating the synthesis of divalent metal coordination polymers containing aromatic dicarboxylate and bis(4-pyridyl-methyl)piperazine ligands (Martin et al., 2007). To probe the structural effect of the presence of hydrogen-bond accepting formyl oxygen atoms in a similar ligand, we attempted to prepare a cobalt phthalate coordination polymer containing bis(4-pyridylcarbonyl)piperazine (4-bpfp). Use of cobalt(II) thiocyanate as the metal precursor afforded pink plates of the title compound.

The title compound crystallizes in the centrosymmetric triclinic space group with an asymmetric unit consisting of a CoII ion on a crystallographic inversion center, one isothiocyanate ligand bound via its N atom, and one-half of a 4-bpfp molecule. The coordination environment at Co is a slightly distorted [CoN4O2] octahedron (Fig. 1), with trans isothiocyanate ligands, trans pyridyl N atom donors from two 4-bpfp ligands, and trans formyl O atom donors from two other 4-bpfp ligands.

Each 4-bpfp ligand is exotetradentate, ligating to Co atoms through both pyridyl N atoms and both formyl O atoms. As a result, [Co(NCS)2(4-bpfp)]n coordination polymer layers are formed (Fig. 2), which are oriented parallel to the ac crystal planes. Fourteen-membered [CoOC4N]2 circuits, whose centroids rest on crystallographic inversion centers, are evident within the layer motifs. The Co···Co distances across these circuits denote the a lattice parameter. The through-ligand Co···Co distances across the full span of the 4-bpfp ligands measure 16.471 (4) Å.

Adjacent [Co(NCS)2(4-bpfp)]n layers stack in an AAA pattern along the b direction (Fig. 3), with the isothiocyanate ligands projecting above and below the layer planes. Crystal packing forces cause aggregation of the layer motifs into pseudo three-dimensional crystal structure of the title compound.

For divalent metal isophthalate coordination polymers containing bis(4-pyridyl-methyl)piperazine ligands, see: Martin et al. (2007). For a cobalt isothiocyanate coordination polymer containing bis(4-pyridyl-methyl)piperazine ligands, see: Martin et al. (2009). For the preparation of 4-bpfp, see: Hou, et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the title compound, showing 50% probability ellipsoids. Hydrogen atom positions are shown as grey sticks. [Color codes: dark blue Co, yellow S, red O, light blue N, black C. Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z; (iii) x+1, y, z; (iv) -x-1, -y+1, -z-1.]
[Figure 2] Fig. 2. [Co(NCS)2(4-bpfp)]n layer in the title compound.
[Figure 3] Fig. 3. Packing diagram of the title compound.
Poly[[µ4-bis(4-pyridylcarbonyl)piperazine- κ4N:N':O:O']bis(thiocyanato- κN)cobalt(II)] top
Crystal data top
[Co(NCS)2(C16H16N4O2)]Z = 1
Mr = 471.44F(000) = 241
Triclinic, P1Dx = 1.632 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7410 (14) ÅCell parameters from 6955 reflections
b = 7.8943 (15) Åθ = 2.3–25.3°
c = 9.801 (3) ŵ = 1.14 mm1
α = 101.080 (2)°T = 173 K
β = 102.264 (2)°Plate, pink
γ = 119.136 (2)°0.42 × 0.19 × 0.07 mm
V = 479.58 (18) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1753 independent reflections
Radiation source: fine-focus sealed tube1646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω and φ scansθmax = 25.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.643, Tmax = 0.928k = 99
6955 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.1032P]
where P = (Fo2 + 2Fc2)/3
1753 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Co(NCS)2(C16H16N4O2)]γ = 119.136 (2)°
Mr = 471.44V = 479.58 (18) Å3
Triclinic, P1Z = 1
a = 7.7410 (14) ÅMo Kα radiation
b = 7.8943 (15) ŵ = 1.14 mm1
c = 9.801 (3) ÅT = 173 K
α = 101.080 (2)°0.42 × 0.19 × 0.07 mm
β = 102.264 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1753 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1646 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.928Rint = 0.052
6955 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.18Δρmax = 0.37 e Å3
1753 reflectionsΔρmin = 0.55 e Å3
133 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.00000.03453 (19)
S10.75373 (12)1.06782 (11)0.44195 (8)0.0504 (2)
N10.2531 (3)0.5500 (3)0.0887 (2)0.0359 (4)
N20.3493 (3)0.6090 (3)0.3539 (2)0.0384 (5)
N30.6324 (3)0.7503 (3)0.1850 (2)0.0409 (5)
C10.0560 (4)0.3911 (4)0.1764 (3)0.0391 (5)
H10.03040.25940.20750.047*
C20.1098 (4)0.4140 (4)0.2225 (3)0.0389 (5)
H20.24400.29960.28280.047*
C30.0749 (4)0.6093 (4)0.1781 (2)0.0364 (5)
C40.1289 (4)0.7751 (4)0.0883 (3)0.0402 (5)
H40.15890.90850.05640.048*
C50.2849 (4)0.7384 (4)0.0476 (3)0.0402 (5)
H50.42080.85060.01190.048*
C60.2526 (4)0.6408 (3)0.2131 (3)0.0366 (5)
C70.5284 (4)0.6312 (4)0.3955 (3)0.0418 (6)
H7A0.48790.74920.42810.050*
H7B0.56820.65500.30990.050*
C80.2853 (4)0.5629 (4)0.4802 (3)0.0407 (6)
H8A0.17060.54380.44780.049*
H8B0.23490.67810.51630.049*
C90.6850 (4)0.8842 (4)0.2928 (3)0.0368 (5)
O10.3046 (2)0.6962 (2)0.10853 (17)0.0385 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0345 (3)0.0389 (3)0.0305 (3)0.0226 (2)0.0083 (2)0.0097 (2)
S10.0535 (4)0.0462 (4)0.0441 (4)0.0265 (4)0.0163 (3)0.0048 (3)
N10.0353 (10)0.0408 (11)0.0334 (10)0.0222 (9)0.0114 (8)0.0142 (8)
N20.0369 (11)0.0495 (12)0.0346 (10)0.0276 (10)0.0121 (8)0.0157 (9)
N30.0404 (11)0.0456 (11)0.0369 (11)0.0262 (10)0.0100 (9)0.0114 (10)
C10.0401 (13)0.0394 (12)0.0372 (12)0.0234 (11)0.0121 (10)0.0102 (10)
C20.0365 (12)0.0426 (13)0.0315 (12)0.0212 (11)0.0071 (10)0.0082 (10)
C30.0384 (12)0.0459 (13)0.0300 (12)0.0250 (11)0.0141 (10)0.0158 (10)
C40.0393 (13)0.0399 (13)0.0408 (13)0.0225 (11)0.0105 (10)0.0149 (10)
C50.0352 (12)0.0393 (13)0.0403 (13)0.0185 (11)0.0083 (10)0.0139 (10)
C60.0344 (12)0.0361 (12)0.0363 (12)0.0186 (10)0.0092 (10)0.0124 (10)
C70.0438 (14)0.0579 (15)0.0361 (13)0.0358 (13)0.0143 (11)0.0181 (11)
C80.0368 (12)0.0589 (15)0.0363 (13)0.0308 (12)0.0153 (10)0.0207 (11)
C90.0322 (12)0.0415 (13)0.0374 (13)0.0210 (11)0.0109 (10)0.0147 (11)
O10.0394 (9)0.0435 (9)0.0352 (9)0.0253 (8)0.0122 (7)0.0124 (7)
Geometric parameters (Å, º) top
Co1—N12.1739 (19)C2—H20.9300
Co1—N32.026 (2)C3—C41.391 (3)
Co1—O1i2.2034 (16)C3—C61.496 (3)
S1—C91.620 (3)C4—C51.372 (4)
N1—C11.343 (3)C4—H40.9300
N1—C51.344 (3)C5—H50.9300
N2—C61.331 (3)C6—O11.256 (3)
N2—C71.464 (3)C7—C8ii1.515 (3)
N2—C81.475 (3)C7—H7A0.9700
N3—C91.170 (3)C7—H7B0.9700
C1—C21.377 (3)C8—C7ii1.515 (3)
C1—H10.9300C8—H8A0.9700
C2—C31.388 (3)C8—H8B0.9700
N3iii—Co1—N3180.0C3—C2—H2120.3
N3iii—Co1—N190.06 (8)C2—C3—C4118.0 (2)
N3—Co1—N189.94 (8)C2—C3—C6121.7 (2)
N3iii—Co1—N1iii89.94 (8)C4—C3—C6120.1 (2)
N3—Co1—N1iii90.06 (8)C5—C4—C3118.8 (2)
N1—Co1—N1iii180.00 (9)C5—C4—H4120.6
N3iii—Co1—O1i90.43 (7)C3—C4—H4120.6
N3—Co1—O1i89.57 (7)N1—C5—C4123.9 (2)
N1—Co1—O1i89.79 (7)N1—C5—H5118.0
N1iii—Co1—O1i90.21 (7)C4—C5—H5118.0
N3iii—Co1—O1iv89.57 (7)O1—C6—N2122.7 (2)
N3—Co1—O1iv90.43 (7)O1—C6—C3118.7 (2)
N1—Co1—O1iv90.21 (7)N2—C6—C3118.7 (2)
N1iii—Co1—O1iv89.79 (7)N2—C7—C8ii109.9 (2)
O1i—Co1—O1iv180.00 (9)N2—C7—H7A109.7
C1—N1—C5116.8 (2)C8ii—C7—H7A109.7
C1—N1—Co1121.35 (15)N2—C7—H7B109.7
C5—N1—Co1121.59 (15)C8ii—C7—H7B109.7
C6—N2—C7121.13 (19)H7A—C7—H7B108.2
C6—N2—C8125.8 (2)N2—C8—C7ii109.98 (19)
C7—N2—C8112.94 (18)N2—C8—H8A109.7
C9—N3—Co1171.96 (19)C7ii—C8—H8A109.7
N1—C1—C2123.1 (2)N2—C8—H8B109.7
N1—C1—H1118.4C7ii—C8—H8B109.7
C2—C1—H1118.4H8A—C8—H8B108.2
C1—C2—C3119.4 (2)N3—C9—S1179.0 (2)
C1—C2—H2120.3C6—O1—Co1v127.28 (15)
N3iii—Co1—N1—C132.05 (18)Co1—N1—C5—C4173.16 (18)
N3—Co1—N1—C1147.95 (18)C3—C4—C5—N10.4 (4)
O1i—Co1—N1—C158.38 (17)C7—N2—C6—O11.9 (4)
O1iv—Co1—N1—C1121.62 (17)C8—N2—C6—O1174.0 (2)
N3iii—Co1—N1—C5154.13 (18)C7—N2—C6—C3178.1 (2)
N3—Co1—N1—C525.87 (18)C8—N2—C6—C36.1 (3)
O1i—Co1—N1—C5115.44 (18)C2—C3—C6—O1110.4 (3)
O1iv—Co1—N1—C564.56 (18)C4—C3—C6—O164.0 (3)
C5—N1—C1—C20.9 (3)C2—C3—C6—N269.5 (3)
Co1—N1—C1—C2173.23 (17)C4—C3—C6—N2116.0 (3)
N1—C1—C2—C30.3 (4)C6—N2—C7—C8ii126.9 (2)
C1—C2—C3—C40.2 (3)C8—N2—C7—C8ii56.8 (3)
C1—C2—C3—C6174.4 (2)C6—N2—C8—C7ii127.0 (2)
C2—C3—C4—C50.2 (3)C7—N2—C8—C7ii56.8 (3)
C6—C3—C4—C5174.5 (2)N2—C6—O1—Co1v100.8 (2)
C1—N1—C5—C40.9 (3)C3—C6—O1—Co1v79.1 (2)
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C16H16N4O2)]
Mr471.44
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.7410 (14), 7.8943 (15), 9.801 (3)
α, β, γ (°)101.080 (2), 102.264 (2), 119.136 (2)
V3)479.58 (18)
Z1
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.42 × 0.19 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.643, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
6955, 1753, 1646
Rint0.052
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.18
No. of reflections1753
No. of parameters133
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.55

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2007).

Selected bond lengths (Å) top
Co1—N12.1739 (19)Co1—O1i2.2034 (16)
Co1—N32.026 (2)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work. ZMW thanks Dr Richard Staples for instruction in the use of the crystallographic software.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, H., Song, Y., Xu, H., Wei, Y., Fan, Y., Zhu, Y., Li, L. & Du, C. (2003). Macromolecules, 36, 999–1008.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartin, D. P., Braverman, M. A. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 2609–2619.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartin, D. P., Knapp, W. R., Supkowski, R. M. & LaDuca, R. L. (2009). Inorg. Chim. Acta, 362, 1559–1564.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds