organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-1-[(4S,5R)-5-(2-hy­droxy­ethyl)-2,2-di­methyl-1,3-dioxolan-4-yl]pyrimidine-2,4(1H,3H)-dione

aCentro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico, bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico, and cFacultad de Química, Universidad Nacional Autónoma de México, 04510, México, DF, Mexico
*Correspondence e-mail: angel.mendoza.m@gmail.com

(Received 26 April 2010; accepted 30 April 2010; online 12 May 2010)

In the title compound, C11H15FN2O5, the five-membered ring has an envelope conformation, while the six-membered ring is essentially planar, with a maximum deviation of 0.032 (2) Å from the mean plane. The crystal packing is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, generating a layer structure parallel to (001).

Related literature

For applications of modified nucleosides in medical chemistry, see: Huryn & Okabe (1992[Huryn, D. M. & Okabe, M. (1992). Chem. Rev. 92, 1745-1768.]); Minuk et al. (1992[Minuk, G. Y., German, G. B., Bernstein, C., Benarroch, A., Gauthiar, T. & Sekla, L. (1992). Clin. Invest. Med. 15, 506-512.]); Luscombe et al. (1996[Luscombe, C., Pedersen, J., Uren, E. & Locarnini, S. (1996). Hepatology 24, 766-773.]); Korba & Boyd (1996[Korba, B. E. & Boyd, M. R. (1996). Antimicrob. Agents Chemother. 40, 1282-1284.]). For the synthesis, see: Valdivia et al. (2005[Valdivia, V., Hernández, A., Rivera, A., Sartillo-Piscil, F., Loukaci, A., Fourrey, J.-L. & Quintero, L. (2005). Tetrahedron Lett. 46, 6511-6514.]); Xie et al. (1996[Xie, M., Berges, D. A. & Robins, M. (1996). J. Org. Chem. 61, 5178-5179.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15FN2O5

  • Mr = 274.25

  • Monoclinic, C 2

  • a = 20.8905 (8) Å

  • b = 5.5751 (1) Å

  • c = 13.5639 (5) Å

  • β = 126.297 (6)°

  • V = 1273.21 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.06 mm−1

  • T = 298 K

  • 0.40 × 0.12 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini Atlas CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.885, Tmax = 0.964

  • 4606 measured reflections

  • 1786 independent reflections

  • 1732 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.04

  • 1786 reflections

  • 181 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 498 Friedel pairs

  • Flack parameter: 0.0 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O5i 0.83 (2) 2.01 (2) 2.828 (2) 167 (3)
O5—H1O⋯O2ii 0.75 (3) 2.16 (3) 2.876 (2) 160 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+2]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

For many years, design of modified nucleosides has been a focal point of research in medicinal chemistry (Huryn & Okabe, 1992). Modified nucleosides have acquired an important role as therapeutic agents for the treatment of patients with devastating infections with viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), and herpes viruses. A class of nucleoside analogues for antiviral chemotherapy is that where cyclic carbohydrate moiety is replaced with open-chain "acyclic" sugar moieties. Among purine acyclic nucleosides, are Acyclovir, Ganciclovir and Penciclovir (Minuk et al., 1992; Luscombe et al., 1996; Korba & Boyd, 1996).

In this context and as result of our continuing investigations on the synthesis of nucleoside analogues, we report a new compound 1 (Scheme 1). This new analogue might present a similarity with a number of acyclic nucleosides, which showed remarkable antiviral properties.

In the present paper, we report the structure of title compound 1. In the [(1'S, 2'R)-(1', 2'-O-isopropylidene-4'-hydroxy-1-butyl)], the five member ring (C5/C6/O3/O4/C9) shows an envelope conformation on atom C6 with puckering parameters (Cremer & Pople, 1975) q2 = 0.238 (2) Å and φ2 = 69.8 (6)°. For the six member ring uracil, shows a planar configuration with torsion angle (N1—C4—N2—C3) of 4.8 (3)°, and C1—C2 = 1.325 (3) Å and N2—C4 = 1.384 (2) Å (double bond). The crystal packing is stabilized by two intermolecular hydrogen bonds [O5···O2 = 2.828 (2) Å and N2···O5 = 2.876 (2) Å], generating a layer parallel to the (001) plane.

Related literature top

For applications of modified nucleosides in medical chemistry, see: Huryn & Okabe (1992); Minuk et al. (1992); Luscombe et al. (1996); Korba & Boyd (1996). For the synthesis, see: Valdivia et al. (2005); Xie et al. (1996). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

Deshomologation of previos nucleoside analogue, 1-[(1'S,2'R,4'S)-(1',2'-O-isopropylidene-4',5'-dihydroxy-1'-pentyl)]-5-fluorouracil, was achieved following non-aqueous protocol (Valdivia et al., 2005; Xie et al., 1996). Reaction was carried out by two steps: a) periodic acid/ethyl acetate, 30 min, b) EtOH/H2O/ NaBH4, 20 min, rt. Final purification of compound 1 was achieved by crystallization from hexane. Yield 80%, white solid, m.p. 184 °C; [α]D -18.51 (c 1.0, CH3OH). 1H NMR (300 MHz, CDCl3/TMS) 1.53 (s, 3H), 1.57 (s, 3H), 1.95 (m, 1H), 2.11 (m, 1H), 3.80 (m, 2H), 4.21 (m, 1H), 5.90 (d, 1H, J = 5.1 Hz), 7.3 (s, 1H). 13C MNR (75 MHz, CDCl3/TMS) 26.9, 27.9, 34.9, 55.8, 58.9, 79.4, 86.8, 111.6, 142.2, 149.5, 157.5.

Refinement top

H atoms bonded to N2 and O5 atoms were located in a difference Fourier map and refined with free coordinates and isotropic U parameters. H atoms linked to C atoms were placed in geometrical idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl groups.

Structure description top

For many years, design of modified nucleosides has been a focal point of research in medicinal chemistry (Huryn & Okabe, 1992). Modified nucleosides have acquired an important role as therapeutic agents for the treatment of patients with devastating infections with viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), and herpes viruses. A class of nucleoside analogues for antiviral chemotherapy is that where cyclic carbohydrate moiety is replaced with open-chain "acyclic" sugar moieties. Among purine acyclic nucleosides, are Acyclovir, Ganciclovir and Penciclovir (Minuk et al., 1992; Luscombe et al., 1996; Korba & Boyd, 1996).

In this context and as result of our continuing investigations on the synthesis of nucleoside analogues, we report a new compound 1 (Scheme 1). This new analogue might present a similarity with a number of acyclic nucleosides, which showed remarkable antiviral properties.

In the present paper, we report the structure of title compound 1. In the [(1'S, 2'R)-(1', 2'-O-isopropylidene-4'-hydroxy-1-butyl)], the five member ring (C5/C6/O3/O4/C9) shows an envelope conformation on atom C6 with puckering parameters (Cremer & Pople, 1975) q2 = 0.238 (2) Å and φ2 = 69.8 (6)°. For the six member ring uracil, shows a planar configuration with torsion angle (N1—C4—N2—C3) of 4.8 (3)°, and C1—C2 = 1.325 (3) Å and N2—C4 = 1.384 (2) Å (double bond). The crystal packing is stabilized by two intermolecular hydrogen bonds [O5···O2 = 2.828 (2) Å and N2···O5 = 2.876 (2) Å], generating a layer parallel to the (001) plane.

For applications of modified nucleosides in medical chemistry, see: Huryn & Okabe (1992); Minuk et al. (1992); Luscombe et al. (1996); Korba & Boyd (1996). For the synthesis, see: Valdivia et al. (2005); Xie et al. (1996). For ring conformation analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound 1, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of compound 1, viewed down the b axis, showing one layer of molecules connected by O5—H···O2 and N2—H···O5 hydrogen bonds (dashed lines).
5-Fluoro-1-[(4S,5R)-5-(2-hydroxyethyl)-2,2-dimethyl-1,3- dioxolan-4-yl]pyrimidine-2,4(1H,3H)-dione top
Crystal data top
C11H15FN2O5F(000) = 576
Mr = 274.25Dx = 1.431 Mg m3
Monoclinic, C2Cu Kα radiation, λ = 1.54184 Å
Hall symbol: C 2yCell parameters from 4215 reflections
a = 20.8905 (8) Åθ = 4.0–68.0°
b = 5.5751 (1) ŵ = 1.06 mm1
c = 13.5639 (5) ÅT = 298 K
β = 126.297 (6)°Prism, colorless
V = 1273.21 (12) Å30.40 × 0.12 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Gemini Atlas CCD
diffractometer
1786 independent reflections
Radiation source: fine-focus sealed tube1732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 10.4685 pixels mm-1θmax = 68.1°, θmin = 4.0°
ω scansh = 2224
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
k = 46
Tmin = 0.885, Tmax = 0.964l = 1616
4606 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.038P)2 + 0.4768P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.23 e Å3
1786 reflectionsΔρmin = 0.20 e Å3
181 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0075 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 498 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.0 (2)
Crystal data top
C11H15FN2O5V = 1273.21 (12) Å3
Mr = 274.25Z = 4
Monoclinic, C2Cu Kα radiation
a = 20.8905 (8) ŵ = 1.06 mm1
b = 5.5751 (1) ÅT = 298 K
c = 13.5639 (5) Å0.40 × 0.12 × 0.08 mm
β = 126.297 (6)°
Data collection top
Oxford Diffraction Gemini Atlas CCD
diffractometer
1786 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
1732 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.964Rint = 0.013
4606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071Δρmax = 0.23 e Å3
S = 1.04Δρmin = 0.20 e Å3
1786 reflectionsAbsolute structure: Flack (1983), 498 Friedel pairs
181 parametersAbsolute structure parameter: 0.0 (2)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69200 (8)0.0051 (3)0.95722 (12)0.0519 (4)
N10.66380 (8)0.2920 (3)0.81679 (12)0.0339 (3)
O40.72382 (7)0.3751 (3)0.65042 (11)0.0438 (3)
F10.52029 (9)0.7673 (3)0.69645 (15)0.0816 (5)
O50.90402 (9)0.7069 (3)0.88915 (13)0.0478 (4)
O20.49424 (9)0.5250 (3)0.84757 (15)0.0627 (5)
C50.72230 (11)0.1894 (4)0.80156 (17)0.0403 (4)
H50.76090.09500.87450.048*
N20.59707 (9)0.2801 (4)0.90550 (15)0.0434 (4)
C10.61955 (10)0.4901 (4)0.75175 (16)0.0418 (4)
H10.62910.56730.70090.050*
O30.68552 (11)0.0402 (3)0.69943 (16)0.0681 (5)
C40.65428 (10)0.1784 (4)0.89752 (15)0.0362 (4)
C60.76688 (9)0.3754 (4)0.78102 (14)0.0350 (4)
H60.76250.53320.80840.042*
C20.56349 (11)0.5732 (4)0.76007 (18)0.0466 (5)
C30.54650 (10)0.4653 (4)0.83818 (17)0.0435 (5)
C80.89973 (11)0.4915 (4)0.83002 (18)0.0469 (5)
H8A0.95280.43180.86490.056*
H8B0.87330.52060.74350.056*
C70.85368 (10)0.3099 (4)0.84748 (17)0.0437 (5)
H7A0.87790.29480.93420.052*
H7B0.85720.15510.81840.052*
C90.68429 (13)0.1521 (4)0.60232 (19)0.0533 (6)
C100.72705 (17)0.0147 (5)0.5721 (2)0.0689 (7)
H10A0.69790.16210.54000.103*
H10B0.77930.04730.64480.103*
H10C0.73130.05880.51210.103*
C110.60061 (17)0.2034 (8)0.4934 (3)0.1094 (13)
H11A0.57250.05500.45920.164*
H11B0.60160.28930.43300.164*
H11C0.57430.29860.51850.164*
H1N0.5950 (12)0.236 (5)0.9622 (19)0.048 (6)*
H1O0.9348 (15)0.789 (6)0.896 (2)0.072 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0606 (7)0.0506 (9)0.0586 (7)0.0216 (7)0.0430 (7)0.0239 (8)
N10.0336 (6)0.0365 (9)0.0345 (7)0.0036 (7)0.0218 (6)0.0044 (6)
O40.0520 (7)0.0397 (8)0.0390 (6)0.0028 (6)0.0265 (5)0.0009 (6)
F10.0799 (8)0.0748 (11)0.1109 (11)0.0463 (8)0.0678 (8)0.0532 (10)
O50.0529 (8)0.0445 (10)0.0622 (8)0.0061 (7)0.0430 (7)0.0071 (7)
O20.0621 (8)0.0584 (11)0.0954 (11)0.0167 (8)0.0619 (8)0.0137 (10)
C50.0465 (9)0.0352 (11)0.0509 (9)0.0048 (9)0.0353 (8)0.0038 (9)
N20.0502 (8)0.0455 (10)0.0498 (8)0.0083 (8)0.0381 (7)0.0092 (8)
C10.0410 (8)0.0437 (12)0.0447 (9)0.0064 (9)0.0275 (7)0.0138 (9)
O30.1087 (12)0.0487 (10)0.0938 (11)0.0334 (9)0.0857 (10)0.0292 (9)
C40.0368 (8)0.0390 (11)0.0359 (8)0.0011 (8)0.0232 (7)0.0018 (8)
C60.0397 (8)0.0320 (10)0.0388 (8)0.0022 (8)0.0263 (7)0.0006 (8)
C20.0444 (9)0.0382 (12)0.0563 (11)0.0122 (9)0.0294 (9)0.0139 (9)
C30.0417 (8)0.0401 (12)0.0557 (10)0.0025 (9)0.0326 (8)0.0013 (9)
C80.0430 (9)0.0492 (13)0.0608 (11)0.0008 (10)0.0374 (9)0.0079 (11)
C70.0400 (9)0.0402 (12)0.0531 (10)0.0056 (9)0.0288 (8)0.0001 (9)
C90.0641 (12)0.0483 (14)0.0551 (11)0.0145 (11)0.0394 (10)0.0142 (10)
C100.1132 (18)0.0523 (16)0.0761 (14)0.0072 (15)0.0752 (15)0.0113 (13)
C110.0695 (16)0.110 (3)0.086 (2)0.0123 (19)0.0121 (15)0.043 (2)
Geometric parameters (Å, º) top
O1—C41.206 (2)O3—C91.444 (3)
N1—C11.373 (3)C6—C71.516 (2)
N1—C41.378 (2)C6—H60.9800
N1—C51.471 (2)C2—C31.434 (3)
O4—C91.419 (3)C8—C71.509 (3)
O4—C61.435 (2)C8—H8A0.9700
F1—C21.345 (2)C8—H8B0.9700
O5—C81.417 (3)C7—H7A0.9700
O5—H1O0.75 (3)C7—H7B0.9700
O2—C31.218 (2)C9—C111.504 (4)
C5—O31.393 (3)C9—C101.505 (3)
C5—C61.526 (3)C10—H10A0.9600
C5—H50.9800C10—H10B0.9600
N2—C31.369 (3)C10—H10C0.9600
N2—C41.384 (2)C11—H11A0.9600
N2—H1N0.83 (2)C11—H11B0.9600
C1—C21.325 (3)C11—H11C0.9600
C1—H10.9300
C1—N1—C4121.43 (14)N2—C3—C2112.25 (16)
C1—N1—C5121.47 (14)O5—C8—C7108.20 (15)
C4—N1—C5117.10 (15)O5—C8—H8A110.1
C9—O4—C6109.72 (14)C7—C8—H8A110.1
C8—O5—H1O110 (2)O5—C8—H8B110.1
O3—C5—N1110.92 (16)C7—C8—H8B110.1
O3—C5—C6105.14 (14)H8A—C8—H8B108.4
N1—C5—C6114.14 (16)C8—C7—C6113.23 (17)
O3—C5—H5108.8C8—C7—H7A108.9
N1—C5—H5108.8C6—C7—H7A108.9
C6—C5—H5108.8C8—C7—H7B108.9
C3—N2—C4128.17 (16)C6—C7—H7B108.9
C3—N2—H1N113.4 (16)H7A—C7—H7B107.7
C4—N2—H1N118.1 (16)O4—C9—O3105.54 (16)
C2—C1—N1121.28 (17)O4—C9—C11107.9 (2)
C2—C1—H1119.4O3—C9—C11111.2 (2)
N1—C1—H1119.4O4—C9—C10112.88 (19)
C5—O3—C9110.51 (16)O3—C9—C10106.8 (2)
O1—C4—N1123.91 (16)C11—C9—C10112.5 (2)
O1—C4—N2121.80 (16)C9—C10—H10A109.5
N1—C4—N2114.29 (16)C9—C10—H10B109.5
O4—C6—C7112.88 (14)H10A—C10—H10B109.5
O4—C6—C5102.72 (13)C9—C10—H10C109.5
C7—C6—C5111.86 (15)H10A—C10—H10C109.5
O4—C6—H6109.7H10B—C10—H10C109.5
C7—C6—H6109.7C9—C11—H11A109.5
C5—C6—H6109.7C9—C11—H11B109.5
C1—C2—F1121.20 (18)H11A—C11—H11B109.5
C1—C2—C3122.28 (19)C9—C11—H11C109.5
F1—C2—C3116.51 (17)H11A—C11—H11C109.5
O2—C3—N2121.46 (18)H11B—C11—H11C109.5
O2—C3—C2126.3 (2)
C1—N1—C5—O382.0 (2)N1—C5—C6—C7141.06 (16)
C4—N1—C5—O396.83 (19)N1—C1—C2—F1179.91 (19)
C1—N1—C5—C636.5 (2)N1—C1—C2—C31.0 (3)
C4—N1—C5—C6144.63 (16)C4—N2—C3—O2173.9 (2)
C4—N1—C1—C23.0 (3)C4—N2—C3—C26.5 (3)
C5—N1—C1—C2175.8 (2)C1—C2—C3—O2177.1 (2)
N1—C5—O3—C9107.78 (18)F1—C2—C3—O24.0 (3)
C6—C5—O3—C916.1 (2)C1—C2—C3—N23.3 (3)
C1—N1—C4—O1179.53 (18)F1—C2—C3—N2175.64 (18)
C5—N1—C4—O11.6 (3)O5—C8—C7—C667.2 (2)
C1—N1—C4—N20.4 (3)O4—C6—C7—C865.3 (2)
C5—N1—C4—N2178.50 (15)C5—C6—C7—C8179.47 (16)
C3—N2—C4—O1175.3 (2)C6—O4—C9—O315.2 (2)
C3—N2—C4—N14.8 (3)C6—O4—C9—C11134.1 (2)
C9—O4—C6—C796.42 (19)C6—O4—C9—C10101.1 (2)
C9—O4—C6—C524.21 (19)C5—O3—C9—O41.4 (2)
O3—C5—C6—O424.16 (19)C5—O3—C9—C11115.3 (2)
N1—C5—C6—O497.61 (16)C5—O3—C9—C10121.8 (2)
O3—C5—C6—C797.17 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O5i0.83 (2)2.01 (2)2.828 (2)167 (3)
O5—H1O···O2ii0.75 (3)2.16 (3)2.876 (2)160 (3)
Symmetry codes: (i) x+3/2, y1/2, z+2; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC11H15FN2O5
Mr274.25
Crystal system, space groupMonoclinic, C2
Temperature (K)298
a, b, c (Å)20.8905 (8), 5.5751 (1), 13.5639 (5)
β (°) 126.297 (6)
V3)1273.21 (12)
Z4
Radiation typeCu Kα
µ (mm1)1.06
Crystal size (mm)0.40 × 0.12 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini Atlas CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.885, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
4606, 1786, 1732
Rint0.013
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.04
No. of reflections1786
No. of parameters181
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.20
Absolute structureFlack (1983), 498 Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O5i0.83 (2)2.01 (2)2.828 (2)167 (3)
O5—H1O···O2ii0.75 (3)2.16 (3)2.876 (2)160 (3)
Symmetry codes: (i) x+3/2, y1/2, z+2; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

Special thanks to BUAP for financial support.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuryn, D. M. & Okabe, M. (1992). Chem. Rev. 92, 1745–1768.  CrossRef CAS Web of Science Google Scholar
First citationKorba, B. E. & Boyd, M. R. (1996). Antimicrob. Agents Chemother. 40, 1282–1284.  CAS PubMed Web of Science Google Scholar
First citationLuscombe, C., Pedersen, J., Uren, E. & Locarnini, S. (1996). Hepatology 24, 766–773.  CAS PubMed Web of Science Google Scholar
First citationMinuk, G. Y., German, G. B., Bernstein, C., Benarroch, A., Gauthiar, T. & Sekla, L. (1992). Clin. Invest. Med. 15, 506–512.  PubMed CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValdivia, V., Hernández, A., Rivera, A., Sartillo-Piscil, F., Loukaci, A., Fourrey, J.-L. & Quintero, L. (2005). Tetrahedron Lett. 46, 6511–6514.  Web of Science CrossRef CAS Google Scholar
First citationXie, M., Berges, D. A. & Robins, M. (1996). J. Org. Chem. 61, 5178–5179.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds