organic compounds
(4-Chlorophenyl)(3,8-dibromo-2-hydroxy-7-methoxy-1-naphthyl)methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp
In the title compound, C18H11Br2ClO3, an intramolecular O—H⋯O=C hydrogen bond occurs, forming a six-membered ring. The naphthalene ring system and the benzene ring make a dihedral angle of 57.36 (9)°. The central carbonyl C—(C=O)—C group is twisted away from the naphthalene ring system and the benzene ring by 18.61 (15) and 26.25 (16)°, respectively. In the two intermolecular Br⋯Cl close contacts [3.4927 (7) and 3.4325 (7) Å] are observed.
Related literature
For related structures, see: Mitsui et al. (2009); Mitsui, Nakaema, Nagasawa et al. (2010); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008); Mitsui, Nakaema, Noguchi & Yonezawa (2008); Mitsui, Nagasawa, Watanabe et al. (2010). For information on halogen⋯halogen contacts, see: Moorthy et al. (2002); Pedireddi et al. (1994); Saruma & Desiraju (1986).
Experimental
Crystal data
|
Refinement
|
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810015527/is2542sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810015527/is2542Isup2.hkl
To a solution of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (313 mg, 1.00 mmol) in chloroform (5 ml) was added Br2 (483 mg, 3.03 mmol) drop-wise. The reaction mixture was heated at reflux for 2 h, then poured into aqueous 2 M Na2S2O3 (10 ml), and the aqueous layer was extracted with CHCl3 (3 × 10 ml). The combined organic layers were washed with 2 M Na2S2O3 (3 × 30 ml) and brine (3 × 30 ml), and dried over MgSO4 overnight. The solvent was removed in vacuo and the crude material was purified by
(silica gel, CHCl3) to give the title compound (yield 306 mg, 65%). Single crystals suitable for X-ray were obtained from CHCl3 as yellow blocks (m.p. 455.0–455.5 K).Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 8.10 (s, 1H), 8.04 (s, 1H), 7.75 (d, 1H), 7.58 (d, 2H), 7.31 (d, 2H), 7.17 (d, 1H), 3.95 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 195.6, 156.3, 152.6, 139.3, 138.3, 134.9, 132.4, 130.3, 129.1, 128.8, 125.8, 118.1, 112.2, 110.5, 105.9, 56.9; IR (KBr): 1670, 1607, 1587, 1495, 1276, 1215, 1096, 782; HRMS (m/z): [M + H]+ calcd for C18H12Br2ClO3, 468.8842 found, 468.8839. Anal. Calcd for C18H11Br2ClO3: C 45.95, H 2.36. Found: C 46.23, H 2.39.
All H atoms were located in a difference Fourier map and were subsequently refined as riding atoms, with O—H = 0.833 Å, C—H = 0.95 Å (aromatic) and 0.98 Å (methyl) Å, and with Uiso(H) = 1.2Ueq(O, C).
Recently, we reported the crystal structures of 1-aroylated 2,7-dimethoxynaphthalenes, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008), (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008), (4-chlorophenyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009), 1-bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene (Mitsui, Nakaema, Nagasawa et al., 2010) and (8-bromo-2,7-dimethoxy-1-naphthyl)(4-chlorophenyl)methanone (Mitsui, Nagasawa, Watanabe et al., 2010). As a part of our ongoing studies on the synthesis and
analysis of aroylated naphthalene derivatives, we prepared and analysed the structure of crystal of 2,5-dibromo-4-(4-chlorobenzoyl)-3-hydroxy-6-methoxynaphthalene, (I). The title compound was prepared by electrophilic aromatic bromination reaction of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone with bromine.An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is shown in Fig. 1. In the molecule of (I), the intramolecular O—H···O═C hydrogen bond, which forms a six-membered ring including the C═O group and an edge of the naphthalene ring, is present (Table 1). The conformation of these groups resembles to that of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008). Intriguingly, the central C═O group is twisted away from the naphthalene ring and the benzene ring, and the bromo group at 8-position of naphthalene is out of the least-squares plane of the naphthalene ring. The angles of the C═O bond vector against the least-squares plane of the naphthalene ring and the benzene ring are 18.61 (15) and 26.25 (16)°, respectively. The angle of the C9—Br1 bond vector against the least-squares plane of the naphthalene ring is 14.93 (7)°. This is presumably caused by release of the large steric repulsion brought about by the benzene ring and the bromo group on the naphthalene ring of (I).
In the
the contact distances Br1···Cl1 and Br2···Cl1 are 3.4927 (7) and 3.4325 (7) Å, respectively (Fig. 2). These contacts are shorter than the sum of their van der Waals radii (3.60 Å), and the five atoms are arranged nearly linear [C9—Br1···Cl1 = 154.14 (6)°, C3—Br2···Cl1 = 165.35 (7)°], suggesting that there is a possibility for halogen interaction (Saruma & Desiraju, 1986; Pedireddi et al., 1994; Moorthy et al., 2002).For related structures, see: Mitsui et al. (2009); Mitsui, Nakaema, Nagasawa et al. (2010); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008); Mitsui, Nakaema, Noguchi & Yonezawa (2008); Mitsui, Nagasawa, Watanabe et al. (2010). For information on halogen···halogen contacts, see: Moorthy et al. (2002); Pedireddi et al. (1994); Saruma & Desiraju (1986).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C18H11Br2ClO3 | F(000) = 920 |
Mr = 470.54 | Dx = 1.893 Mg m−3 |
Monoclinic, P21/c | Melting point = 455.0–455.5 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54187 Å |
a = 12.1513 (2) Å | Cell parameters from 28732 reflections |
b = 10.06343 (18) Å | θ = 3.3–68.2° |
c = 13.8936 (3) Å | µ = 7.85 mm−1 |
β = 103.675 (1)° | T = 193 K |
V = 1650.79 (5) Å3 | Block, yellow |
Z = 4 | 0.30 × 0.25 × 0.20 mm |
Rigaku R-AXIS RAPID diffractometer | 3022 independent reflections |
Radiation source: rotating anode | 2940 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
Detector resolution: 10.00 pixels mm-1 | θmax = 68.3°, θmin = 3.7° |
ω scans | h = −14→14 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −12→12 |
Tmin = 0.189, Tmax = 0.308 | l = −16→16 |
29373 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0457P)2 + 0.9314P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
3022 reflections | Δρmax = 0.60 e Å−3 |
219 parameters | Δρmin = −0.64 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0162 (4) |
C18H11Br2ClO3 | V = 1650.79 (5) Å3 |
Mr = 470.54 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 12.1513 (2) Å | µ = 7.85 mm−1 |
b = 10.06343 (18) Å | T = 193 K |
c = 13.8936 (3) Å | 0.30 × 0.25 × 0.20 mm |
β = 103.675 (1)° |
Rigaku R-AXIS RAPID diffractometer | 3022 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2940 reflections with I > 2σ(I) |
Tmin = 0.189, Tmax = 0.308 | Rint = 0.068 |
29373 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.60 e Å−3 |
3022 reflections | Δρmin = −0.64 e Å−3 |
219 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.348845 (18) | 0.93221 (2) | 0.140206 (18) | 0.02724 (13) | |
Br2 | −0.250748 (19) | 0.77531 (3) | 0.077383 (18) | 0.03487 (13) | |
Cl1 | 0.49341 (5) | 0.85290 (6) | 0.59621 (4) | 0.03239 (17) | |
O1 | 0.18770 (16) | 0.61119 (18) | 0.17108 (14) | 0.0377 (4) | |
O2 | −0.02937 (15) | 0.63660 (18) | 0.11024 (13) | 0.0357 (4) | |
H2O | 0.0329 | 0.5982 | 0.1198 | 0.043* | |
O3 | 0.33774 (13) | 1.21262 (15) | 0.17994 (12) | 0.0256 (3) | |
C1 | 0.09899 (18) | 0.8215 (2) | 0.14949 (15) | 0.0222 (4) | |
C2 | −0.0097 (2) | 0.7676 (2) | 0.11910 (17) | 0.0264 (5) | |
C3 | −0.10526 (18) | 0.8529 (3) | 0.10204 (16) | 0.0268 (5) | |
C4 | −0.09270 (18) | 0.9868 (3) | 0.10944 (16) | 0.0268 (5) | |
H4 | −0.1579 | 1.0417 | 0.1004 | 0.032* | |
C5 | 0.01632 (18) | 1.0458 (2) | 0.13047 (16) | 0.0232 (5) | |
C6 | 0.02945 (19) | 1.1856 (2) | 0.13389 (17) | 0.0266 (5) | |
H6 | −0.0361 | 1.2402 | 0.1217 | 0.032* | |
C7 | 0.1339 (2) | 1.2440 (2) | 0.15434 (17) | 0.0259 (5) | |
H7 | 0.1408 | 1.3377 | 0.1617 | 0.031* | |
C8 | 0.23139 (18) | 1.1645 (2) | 0.16441 (15) | 0.0216 (4) | |
C9 | 0.21941 (17) | 1.0276 (2) | 0.15487 (15) | 0.0198 (4) | |
C10 | 0.11426 (18) | 0.9635 (2) | 0.14633 (15) | 0.0203 (4) | |
C11 | 0.18698 (19) | 0.7270 (2) | 0.20076 (17) | 0.0249 (5) | |
C12 | 0.26347 (18) | 0.7639 (2) | 0.29783 (17) | 0.0229 (5) | |
C13 | 0.23528 (18) | 0.8631 (2) | 0.35778 (16) | 0.0238 (5) | |
H13 | 0.1678 | 0.9131 | 0.3351 | 0.029* | |
C14 | 0.30470 (19) | 0.8895 (2) | 0.45010 (17) | 0.0261 (5) | |
H14 | 0.2846 | 0.9559 | 0.4914 | 0.031* | |
C15 | 0.40403 (18) | 0.8174 (2) | 0.48129 (16) | 0.0242 (5) | |
C16 | 0.43420 (19) | 0.7176 (2) | 0.42328 (18) | 0.0278 (5) | |
H16 | 0.5024 | 0.6689 | 0.4458 | 0.033* | |
C17 | 0.36288 (19) | 0.6908 (2) | 0.33217 (18) | 0.0268 (5) | |
H17 | 0.3816 | 0.6217 | 0.2922 | 0.032* | |
C18 | 0.3525 (2) | 1.3542 (2) | 0.18675 (19) | 0.0318 (5) | |
H18A | 0.4326 | 1.3760 | 0.1936 | 0.038* | |
H18B | 0.3279 | 1.3873 | 0.2446 | 0.038* | |
H18C | 0.3071 | 1.3960 | 0.1267 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01855 (17) | 0.02555 (19) | 0.04042 (19) | 0.00433 (8) | 0.01259 (11) | 0.00170 (9) |
Br2 | 0.01849 (17) | 0.0547 (2) | 0.02984 (18) | −0.01184 (10) | 0.00254 (11) | 0.00019 (10) |
Cl1 | 0.0229 (3) | 0.0404 (4) | 0.0307 (3) | −0.0019 (2) | 0.0000 (2) | −0.0010 (2) |
O1 | 0.0354 (10) | 0.0239 (9) | 0.0482 (11) | 0.0019 (7) | −0.0014 (8) | −0.0083 (8) |
O2 | 0.0278 (9) | 0.0311 (10) | 0.0447 (10) | −0.0081 (7) | 0.0016 (7) | −0.0024 (8) |
O3 | 0.0196 (8) | 0.0220 (8) | 0.0346 (9) | −0.0022 (6) | 0.0050 (6) | −0.0014 (6) |
C1 | 0.0185 (10) | 0.0247 (12) | 0.0229 (10) | −0.0011 (9) | 0.0038 (8) | −0.0019 (8) |
C2 | 0.0249 (12) | 0.0304 (13) | 0.0228 (11) | −0.0053 (9) | 0.0034 (9) | −0.0009 (9) |
C3 | 0.0150 (10) | 0.0423 (14) | 0.0219 (10) | −0.0054 (9) | 0.0021 (8) | 0.0000 (9) |
C4 | 0.0175 (10) | 0.0387 (14) | 0.0246 (11) | 0.0029 (9) | 0.0056 (8) | 0.0001 (9) |
C5 | 0.0175 (10) | 0.0325 (12) | 0.0198 (10) | 0.0035 (9) | 0.0050 (8) | 0.0004 (9) |
C6 | 0.0202 (11) | 0.0305 (12) | 0.0291 (11) | 0.0085 (9) | 0.0059 (9) | 0.0008 (9) |
C7 | 0.0259 (12) | 0.0236 (12) | 0.0277 (11) | 0.0041 (9) | 0.0054 (9) | −0.0021 (9) |
C8 | 0.0194 (10) | 0.0262 (12) | 0.0193 (9) | −0.0001 (8) | 0.0046 (8) | −0.0011 (8) |
C9 | 0.0156 (10) | 0.0228 (11) | 0.0213 (10) | 0.0045 (8) | 0.0049 (8) | 0.0003 (8) |
C10 | 0.0180 (10) | 0.0242 (11) | 0.0181 (9) | 0.0016 (8) | 0.0033 (8) | −0.0017 (8) |
C11 | 0.0216 (11) | 0.0221 (12) | 0.0309 (12) | −0.0018 (9) | 0.0063 (9) | −0.0011 (9) |
C12 | 0.0195 (10) | 0.0206 (11) | 0.0292 (11) | −0.0014 (8) | 0.0072 (9) | 0.0036 (8) |
C13 | 0.0176 (10) | 0.0246 (12) | 0.0301 (11) | 0.0014 (8) | 0.0075 (9) | 0.0034 (9) |
C14 | 0.0224 (11) | 0.0285 (12) | 0.0282 (11) | 0.0011 (9) | 0.0077 (9) | 0.0002 (9) |
C15 | 0.0188 (10) | 0.0283 (12) | 0.0243 (10) | −0.0046 (9) | 0.0031 (8) | 0.0024 (9) |
C16 | 0.0191 (11) | 0.0291 (13) | 0.0352 (12) | 0.0035 (9) | 0.0063 (9) | 0.0051 (9) |
C17 | 0.0235 (11) | 0.0243 (12) | 0.0333 (12) | 0.0019 (9) | 0.0079 (9) | −0.0004 (9) |
C18 | 0.0331 (13) | 0.0233 (12) | 0.0387 (13) | −0.0066 (10) | 0.0075 (10) | −0.0012 (10) |
Br1—C9 | 1.894 (2) | C7—C8 | 1.408 (3) |
Br2—C3 | 1.888 (2) | C7—H7 | 0.9500 |
Cl1—C15 | 1.743 (2) | C8—C9 | 1.388 (3) |
O1—C11 | 1.237 (3) | C9—C10 | 1.411 (3) |
O2—C2 | 1.340 (3) | C11—C12 | 1.492 (3) |
O2—H2O | 0.8326 | C12—C13 | 1.394 (3) |
O3—C8 | 1.349 (3) | C12—C17 | 1.398 (3) |
O3—C18 | 1.437 (3) | C13—C14 | 1.384 (3) |
C1—C2 | 1.398 (3) | C13—H13 | 0.9500 |
C1—C10 | 1.443 (3) | C14—C15 | 1.387 (3) |
C1—C11 | 1.481 (3) | C14—H14 | 0.9500 |
C2—C3 | 1.418 (3) | C15—C16 | 1.390 (3) |
C3—C4 | 1.357 (4) | C16—C17 | 1.381 (3) |
C4—C5 | 1.418 (3) | C16—H16 | 0.9500 |
C4—H4 | 0.9500 | C17—H17 | 0.9500 |
C5—C6 | 1.415 (3) | C18—H18A | 0.9800 |
C5—C10 | 1.424 (3) | C18—H18B | 0.9800 |
C6—C7 | 1.366 (3) | C18—H18C | 0.9800 |
C6—H6 | 0.9500 | ||
C2—O2—H2O | 107.9 | C9—C10—C1 | 124.8 (2) |
C8—O3—C18 | 117.81 (18) | C5—C10—C1 | 118.17 (19) |
C2—C1—C10 | 119.6 (2) | O1—C11—C1 | 120.4 (2) |
C2—C1—C11 | 114.8 (2) | O1—C11—C12 | 118.9 (2) |
C10—C1—C11 | 124.52 (19) | C1—C11—C12 | 119.97 (19) |
O2—C2—C1 | 123.0 (2) | C13—C12—C17 | 119.2 (2) |
O2—C2—C3 | 117.3 (2) | C13—C12—C11 | 122.0 (2) |
C1—C2—C3 | 119.6 (2) | C17—C12—C11 | 118.7 (2) |
C4—C3—C2 | 121.0 (2) | C14—C13—C12 | 120.6 (2) |
C4—C3—Br2 | 120.53 (18) | C14—C13—H13 | 119.7 |
C2—C3—Br2 | 118.32 (18) | C12—C13—H13 | 119.7 |
C3—C4—C5 | 121.0 (2) | C13—C14—C15 | 118.9 (2) |
C3—C4—H4 | 119.5 | C13—C14—H14 | 120.5 |
C5—C4—H4 | 119.5 | C15—C14—H14 | 120.5 |
C6—C5—C4 | 121.0 (2) | C14—C15—C16 | 121.7 (2) |
C6—C5—C10 | 119.3 (2) | C14—C15—Cl1 | 119.13 (18) |
C4—C5—C10 | 119.6 (2) | C16—C15—Cl1 | 119.13 (18) |
C7—C6—C5 | 121.8 (2) | C17—C16—C15 | 118.6 (2) |
C7—C6—H6 | 119.1 | C17—C16—H16 | 120.7 |
C5—C6—H6 | 119.1 | C15—C16—H16 | 120.7 |
C6—C7—C8 | 119.6 (2) | C16—C17—C12 | 120.9 (2) |
C6—C7—H7 | 120.2 | C16—C17—H17 | 119.5 |
C8—C7—H7 | 120.2 | C12—C17—H17 | 119.5 |
O3—C8—C9 | 116.51 (19) | O3—C18—H18A | 109.5 |
O3—C8—C7 | 124.3 (2) | O3—C18—H18B | 109.5 |
C9—C8—C7 | 119.2 (2) | H18A—C18—H18B | 109.5 |
C8—C9—C10 | 122.30 (19) | O3—C18—H18C | 109.5 |
C8—C9—Br1 | 116.24 (16) | H18A—C18—H18C | 109.5 |
C10—C9—Br1 | 121.15 (17) | H18B—C18—H18C | 109.5 |
C9—C10—C5 | 117.0 (2) | ||
C10—C1—C2—O2 | 172.9 (2) | C6—C5—C10—C9 | −6.2 (3) |
C11—C1—C2—O2 | −18.3 (3) | C4—C5—C10—C9 | 172.45 (18) |
C10—C1—C2—C3 | −10.9 (3) | C6—C5—C10—C1 | 175.64 (19) |
C11—C1—C2—C3 | 157.8 (2) | C4—C5—C10—C1 | −5.7 (3) |
O2—C2—C3—C4 | −180.0 (2) | C2—C1—C10—C9 | −166.1 (2) |
C1—C2—C3—C4 | 3.7 (3) | C11—C1—C10—C9 | 26.3 (3) |
O2—C2—C3—Br2 | 4.2 (3) | C2—C1—C10—C5 | 11.9 (3) |
C1—C2—C3—Br2 | −172.17 (16) | C11—C1—C10—C5 | −155.7 (2) |
C2—C3—C4—C5 | 2.6 (3) | C2—C1—C11—O1 | 40.3 (3) |
Br2—C3—C4—C5 | 178.36 (16) | C10—C1—C11—O1 | −151.6 (2) |
C3—C4—C5—C6 | 177.2 (2) | C2—C1—C11—C12 | −129.7 (2) |
C3—C4—C5—C10 | −1.5 (3) | C10—C1—C11—C12 | 38.5 (3) |
C4—C5—C6—C7 | 179.8 (2) | O1—C11—C12—C13 | −149.6 (2) |
C10—C5—C6—C7 | −1.6 (3) | C1—C11—C12—C13 | 20.5 (3) |
C5—C6—C7—C8 | 5.3 (3) | O1—C11—C12—C17 | 26.3 (3) |
C18—O3—C8—C9 | 177.92 (19) | C1—C11—C12—C17 | −163.6 (2) |
C18—O3—C8—C7 | 0.1 (3) | C17—C12—C13—C14 | 0.1 (3) |
C6—C7—C8—O3 | 176.8 (2) | C11—C12—C13—C14 | 176.0 (2) |
C6—C7—C8—C9 | −1.0 (3) | C12—C13—C14—C15 | 1.3 (3) |
O3—C8—C9—C10 | 174.84 (18) | C13—C14—C15—C16 | −1.5 (3) |
C7—C8—C9—C10 | −7.2 (3) | C13—C14—C15—Cl1 | 178.49 (17) |
O3—C8—C9—Br1 | −11.4 (2) | C14—C15—C16—C17 | 0.2 (3) |
C7—C8—C9—Br1 | 166.54 (16) | Cl1—C15—C16—C17 | −179.73 (18) |
C8—C9—C10—C5 | 10.7 (3) | C15—C16—C17—C12 | 1.2 (3) |
Br1—C9—C10—C5 | −162.76 (15) | C13—C12—C17—C16 | −1.4 (3) |
C8—C9—C10—C1 | −171.3 (2) | C11—C12—C17—C16 | −177.4 (2) |
Br1—C9—C10—C1 | 15.2 (3) |
Experimental details
Crystal data | |
Chemical formula | C18H11Br2ClO3 |
Mr | 470.54 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 193 |
a, b, c (Å) | 12.1513 (2), 10.06343 (18), 13.8936 (3) |
β (°) | 103.675 (1) |
V (Å3) | 1650.79 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 7.85 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.189, 0.308 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29373, 3022, 2940 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.076, 1.11 |
No. of reflections | 3022 |
No. of parameters | 219 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.60, −0.64 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
Acknowledgements
The authors would like to express their gratitude to Professor Keiichi Noguchi for technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Mitsui, R., Nagasawa, A., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o873. Web of Science CrossRef IUCr Journals Google Scholar
Mitsui, R., Nakaema, K., Nagasawa, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o676. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530–6531. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pedireddi, V. R., Shekhar Reddy, D., Satish Goud, B., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2359. CSD CrossRef Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Saruma, J. A. R. & Desiraju, G. R. (1986). Acc. Chem. Res. 19, 222–228. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, we reported the crystal structures of 1-aroylated 2,7-dimethoxynaphthalenes, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008), (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008), (4-chlorophenyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009), 1-bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene (Mitsui, Nakaema, Nagasawa et al., 2010) and (8-bromo-2,7-dimethoxy-1-naphthyl)(4-chlorophenyl)methanone (Mitsui, Nagasawa, Watanabe et al., 2010). As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene derivatives, we prepared and analysed the structure of crystal of 2,5-dibromo-4-(4-chlorobenzoyl)-3-hydroxy-6-methoxynaphthalene, (I). The title compound was prepared by electrophilic aromatic bromination reaction of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone with bromine.
An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is shown in Fig. 1. In the molecule of (I), the intramolecular O—H···O═C hydrogen bond, which forms a six-membered ring including the C═O group and an edge of the naphthalene ring, is present (Table 1). The conformation of these groups resembles to that of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008). Intriguingly, the central C═O group is twisted away from the naphthalene ring and the benzene ring, and the bromo group at 8-position of naphthalene is out of the least-squares plane of the naphthalene ring. The angles of the C═O bond vector against the least-squares plane of the naphthalene ring and the benzene ring are 18.61 (15) and 26.25 (16)°, respectively. The angle of the C9—Br1 bond vector against the least-squares plane of the naphthalene ring is 14.93 (7)°. This is presumably caused by release of the large steric repulsion brought about by the benzene ring and the bromo group on the naphthalene ring of (I).
In the crystal structure, the contact distances Br1···Cl1 and Br2···Cl1 are 3.4927 (7) and 3.4325 (7) Å, respectively (Fig. 2). These contacts are shorter than the sum of their van der Waals radii (3.60 Å), and the five atoms are arranged nearly linear [C9—Br1···Cl1 = 154.14 (6)°, C3—Br2···Cl1 = 165.35 (7)°], suggesting that there is a possibility for halogen interaction (Saruma & Desiraju, 1986; Pedireddi et al., 1994; Moorthy et al., 2002).