organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(Z)-Allyl­amino­(phen­yl)methyl­ene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aCollege of Chemistry, Tianjin Normal University, 393 Binshuixi Road, Xiqing District, Tianjin 300387, People's Republic of China, bNankai High School, 100 Sima Road, Nankai District, Tianjin 300100, People's Republic of China, and cState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: hsxyxhz@mail.tjnu.edu.cn, zyq8165@nankai.edu.cn

(Received 5 April 2010; accepted 14 April 2010; online 12 May 2010)

The title compound, C20H19N3O, exists in a keto–enamine tautomeric form. The pyrazolone ring makes dihedral angles of 20.52 (10) and 77.73 (5)° with the two phenyl rings and an intra­molecular N—H⋯O hydrogen bond occurs. A weak inter­molecular C—H⋯O hydrogen bond is observed in the crystal structure. The allyl group is disordered over two positions, with site-occupancy factors of 0.533 (5) and 0.467 (5).

Related literature

For the analgesic activity of metal complexes with 1-phenyl-3-methyl-4-benzoyl­pyrazolon-5-one, see: Li et al. (1997[Li, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem. 14, 98-100.]); Liu et al. (1980[Liu, J.-M., Yang, R.-D. & Ma, T.-R. (1980). Chem. J. Chin. Univ. 1, 23-29.]); Zhou et al. (1999[Zhou, Y.-P., Yang, Zh.-Y., Yu, H.-J. & Yang, R.-D. (1999). Chin. J. Appl. Chem. 16, 37-41.]). For related structures, see: Bao et al. (2004[Bao, F., Lü, X.-Q., Qiao, Y.-Q., Wu, Q. & Ng, S. W. (2004). Acta Cryst. E60, o2191-o2192.]); Sun et al. (2007[Sun, Y.-F., Li, J.-K., Wu, R.-T. & Zheng, Z.-B. (2007). Acta Cryst. E63, o2176-o2177.]); Zhu et al. (2005[Zhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387-o2388.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N3O

  • Mr = 317.38

  • Triclinic, [P \overline 1]

  • a = 9.295 (1) Å

  • b = 9.8440 (12) Å

  • c = 10.0670 (14) Å

  • α = 86.175 (8)°

  • β = 89.280 (9)°

  • γ = 74.329 (7)°

  • V = 884.90 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Rigaku Saturn724 CCD camera diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStrcuture. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.984, Tmax = 0.988

  • 10726 measured reflections

  • 3910 independent reflections

  • 2135 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 0.94

  • 3910 reflections

  • 242 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 1.06 (2) 1.75 (2) 2.687 (2) 145 (2)
C17—H17⋯O1i 0.95 2.41 3.345 (2) 168
Symmetry code: (i) -x, -y+2, -z+2.

Data collection: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStrcuture. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStrcuture. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

1-Phenyl-3-methyl-4-benzoylpyrazolon-5-one (HPMBP), an effective β-diketonate, is widely used and well known for its extractive ability. In recent years, HPMBP and its metal complexes have also been found to have good antibacterial and biological properties. Its metal complexes have analgesic activity (Liu et al., 1980; Li et al., 1997; Zhou et al., 1999). In order to develop new medicines, we have synthesized the title compound, (I), and its structure is reported here.

The structure of (I) is shown in Fig. 1. The dihedral angles formed by the pyrazolone ring with the two phenyl rings C5–C10 and C12–C17 are 20.52 (10) and 77.73 (5)°, respectively. The O atom of the 3-methyl-1-phenylpyrazol-5-one moiety and the N atom of the allylamino group are available for coordination with metals. The pyrazole ring is planar and atoms O1, C1, C2, C11 and N3 are almost coplanar, the largest deviation being 0.0195 (11) Å for atom C11. The dihedral angle between this mean plane and the pyrazoline ring of PMBP is 2.01 (12)°. The bond lengths within this part of the molecule lie between classical single- and double-bond lengths, indicating extensive conjugation. A strong intramolecular N3—H3···O1 hydrogen bond (Table 1) is observed, leading to a keto-enamine form. The crystal structure includes intermolecular C—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the analgesic activity of metal complexes with 1-phenyl-3-methyl-4-benzoylpyrazolon-5-one, see: Li et al. (1997); Liu et al. (1980); Zhou et al. (1999). For related structures, see: Bao et al. (2004); Sun et al. (2007); Zhu et al. (2005).

Experimental top

Compound (I) was synthesized by refluxing a mixture of 1-phenyl-3-methyl-4-benzoylpyrazol-5-one (10 mmol) and allylamine (10 mmol) in ethanol (80 ml) over a steam bath for about 10 h. Excess solvent was removed by evaporation and the solution was cooled to room temperature. After 4 d, a colorless solid was obtained and this was dried in air. The product was recrystallized from ethanol, to afford colorless crystals of (I) suitable for X-ray analysis.

Refinement top

C-bound H atoms were positioned geometrically, with C—H = 0.95–0.96 Å and were refined as riding, with Uiso(H) = 1.2Ueq(C). The amine H atom (H3) found in a difference map was refined freely. The allyl group shows positional disorder. In the final refinement, the occupancy factors of two possible sites, C19/C20 and C19'/C20', converged to 0.533 (5) and 0.467 (5). For the disordered unit, distance restraints [C18—C19 = C18—C19' = 1.50 (1) Å and C19—C20 = C19'—C20' = 1.34 (1) Å] were applied. The terminal C20 and C20' atoms were also restrained to be approximately isotropic (ISOR).

Structure description top

1-Phenyl-3-methyl-4-benzoylpyrazolon-5-one (HPMBP), an effective β-diketonate, is widely used and well known for its extractive ability. In recent years, HPMBP and its metal complexes have also been found to have good antibacterial and biological properties. Its metal complexes have analgesic activity (Liu et al., 1980; Li et al., 1997; Zhou et al., 1999). In order to develop new medicines, we have synthesized the title compound, (I), and its structure is reported here.

The structure of (I) is shown in Fig. 1. The dihedral angles formed by the pyrazolone ring with the two phenyl rings C5–C10 and C12–C17 are 20.52 (10) and 77.73 (5)°, respectively. The O atom of the 3-methyl-1-phenylpyrazol-5-one moiety and the N atom of the allylamino group are available for coordination with metals. The pyrazole ring is planar and atoms O1, C1, C2, C11 and N3 are almost coplanar, the largest deviation being 0.0195 (11) Å for atom C11. The dihedral angle between this mean plane and the pyrazoline ring of PMBP is 2.01 (12)°. The bond lengths within this part of the molecule lie between classical single- and double-bond lengths, indicating extensive conjugation. A strong intramolecular N3—H3···O1 hydrogen bond (Table 1) is observed, leading to a keto-enamine form. The crystal structure includes intermolecular C—H···O hydrogen bonds (Table 1 and Fig. 2).

For the analgesic activity of metal complexes with 1-phenyl-3-methyl-4-benzoylpyrazolon-5-one, see: Li et al. (1997); Liu et al. (1980); Zhou et al. (1999). For related structures, see: Bao et al. (2004); Sun et al. (2007); Zhu et al. (2005).

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular hydrogen bonds (dashed line) in the structure of (I).
4-[(Z)-Allylamino(phenyl)methylene]-3-methyl-1-phenyl- 1H-pyrazol-5(4H)-one top
Crystal data top
C20H19N3OZ = 2
Mr = 317.38F(000) = 336
Triclinic, P1Dx = 1.191 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 9.295 (1) ÅCell parameters from 2516 reflections
b = 9.8440 (12) Åθ = 2.0–27.2°
c = 10.0670 (14) ŵ = 0.08 mm1
α = 86.175 (8)°T = 293 K
β = 89.280 (9)°Prism, colorless
γ = 74.329 (7)°0.22 × 0.18 × 0.16 mm
V = 884.90 (19) Å3
Data collection top
Rigaku Saturn724 CCD camera
diffractometer
3910 independent reflections
Radiation source: rotating anode2135 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.032
ω scansθmax = 27.2°, θmin = 2.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
h = 1111
Tmin = 0.984, Tmax = 0.988k = 1212
10726 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0682P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3910 reflectionsΔρmax = 0.17 e Å3
242 parametersΔρmin = 0.19 e Å3
16 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (6)
Crystal data top
C20H19N3Oγ = 74.329 (7)°
Mr = 317.38V = 884.90 (19) Å3
Triclinic, P1Z = 2
a = 9.295 (1) ÅMo Kα radiation
b = 9.8440 (12) ŵ = 0.08 mm1
c = 10.0670 (14) ÅT = 293 K
α = 86.175 (8)°0.22 × 0.18 × 0.16 mm
β = 89.280 (9)°
Data collection top
Rigaku Saturn724 CCD camera
diffractometer
3910 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
2135 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.988Rint = 0.032
10726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04716 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.17 e Å3
3910 reflectionsΔρmin = 0.19 e Å3
242 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.20365 (11)0.99841 (12)0.85524 (11)0.0659 (4)
N10.08977 (14)1.17446 (14)0.69281 (13)0.0581 (4)
N20.03759 (15)1.20734 (14)0.61172 (14)0.0623 (4)
N30.04161 (16)0.81085 (15)0.89396 (14)0.0668 (4)
H30.130 (2)0.858 (2)0.9078 (19)0.098 (6)*
C10.10280 (17)1.05164 (17)0.77140 (15)0.0532 (4)
C20.02439 (16)1.00449 (16)0.73734 (15)0.0523 (4)
C30.10420 (17)1.10712 (17)0.63795 (16)0.0570 (4)
C40.2423 (2)1.1118 (2)0.56172 (19)0.0750 (5)
H4A0.27711.20370.51180.090*
H4B0.32021.09830.62370.090*
H4C0.22031.03640.49960.090*
C50.17910 (19)1.27022 (17)0.69264 (16)0.0593 (4)
C60.1197 (2)1.40867 (19)0.64376 (18)0.0724 (5)
H60.01881.43920.61400.087*
C70.2068 (3)1.5026 (2)0.6381 (2)0.0905 (7)
H70.16621.59720.60310.109*
C80.3519 (3)1.4595 (2)0.6831 (2)0.0945 (7)
H80.41201.52380.67880.113*
C90.4100 (2)1.3225 (2)0.7344 (2)0.0852 (6)
H90.50971.29340.76740.102*
C100.3249 (2)1.2272 (2)0.73843 (19)0.0716 (5)
H100.36641.13250.77250.086*
C110.05472 (16)0.88577 (16)0.80315 (15)0.0531 (4)
C120.19394 (17)0.84403 (16)0.77922 (16)0.0536 (4)
C130.2147 (2)0.77965 (19)0.66608 (18)0.0703 (5)
H130.13660.75540.60290.084*
C140.3499 (2)0.7506 (2)0.6453 (2)0.0828 (6)
H140.36450.70650.56740.099*
C150.4624 (2)0.7848 (2)0.7356 (2)0.0779 (6)
H150.55560.76620.71970.093*
C160.44114 (19)0.8458 (2)0.8489 (2)0.0732 (5)
H160.51920.86810.91220.088*
C170.30750 (18)0.87516 (18)0.87209 (17)0.0642 (5)
H170.29310.91670.95160.077*
C180.0316 (2)0.68276 (19)0.9706 (2)0.0775 (6)
H18A0.01940.63190.91830.093*0.533 (9)
H18B0.02510.70751.04990.093*0.533 (9)
H18C0.03380.60980.91130.093*0.467 (9)
H18D0.06160.70191.01740.093*0.467 (9)
C190.1772 (5)0.5941 (6)1.0070 (7)0.0726 (16)0.533 (9)
H190.23490.55310.93400.087*0.533 (9)
C200.2430 (9)0.5605 (8)1.1187 (6)0.106 (2)0.533 (9)
H20A0.19390.59661.19730.128*0.533 (9)
H20B0.34150.49931.12370.128*0.533 (9)
C19'0.1553 (8)0.6368 (9)1.0669 (8)0.098 (2)0.467 (9)
H19'0.13990.67331.15250.118*0.467 (9)
C20'0.2789 (10)0.5535 (13)1.0447 (12)0.178 (4)0.467 (9)
H20C0.29840.51480.96020.214*0.467 (9)
H20D0.35370.52861.11220.214*0.467 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0607 (7)0.0729 (8)0.0680 (8)0.0270 (6)0.0173 (6)0.0090 (6)
N10.0619 (8)0.0603 (8)0.0555 (8)0.0236 (7)0.0107 (7)0.0028 (7)
N20.0655 (9)0.0643 (9)0.0591 (9)0.0222 (7)0.0147 (7)0.0036 (7)
N30.0652 (9)0.0676 (9)0.0717 (10)0.0284 (7)0.0162 (8)0.0144 (8)
C10.0540 (9)0.0574 (10)0.0496 (9)0.0171 (7)0.0043 (8)0.0023 (8)
C20.0510 (9)0.0576 (9)0.0503 (9)0.0184 (7)0.0055 (7)0.0023 (8)
C30.0556 (9)0.0645 (10)0.0520 (10)0.0176 (8)0.0064 (8)0.0032 (8)
C40.0705 (12)0.0822 (13)0.0747 (13)0.0268 (10)0.0227 (10)0.0081 (10)
C50.0696 (11)0.0620 (11)0.0527 (10)0.0284 (9)0.0022 (8)0.0043 (8)
C60.0852 (13)0.0670 (12)0.0705 (12)0.0303 (10)0.0113 (10)0.0000 (9)
C70.1128 (17)0.0687 (13)0.0989 (17)0.0404 (12)0.0136 (14)0.0006 (11)
C80.1163 (18)0.0822 (15)0.1049 (18)0.0598 (14)0.0044 (14)0.0092 (13)
C90.0827 (13)0.0890 (15)0.0965 (16)0.0437 (11)0.0090 (12)0.0093 (12)
C100.0711 (12)0.0700 (12)0.0800 (13)0.0302 (9)0.0061 (10)0.0027 (10)
C110.0518 (9)0.0589 (10)0.0496 (9)0.0162 (8)0.0045 (7)0.0047 (8)
C120.0554 (9)0.0572 (9)0.0509 (9)0.0201 (7)0.0051 (8)0.0015 (7)
C130.0753 (12)0.0874 (13)0.0586 (11)0.0371 (10)0.0013 (9)0.0164 (10)
C140.0929 (14)0.1009 (15)0.0694 (13)0.0478 (12)0.0109 (11)0.0197 (11)
C150.0674 (12)0.0878 (14)0.0875 (15)0.0360 (10)0.0143 (11)0.0044 (12)
C160.0557 (10)0.0876 (13)0.0795 (13)0.0234 (9)0.0013 (9)0.0108 (11)
C170.0580 (10)0.0765 (12)0.0617 (11)0.0218 (8)0.0027 (9)0.0140 (9)
C180.0852 (13)0.0719 (12)0.0779 (13)0.0302 (10)0.0147 (11)0.0179 (10)
C190.052 (3)0.067 (3)0.092 (4)0.005 (2)0.003 (3)0.001 (3)
C200.095 (4)0.118 (4)0.093 (4)0.012 (3)0.024 (3)0.029 (3)
C19'0.123 (6)0.092 (5)0.059 (4)0.006 (4)0.005 (4)0.000 (3)
C20'0.115 (6)0.273 (9)0.110 (7)0.013 (6)0.002 (5)0.025 (6)
Geometric parameters (Å, º) top
O1—C11.2494 (17)C11—C121.487 (2)
N1—C11.378 (2)C12—C131.380 (2)
N1—N21.3981 (17)C12—C171.386 (2)
N1—C51.4145 (19)C13—C141.383 (2)
N2—C31.3106 (19)C13—H130.9500
N3—C111.3249 (19)C14—C151.364 (3)
N3—C181.458 (2)C14—H140.9500
N3—H31.062 (19)C15—C161.364 (3)
C1—C21.435 (2)C15—H150.9500
C2—C111.398 (2)C16—C171.375 (2)
C2—C31.432 (2)C16—H160.9500
C3—C41.492 (2)C17—H170.9500
C4—H4A0.9800C18—C191.436 (5)
C4—H4B0.9800C18—C19'1.468 (6)
C4—H4C0.9800C18—H18A0.9601
C5—C101.382 (2)C18—H18B0.9600
C5—C61.384 (2)C18—H18C0.9600
C6—C71.382 (3)C18—H18D0.9600
C6—H60.9500C19—C201.267 (7)
C7—C81.373 (3)C19—H190.9500
C7—H70.9500C20—H20A0.9500
C8—C91.378 (3)C20—H20B0.9500
C8—H80.9500C19'—C20'1.246 (8)
C9—C101.379 (2)C19'—H19'0.9500
C9—H90.9500C20'—H20C0.9500
C10—H100.9500C20'—H20D0.9500
C1—N1—N2111.74 (12)C13—C12—C17119.47 (15)
C1—N1—C5128.86 (14)C13—C12—C11122.02 (15)
N2—N1—C5119.21 (13)C17—C12—C11118.47 (14)
C3—N2—N1106.53 (13)C12—C13—C14119.53 (18)
C11—N3—C18126.82 (15)C12—C13—H13120.2
C11—N3—H3110.9 (10)C14—C13—H13120.2
C18—N3—H3122.3 (10)C15—C14—C13120.61 (18)
O1—C1—N1125.78 (15)C15—C14—H14119.7
O1—C1—C2129.30 (15)C13—C14—H14119.7
N1—C1—C2104.91 (13)C16—C15—C14119.97 (18)
C11—C2—C3132.68 (15)C16—C15—H15120.0
C11—C2—C1121.72 (14)C14—C15—H15120.0
C3—C2—C1105.45 (13)C15—C16—C17120.51 (18)
N2—C3—C2111.37 (14)C15—C16—H16119.7
N2—C3—C4118.53 (15)C17—C16—H16119.7
C2—C3—C4130.07 (15)C16—C17—C12119.87 (16)
C3—C4—H4A109.5C16—C17—H17120.1
C3—C4—H4B109.5C12—C17—H17120.1
H4A—C4—H4B109.5C19—C18—N3111.1 (3)
C3—C4—H4C109.5N3—C18—C19'110.1 (4)
H4A—C4—H4C109.5C19—C18—H18A109.6
H4B—C4—H4C109.5N3—C18—H18A109.1
C10—C5—C6119.66 (17)C19—C18—H18B109.0
C10—C5—N1121.11 (15)N3—C18—H18B109.6
C6—C5—N1119.23 (16)H18A—C18—H18B108.3
C7—C6—C5120.17 (19)N3—C18—H18C109.6
C7—C6—H6119.9C19'—C18—H18C110.4
C5—C6—H6119.9N3—C18—H18D109.1
C8—C7—C6120.1 (2)C19'—C18—H18D109.3
C8—C7—H7120.0H18C—C18—H18D108.3
C6—C7—H7120.0C20—C19—C18131.8 (9)
C7—C8—C9119.77 (19)C20—C19—H19114.1
C7—C8—H8120.1C18—C19—H19114.1
C9—C8—H8120.1C19—C20—H20A120.0
C8—C9—C10120.6 (2)C19—C20—H20B120.0
C8—C9—H9119.7H20A—C20—H20B120.0
C10—C9—H9119.7C20'—C19'—C18124.8 (11)
C9—C10—C5119.68 (18)C20'—C19'—H19'117.6
C9—C10—H10120.2C18—C19'—H19'117.6
C5—C10—H10120.2C19'—C20'—H20C120.0
N3—C11—C2118.69 (14)C19'—C20'—H20D120.0
N3—C11—C12118.78 (14)H20C—C20'—H20D120.0
C2—C11—C12122.48 (14)
C1—N1—N2—C30.16 (18)C8—C9—C10—C51.2 (3)
C5—N1—N2—C3175.66 (13)C6—C5—C10—C90.3 (3)
N2—N1—C1—O1178.45 (15)N1—C5—C10—C9178.70 (16)
C5—N1—C1—O13.5 (3)C18—N3—C11—C2178.50 (16)
N2—N1—C1—C20.05 (17)C18—N3—C11—C124.1 (3)
C5—N1—C1—C2175.00 (15)C3—C2—C11—N3178.88 (16)
O1—C1—C2—C112.3 (3)C1—C2—C11—N33.9 (2)
N1—C1—C2—C11176.11 (14)C3—C2—C11—C121.5 (3)
O1—C1—C2—C3178.50 (16)C1—C2—C11—C12173.46 (14)
N1—C1—C2—C30.07 (16)N3—C11—C12—C13106.78 (19)
N1—N2—C3—C20.21 (18)C2—C11—C12—C1375.9 (2)
N1—N2—C3—C4177.88 (14)N3—C11—C12—C1775.2 (2)
C11—C2—C3—N2175.40 (17)C2—C11—C12—C17102.11 (19)
C1—C2—C3—N20.18 (18)C17—C12—C13—C141.7 (3)
C11—C2—C3—C46.8 (3)C11—C12—C13—C14176.21 (16)
C1—C2—C3—C4177.63 (16)C12—C13—C14—C150.1 (3)
C1—N1—C5—C1024.4 (3)C13—C14—C15—C161.2 (3)
N2—N1—C5—C10161.01 (15)C14—C15—C16—C171.0 (3)
C1—N1—C5—C6156.64 (16)C15—C16—C17—C120.7 (3)
N2—N1—C5—C618.0 (2)C13—C12—C17—C162.0 (3)
C10—C5—C6—C71.4 (3)C11—C12—C17—C16176.02 (15)
N1—C5—C6—C7177.61 (17)C11—N3—C18—C19151.5 (4)
C5—C6—C7—C81.1 (3)C11—N3—C18—C19'176.4 (4)
C6—C7—C8—C90.4 (3)N3—C18—C19—C20111.7 (6)
C7—C8—C9—C101.5 (3)N3—C18—C19'—C20'90.6 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O11.06 (2)1.75 (2)2.687 (2)145 (2)
C17—H17···O1i0.952.413.345 (2)168
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC20H19N3O
Mr317.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.295 (1), 9.8440 (12), 10.0670 (14)
α, β, γ (°)86.175 (8), 89.280 (9), 74.329 (7)
V3)884.90 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerRigaku Saturn724 CCD camera
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2009)
Tmin, Tmax0.984, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10726, 3910, 2135
Rint0.032
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 0.94
No. of reflections3910
No. of parameters242
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: CrystalClear (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O11.06 (2)1.75 (2)2.687 (2)145 (2)
C17—H17···O1i0.952.413.345 (2)168
Symmetry code: (i) x, y+2, z+2.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant No. 20772066).

References

First citationBao, F., Lü, X.-Q., Qiao, Y.-Q., Wu, Q. & Ng, S. W. (2004). Acta Cryst. E60, o2191–o2192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem. 14, 98–100.  CAS Google Scholar
First citationLiu, J.-M., Yang, R.-D. & Ma, T.-R. (1980). Chem. J. Chin. Univ. 1, 23–29.  CAS Google Scholar
First citationRigaku (2009). CrystalClear and CrystalStrcuture. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-F., Li, J.-K., Wu, R.-T. & Zheng, Z.-B. (2007). Acta Cryst. E63, o2176–o2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y.-P., Yang, Zh.-Y., Yu, H.-J. & Yang, R.-D. (1999). Chin. J. Appl. Chem. 16, 37–41.  CAS Google Scholar
First citationZhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387–o2388.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds