organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Methyl­piperazin-1-yl)-2-nitro­aniline

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 7 April 2010; accepted 30 April 2010; online 8 May 2010)

In the title compound, C11H16N4O2, the dihedral angle between the benzene ring and the plane of the four carbon atoms in the piperazine ring is 12.17 (3)°; the latter ring adopts a chair conformation. An intramolecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, the molecules are linked by N—H⋯N hydrogen bonds, forming chains.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthetic procedure and use of the title compound as an inter­mediate in the synthesis of tyrosine kinase inhibitors, see: Renhowe et al. (2009[Renhowe, P. A., Pecchi, S., Shafer, C. M., Machajewski, T. D., Jazan, E. M., Taylor, C., Antonius-McCrea, W., McBride, C. M., Frazier, K., Wiesmann, M., Lapointe, G. R., Feucht, P. H., Warne, R. L., Heise, C. C., Menezes, D., Aardalen, K., Ye, H., He, M., Le, V., Vora, J., Jansen, J. M., Wernette-Hammond, M. E. & Harris, A. L. (2009). J. Med. Chem. 52, 278-292.]).

[Scheme 1]

Experimental

Crystal data
  • C11H16N4O2

  • Mr = 236.28

  • Monoclinic, P 21 /c

  • a = 11.027 (2) Å

  • b = 6.121 (1) Å

  • c = 17.524 (4) Å

  • β = 103.79 (3)°

  • V = 1148.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.971, Tmax = 0.995

  • 2205 measured reflections

  • 2090 independent reflections

  • 1358 reflections with I > 2σ(I)

  • Rint = 0.042

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.192

  • S = 1.01

  • 2090 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3C⋯N1i 0.86 2.39 3.156 (4) 148
N3—H3D⋯O1 0.86 2.06 2.669 (4) 127
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), has been reported as an intermediate for the synthesis of novel tyrosine kinase inhibitors (Renhowe, P. A. et al., 2009). We herein report its crystal structure.

In the molecular structure of (I), (Fig.1), bond lengths (Allen et al., 1987) and angles are within normal ranges. N2, N3 and N4 atoms are almost coplanar with the benzene ring to which they are bonded [deviations of 0.078 (1), 0.052 (1) and 0.078 (1) Å]. The plane of C2—C3—C4—C5 is nearly parallel with the benzene ring plane (the torsion angle is 12.17 (3) °). By contrast, due to the piperazine moiety adopting a chair conformation N1—C2—C5 and N2—C3—C4 form two separate planes with torsion angle of 45.87 (2) ° and 25.92 (3) °, respectively, with respect to the benzene ring. The crystal structure of the title compound exhibits N—H···O, C—H···O, and N—H···N intra- and intermolecular hydrogen bonds to form a three dimensional network.

As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the b axis.

Related literature top

For bond-length data, see: Allen et al. (1987). For the synthetic procedure and use of the title compound as an intermediate in the synthesis of tyrosine kinase inhibitors, see: Renhowe et al. (2009).

Experimental top

The title compound, (I) was prepared by a literature method (Renhowe, P. A. et al., 2009). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in methanol (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å, C—H = 0.93 Å for aromatic H, 0.97 Å for methylene and 0.96 Å for methyl groups. Refinement was performed using a riding model with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H atoms.

Structure description top

The title compound, (I), has been reported as an intermediate for the synthesis of novel tyrosine kinase inhibitors (Renhowe, P. A. et al., 2009). We herein report its crystal structure.

In the molecular structure of (I), (Fig.1), bond lengths (Allen et al., 1987) and angles are within normal ranges. N2, N3 and N4 atoms are almost coplanar with the benzene ring to which they are bonded [deviations of 0.078 (1), 0.052 (1) and 0.078 (1) Å]. The plane of C2—C3—C4—C5 is nearly parallel with the benzene ring plane (the torsion angle is 12.17 (3) °). By contrast, due to the piperazine moiety adopting a chair conformation N1—C2—C5 and N2—C3—C4 form two separate planes with torsion angle of 45.87 (2) ° and 25.92 (3) °, respectively, with respect to the benzene ring. The crystal structure of the title compound exhibits N—H···O, C—H···O, and N—H···N intra- and intermolecular hydrogen bonds to form a three dimensional network.

As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the b axis.

For bond-length data, see: Allen et al. (1987). For the synthetic procedure and use of the title compound as an intermediate in the synthesis of tyrosine kinase inhibitors, see: Renhowe et al. (2009).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
5-(4-Methylpiperazin-1-yl)-2-nitroaniline top
Crystal data top
C11H16N4O2Dx = 1.366 Mg m3
Mr = 236.28Melting point: 428 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.027 (2) ÅCell parameters from 25 reflections
b = 6.121 (1) Åθ = 9–13°
c = 17.524 (4) ŵ = 0.10 mm1
β = 103.79 (3)°T = 293 K
V = 1148.7 (4) Å3Block, yellow
Z = 40.30 × 0.20 × 0.05 mm
F(000) = 504
Data collection top
Enraf–Nonius CAD-4
diffractometer
1358 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.971, Tmax = 0.995l = 2120
2205 measured reflections3 standard reflections every 200 reflections
2090 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.1P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2090 reflectionsΔρmax = 0.25 e Å3
155 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (6)
Crystal data top
C11H16N4O2V = 1148.7 (4) Å3
Mr = 236.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.027 (2) ŵ = 0.10 mm1
b = 6.121 (1) ÅT = 293 K
c = 17.524 (4) Å0.30 × 0.20 × 0.05 mm
β = 103.79 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1358 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.971, Tmax = 0.9953 standard reflections every 200 reflections
2205 measured reflections intensity decay: 1%
2090 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
2090 reflectionsΔρmin = 0.18 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6711 (2)0.0465 (4)0.16875 (13)0.0438 (6)
O11.3775 (2)0.0656 (4)0.56703 (14)0.0774 (8)
C10.5525 (3)0.1090 (6)0.11543 (19)0.0603 (9)
H1A0.56830.20640.07600.090*
H1B0.50070.18090.14470.090*
H1C0.51070.01930.09070.090*
N20.8586 (2)0.0019 (4)0.31264 (13)0.0397 (6)
O21.2787 (2)0.3532 (4)0.58981 (13)0.0662 (7)
C20.7330 (3)0.2397 (5)0.20898 (17)0.0484 (8)
H2A0.68260.30070.24220.058*
H2B0.74090.34930.17050.058*
C30.8606 (3)0.1827 (5)0.25841 (16)0.0466 (8)
H3A0.91430.14400.22400.056*
H3B0.89600.31030.28830.056*
N31.2683 (2)0.2156 (4)0.45524 (16)0.0613 (8)
H3C1.25950.33150.42670.074*
H3D1.33590.19540.49090.074*
C40.7741 (3)0.1801 (5)0.28094 (18)0.0478 (8)
H4A0.75770.26450.32420.057*
H4B0.81490.27550.25060.057*
N41.2841 (2)0.1869 (5)0.55073 (15)0.0527 (7)
C50.6513 (3)0.1026 (5)0.22932 (17)0.0506 (8)
H5A0.60350.22760.20480.061*
H5B0.60330.02920.26150.061*
C60.9667 (2)0.0433 (4)0.36840 (15)0.0367 (7)
C71.0669 (2)0.1023 (5)0.38534 (15)0.0398 (7)
H7A1.06100.23070.35630.048*
C81.1758 (2)0.0647 (5)0.44396 (16)0.0415 (7)
C91.1820 (2)0.1317 (5)0.48727 (15)0.0422 (7)
C101.0839 (3)0.2817 (5)0.46870 (17)0.0475 (8)
H10A1.09010.41200.49660.057*
C110.9799 (3)0.2428 (5)0.41112 (17)0.0444 (7)
H11A0.91690.34710.39950.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0385 (13)0.0422 (14)0.0464 (13)0.0004 (11)0.0017 (10)0.0030 (11)
O10.0545 (14)0.0794 (18)0.0820 (17)0.0125 (13)0.0158 (12)0.0122 (14)
C10.0411 (17)0.067 (2)0.065 (2)0.0050 (16)0.0025 (15)0.0064 (18)
N20.0357 (12)0.0346 (12)0.0458 (13)0.0029 (10)0.0040 (10)0.0048 (11)
O20.0610 (15)0.0616 (15)0.0674 (15)0.0125 (12)0.0015 (12)0.0190 (12)
C20.0527 (18)0.0375 (16)0.0502 (17)0.0004 (14)0.0030 (14)0.0085 (14)
C30.0449 (17)0.0396 (16)0.0503 (17)0.0067 (14)0.0016 (14)0.0084 (14)
N30.0486 (15)0.0509 (16)0.0724 (17)0.0149 (13)0.0094 (13)0.0073 (14)
C40.0440 (16)0.0354 (15)0.0605 (18)0.0053 (13)0.0057 (14)0.0075 (14)
N40.0484 (15)0.0537 (17)0.0516 (15)0.0041 (14)0.0033 (12)0.0020 (13)
C50.0383 (16)0.0456 (17)0.0636 (19)0.0060 (14)0.0036 (14)0.0058 (16)
C60.0354 (14)0.0369 (15)0.0393 (14)0.0018 (12)0.0118 (12)0.0007 (12)
C70.0414 (15)0.0320 (15)0.0443 (15)0.0013 (12)0.0071 (12)0.0025 (12)
C80.0391 (15)0.0386 (16)0.0455 (16)0.0015 (13)0.0075 (13)0.0057 (13)
C90.0398 (15)0.0469 (17)0.0377 (15)0.0063 (13)0.0051 (12)0.0029 (13)
C100.0470 (17)0.0444 (18)0.0510 (17)0.0014 (14)0.0116 (14)0.0123 (14)
C110.0391 (15)0.0395 (16)0.0527 (17)0.0031 (13)0.0071 (13)0.0101 (14)
Geometric parameters (Å, º) top
N1—C51.455 (3)N3—H3C0.8600
N1—C21.460 (4)N3—H3D0.8600
N1—C11.466 (3)C4—C51.514 (4)
O1—N41.246 (3)C4—H4A0.9700
C1—H1A0.9600C4—H4B0.9700
C1—H1B0.9600N4—C91.422 (4)
C1—H1C0.9600C5—H5A0.9700
N2—C61.377 (3)C5—H5B0.9700
N2—C31.462 (3)C6—C71.395 (4)
N2—C41.473 (3)C6—C111.421 (4)
O2—N41.236 (3)C7—C81.401 (4)
C2—C31.507 (4)C7—H7A0.9300
C2—H2A0.9700C8—C91.415 (4)
C2—H2B0.9700C9—C101.396 (4)
C3—H3A0.9700C10—C111.356 (4)
C3—H3B0.9700C10—H10A0.9300
N3—C81.355 (3)C11—H11A0.9300
C5—N1—C2106.8 (2)N2—C4—H4B109.1
C5—N1—C1111.2 (2)C5—C4—H4B109.1
C2—N1—C1109.8 (2)H4A—C4—H4B107.8
N1—C1—H1A109.5O2—N4—O1120.6 (3)
N1—C1—H1B109.5O2—N4—C9119.7 (3)
H1A—C1—H1B109.5O1—N4—C9119.7 (3)
N1—C1—H1C109.5N1—C5—C4111.3 (2)
H1A—C1—H1C109.5N1—C5—H5A109.4
H1B—C1—H1C109.5C4—C5—H5A109.4
C6—N2—C3118.0 (2)N1—C5—H5B109.4
C6—N2—C4118.6 (2)C4—C5—H5B109.4
C3—N2—C4115.7 (2)H5A—C5—H5B108.0
N1—C2—C3110.8 (2)N2—C6—C7122.0 (2)
N1—C2—H2A109.5N2—C6—C11120.6 (2)
C3—C2—H2A109.5C7—C6—C11117.4 (2)
N1—C2—H2B109.5C6—C7—C8123.2 (3)
C3—C2—H2B109.5C6—C7—H7A118.4
H2A—C2—H2B108.1C8—C7—H7A118.4
N2—C3—C2113.1 (2)N3—C8—C7118.6 (3)
N2—C3—H3A109.0N3—C8—C9124.2 (2)
C2—C3—H3A109.0C7—C8—C9117.2 (2)
N2—C3—H3B109.0C10—C9—C8119.9 (2)
C2—C3—H3B109.0C10—C9—N4116.8 (3)
H3A—C3—H3B107.8C8—C9—N4123.3 (3)
C8—N3—H3C120.0C11—C10—C9121.9 (3)
C8—N3—H3D120.0C11—C10—H10A119.0
H3C—N3—H3D120.0C9—C10—H10A119.0
N2—C4—C5112.5 (2)C10—C11—C6120.3 (3)
N2—C4—H4A109.1C10—C11—H11A119.8
C5—C4—H4A109.1C6—C11—H11A119.8
C5—N1—C2—C364.5 (3)C6—C7—C8—N3179.3 (3)
C1—N1—C2—C3174.7 (2)C6—C7—C8—C90.1 (4)
C6—N2—C3—C2170.8 (2)N3—C8—C9—C10177.0 (3)
C4—N2—C3—C240.4 (3)C7—C8—C9—C102.4 (4)
N1—C2—C3—N253.1 (3)N3—C8—C9—N43.6 (4)
C6—N2—C4—C5171.8 (2)C7—C8—C9—N4177.1 (2)
C3—N2—C4—C539.5 (3)O2—N4—C9—C105.1 (4)
C2—N1—C5—C464.2 (3)O1—N4—C9—C10175.8 (3)
C1—N1—C5—C4175.9 (3)O2—N4—C9—C8174.4 (3)
N2—C4—C5—N152.0 (3)O1—N4—C9—C84.8 (4)
C3—N2—C6—C713.8 (4)C8—C9—C10—C111.8 (4)
C4—N2—C6—C7161.8 (2)N4—C9—C10—C11177.7 (3)
C3—N2—C6—C11166.2 (2)C9—C10—C11—C61.2 (5)
C4—N2—C6—C1118.2 (4)N2—C6—C11—C10176.7 (3)
N2—C6—C7—C8177.3 (2)C7—C6—C11—C103.3 (4)
C11—C6—C7—C82.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···N1i0.862.393.156 (4)148
N3—H3D···O10.862.062.669 (4)127
C10—H10A···O20.932.352.671 (4)100
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H16N4O2
Mr236.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.027 (2), 6.121 (1), 17.524 (4)
β (°) 103.79 (3)
V3)1148.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.971, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
2205, 2090, 1358
Rint0.042
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.192, 1.01
No. of reflections2090
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···N1i0.86002.39003.156 (4)148.00
N3—H3D···O10.86002.06002.669 (4)127.00
C10—H10A···O20.93002.35002.671 (4)100.00
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Test and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRenhowe, P. A., Pecchi, S., Shafer, C. M., Machajewski, T. D., Jazan, E. M., Taylor, C., Antonius-McCrea, W., McBride, C. M., Frazier, K., Wiesmann, M., Lapointe, G. R., Feucht, P. H., Warne, R. L., Heise, C. C., Menezes, D., Aardalen, K., Ye, H., He, M., Le, V., Vora, J., Jansen, J. M., Wernette-Hammond, M. E. & Harris, A. L. (2009). J. Med. Chem. 52, 278–292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds