organic compounds
5-Fluoro-1-[(4S,5R)-5-(2-hydroxyethyl)-2,2-dimethyl-1,3-dioxolan-4-yl]pyrimidine-2,4(1H,3H)-dione
aCentro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico, bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico, and cFacultad de Química, Universidad Nacional Autónoma de México, 04510, México, DF, Mexico
*Correspondence e-mail: angel.mendoza.m@gmail.com
In the title compound, C11H15FN2O5, the five-membered ring has an while the six-membered ring is essentially planar, with a maximum deviation of 0.032 (2) Å from the mean plane. The crystal packing is stabilized by intermolecular N—H⋯O and O—H⋯O hydrogen bonds, generating a layer structure parallel to (001).
Related literature
For applications of modified ); Minuk et al. (1992); Luscombe et al. (1996); Korba & Boyd (1996). For the synthesis, see: Valdivia et al. (2005); Xie et al. (1996). For ring conformation analysis, see: Cremer & Pople (1975).
in medical chemistry, see: Huryn & Okabe (1992Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810016065/is2543sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810016065/is2543Isup2.hkl
Deshomologation of previos nucleoside analogue, 1-[(1'S,2'R,4'S)-(1',2'-O-isopropylidene-4',5'-dihydroxy-1'-pentyl)]-5-fluorouracil, was achieved following non-aqueous protocol (Valdivia et al., 2005; Xie et al., 1996). Reaction was carried out by two steps: a) periodic acid/ethyl acetate, 30 min, b) EtOH/H2O/ NaBH4, 20 min, rt. Final purification of compound 1 was achieved by crystallization from hexane. Yield 80%, white solid, m.p. 184 °C; [α]D -18.51 (c 1.0, CH3OH). 1H NMR (300 MHz, CDCl3/TMS) 1.53 (s, 3H), 1.57 (s, 3H), 1.95 (m, 1H), 2.11 (m, 1H), 3.80 (m, 2H), 4.21 (m, 1H), 5.90 (d, 1H, J = 5.1 Hz), 7.3 (s, 1H). 13C MNR (75 MHz, CDCl3/TMS) 26.9, 27.9, 34.9, 55.8, 58.9, 79.4, 86.8, 111.6, 142.2, 149.5, 157.5.
H atoms bonded to N2 and O5 atoms were located in a difference Fourier map and refined with free coordinates and isotropic U parameters. H atoms linked to C atoms were placed in geometrical idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl groups.
For many years, design of modified
has been a focal point of research in medicinal chemistry (Huryn & Okabe, 1992). Modified have acquired an important role as therapeutic agents for the treatment of patients with devastating infections with viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), and herpes viruses. A class of nucleoside analogues for antiviral chemotherapy is that where cyclic carbohydrate moiety is replaced with open-chain "acyclic" sugar moieties. Among purine acyclic are Acyclovir, Ganciclovir and Penciclovir (Minuk et al., 1992; Luscombe et al., 1996; Korba & Boyd, 1996).In this context and as result of our continuing investigations on the synthesis of nucleoside analogues, we report a new compound 1 (Scheme 1). This new analogue might present a similarity with a number of acyclic
which showed remarkable antiviral properties.In the present paper, we report the structure of title compound 1. In the [(1'S, 2'R)-(1', 2'-O-isopropylidene-4'-hydroxy-1-butyl)], the five member ring (C5/C6/O3/O4/C9) shows an φ2 = 69.8 (6)°. For the six member ring uracil, shows a planar configuration with torsion angle (N1—C4—N2—C3) of 4.8 (3)°, and C1—C2 = 1.325 (3) Å and N2—C4 = 1.384 (2) Å (double bond). The crystal packing is stabilized by two intermolecular hydrogen bonds [O5···O2 = 2.828 (2) Å and N2···O5 = 2.876 (2) Å], generating a layer parallel to the (001) plane.
on atom C6 with puckering parameters (Cremer & Pople, 1975) q2 = 0.238 (2) Å andFor applications of modified
in medical chemistry, see: Huryn & Okabe (1992); Minuk et al. (1992); Luscombe et al. (1996); Korba & Boyd (1996). For the synthesis, see: Valdivia et al. (2005); Xie et al. (1996). For ring conformation analysis, see: Cremer & Pople (1975).Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C11H15FN2O5 | F(000) = 576 |
Mr = 274.25 | Dx = 1.431 Mg m−3 |
Monoclinic, C2 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: C 2y | Cell parameters from 4215 reflections |
a = 20.8905 (8) Å | θ = 4.0–68.0° |
b = 5.5751 (1) Å | µ = 1.06 mm−1 |
c = 13.5639 (5) Å | T = 298 K |
β = 126.297 (6)° | Prism, colorless |
V = 1273.21 (12) Å3 | 0.40 × 0.12 × 0.08 mm |
Z = 4 |
Oxford Diffraction Gemini Atlas CCD diffractometer | 1786 independent reflections |
Radiation source: fine-focus sealed tube | 1732 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.013 |
Detector resolution: 10.4685 pixels mm-1 | θmax = 68.1°, θmin = 4.0° |
ω scans | h = −22→24 |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009) | k = −4→6 |
Tmin = 0.885, Tmax = 0.964 | l = −16→16 |
4606 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.038P)2 + 0.4768P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.071 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.23 e Å−3 |
1786 reflections | Δρmin = −0.20 e Å−3 |
181 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0075 (4) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 498 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.0 (2) |
C11H15FN2O5 | V = 1273.21 (12) Å3 |
Mr = 274.25 | Z = 4 |
Monoclinic, C2 | Cu Kα radiation |
a = 20.8905 (8) Å | µ = 1.06 mm−1 |
b = 5.5751 (1) Å | T = 298 K |
c = 13.5639 (5) Å | 0.40 × 0.12 × 0.08 mm |
β = 126.297 (6)° |
Oxford Diffraction Gemini Atlas CCD diffractometer | 1786 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009) | 1732 reflections with I > 2σ(I) |
Tmin = 0.885, Tmax = 0.964 | Rint = 0.013 |
4606 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.071 | Δρmax = 0.23 e Å−3 |
S = 1.04 | Δρmin = −0.20 e Å−3 |
1786 reflections | Absolute structure: Flack (1983), 498 Friedel pairs |
181 parameters | Absolute structure parameter: 0.0 (2) |
1 restraint |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.69200 (8) | 0.0051 (3) | 0.95722 (12) | 0.0519 (4) | |
N1 | 0.66380 (8) | 0.2920 (3) | 0.81679 (12) | 0.0339 (3) | |
O4 | 0.72382 (7) | 0.3751 (3) | 0.65042 (11) | 0.0438 (3) | |
F1 | 0.52029 (9) | 0.7673 (3) | 0.69645 (15) | 0.0816 (5) | |
O5 | 0.90402 (9) | 0.7069 (3) | 0.88915 (13) | 0.0478 (4) | |
O2 | 0.49424 (9) | 0.5250 (3) | 0.84757 (15) | 0.0627 (5) | |
C5 | 0.72230 (11) | 0.1894 (4) | 0.80156 (17) | 0.0403 (4) | |
H5 | 0.7609 | 0.0950 | 0.8745 | 0.048* | |
N2 | 0.59707 (9) | 0.2801 (4) | 0.90550 (15) | 0.0434 (4) | |
C1 | 0.61955 (10) | 0.4901 (4) | 0.75175 (16) | 0.0418 (4) | |
H1 | 0.6291 | 0.5673 | 0.7009 | 0.050* | |
O3 | 0.68552 (11) | 0.0402 (3) | 0.69943 (16) | 0.0681 (5) | |
C4 | 0.65428 (10) | 0.1784 (4) | 0.89752 (15) | 0.0362 (4) | |
C6 | 0.76688 (9) | 0.3754 (4) | 0.78102 (14) | 0.0350 (4) | |
H6 | 0.7625 | 0.5332 | 0.8084 | 0.042* | |
C2 | 0.56349 (11) | 0.5732 (4) | 0.76007 (18) | 0.0466 (5) | |
C3 | 0.54650 (10) | 0.4653 (4) | 0.83818 (17) | 0.0435 (5) | |
C8 | 0.89973 (11) | 0.4915 (4) | 0.83002 (18) | 0.0469 (5) | |
H8A | 0.9528 | 0.4318 | 0.8649 | 0.056* | |
H8B | 0.8733 | 0.5206 | 0.7435 | 0.056* | |
C7 | 0.85368 (10) | 0.3099 (4) | 0.84748 (17) | 0.0437 (5) | |
H7A | 0.8779 | 0.2948 | 0.9342 | 0.052* | |
H7B | 0.8572 | 0.1551 | 0.8184 | 0.052* | |
C9 | 0.68429 (13) | 0.1521 (4) | 0.60232 (19) | 0.0533 (6) | |
C10 | 0.72705 (17) | −0.0147 (5) | 0.5721 (2) | 0.0689 (7) | |
H10A | 0.6979 | −0.1621 | 0.5400 | 0.103* | |
H10B | 0.7793 | −0.0473 | 0.6448 | 0.103* | |
H10C | 0.7313 | 0.0588 | 0.5121 | 0.103* | |
C11 | 0.60061 (17) | 0.2034 (8) | 0.4934 (3) | 0.1094 (13) | |
H11A | 0.5725 | 0.0550 | 0.4592 | 0.164* | |
H11B | 0.6016 | 0.2893 | 0.4330 | 0.164* | |
H11C | 0.5743 | 0.2986 | 0.5185 | 0.164* | |
H1N | 0.5950 (12) | 0.236 (5) | 0.9622 (19) | 0.048 (6)* | |
H1O | 0.9348 (15) | 0.789 (6) | 0.896 (2) | 0.072 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0606 (7) | 0.0506 (9) | 0.0586 (7) | 0.0216 (7) | 0.0430 (7) | 0.0239 (8) |
N1 | 0.0336 (6) | 0.0365 (9) | 0.0345 (7) | 0.0036 (7) | 0.0218 (6) | 0.0044 (6) |
O4 | 0.0520 (7) | 0.0397 (8) | 0.0390 (6) | −0.0028 (6) | 0.0265 (5) | 0.0009 (6) |
F1 | 0.0799 (8) | 0.0748 (11) | 0.1109 (11) | 0.0463 (8) | 0.0678 (8) | 0.0532 (10) |
O5 | 0.0529 (8) | 0.0445 (10) | 0.0622 (8) | −0.0061 (7) | 0.0430 (7) | −0.0071 (7) |
O2 | 0.0621 (8) | 0.0584 (11) | 0.0954 (11) | 0.0167 (8) | 0.0619 (8) | 0.0137 (10) |
C5 | 0.0465 (9) | 0.0352 (11) | 0.0509 (9) | 0.0048 (9) | 0.0353 (8) | 0.0038 (9) |
N2 | 0.0502 (8) | 0.0455 (10) | 0.0498 (8) | 0.0083 (8) | 0.0381 (7) | 0.0092 (8) |
C1 | 0.0410 (8) | 0.0437 (12) | 0.0447 (9) | 0.0064 (9) | 0.0275 (7) | 0.0138 (9) |
O3 | 0.1087 (12) | 0.0487 (10) | 0.0938 (11) | −0.0334 (9) | 0.0857 (10) | −0.0292 (9) |
C4 | 0.0368 (8) | 0.0390 (11) | 0.0359 (8) | 0.0011 (8) | 0.0232 (7) | 0.0018 (8) |
C6 | 0.0397 (8) | 0.0320 (10) | 0.0388 (8) | 0.0022 (8) | 0.0263 (7) | 0.0006 (8) |
C2 | 0.0444 (9) | 0.0382 (12) | 0.0563 (11) | 0.0122 (9) | 0.0294 (9) | 0.0139 (9) |
C3 | 0.0417 (8) | 0.0401 (12) | 0.0557 (10) | 0.0025 (9) | 0.0326 (8) | 0.0013 (9) |
C8 | 0.0430 (9) | 0.0492 (13) | 0.0608 (11) | 0.0008 (10) | 0.0374 (9) | −0.0079 (11) |
C7 | 0.0400 (9) | 0.0402 (12) | 0.0531 (10) | 0.0056 (9) | 0.0288 (8) | 0.0001 (9) |
C9 | 0.0641 (12) | 0.0483 (14) | 0.0551 (11) | −0.0145 (11) | 0.0394 (10) | −0.0142 (10) |
C10 | 0.1132 (18) | 0.0523 (16) | 0.0761 (14) | −0.0072 (15) | 0.0752 (15) | −0.0113 (13) |
C11 | 0.0695 (16) | 0.110 (3) | 0.086 (2) | −0.0123 (19) | 0.0121 (15) | −0.043 (2) |
O1—C4 | 1.206 (2) | O3—C9 | 1.444 (3) |
N1—C1 | 1.373 (3) | C6—C7 | 1.516 (2) |
N1—C4 | 1.378 (2) | C6—H6 | 0.9800 |
N1—C5 | 1.471 (2) | C2—C3 | 1.434 (3) |
O4—C9 | 1.419 (3) | C8—C7 | 1.509 (3) |
O4—C6 | 1.435 (2) | C8—H8A | 0.9700 |
F1—C2 | 1.345 (2) | C8—H8B | 0.9700 |
O5—C8 | 1.417 (3) | C7—H7A | 0.9700 |
O5—H1O | 0.75 (3) | C7—H7B | 0.9700 |
O2—C3 | 1.218 (2) | C9—C11 | 1.504 (4) |
C5—O3 | 1.393 (3) | C9—C10 | 1.505 (3) |
C5—C6 | 1.526 (3) | C10—H10A | 0.9600 |
C5—H5 | 0.9800 | C10—H10B | 0.9600 |
N2—C3 | 1.369 (3) | C10—H10C | 0.9600 |
N2—C4 | 1.384 (2) | C11—H11A | 0.9600 |
N2—H1N | 0.83 (2) | C11—H11B | 0.9600 |
C1—C2 | 1.325 (3) | C11—H11C | 0.9600 |
C1—H1 | 0.9300 | ||
C1—N1—C4 | 121.43 (14) | N2—C3—C2 | 112.25 (16) |
C1—N1—C5 | 121.47 (14) | O5—C8—C7 | 108.20 (15) |
C4—N1—C5 | 117.10 (15) | O5—C8—H8A | 110.1 |
C9—O4—C6 | 109.72 (14) | C7—C8—H8A | 110.1 |
C8—O5—H1O | 110 (2) | O5—C8—H8B | 110.1 |
O3—C5—N1 | 110.92 (16) | C7—C8—H8B | 110.1 |
O3—C5—C6 | 105.14 (14) | H8A—C8—H8B | 108.4 |
N1—C5—C6 | 114.14 (16) | C8—C7—C6 | 113.23 (17) |
O3—C5—H5 | 108.8 | C8—C7—H7A | 108.9 |
N1—C5—H5 | 108.8 | C6—C7—H7A | 108.9 |
C6—C5—H5 | 108.8 | C8—C7—H7B | 108.9 |
C3—N2—C4 | 128.17 (16) | C6—C7—H7B | 108.9 |
C3—N2—H1N | 113.4 (16) | H7A—C7—H7B | 107.7 |
C4—N2—H1N | 118.1 (16) | O4—C9—O3 | 105.54 (16) |
C2—C1—N1 | 121.28 (17) | O4—C9—C11 | 107.9 (2) |
C2—C1—H1 | 119.4 | O3—C9—C11 | 111.2 (2) |
N1—C1—H1 | 119.4 | O4—C9—C10 | 112.88 (19) |
C5—O3—C9 | 110.51 (16) | O3—C9—C10 | 106.8 (2) |
O1—C4—N1 | 123.91 (16) | C11—C9—C10 | 112.5 (2) |
O1—C4—N2 | 121.80 (16) | C9—C10—H10A | 109.5 |
N1—C4—N2 | 114.29 (16) | C9—C10—H10B | 109.5 |
O4—C6—C7 | 112.88 (14) | H10A—C10—H10B | 109.5 |
O4—C6—C5 | 102.72 (13) | C9—C10—H10C | 109.5 |
C7—C6—C5 | 111.86 (15) | H10A—C10—H10C | 109.5 |
O4—C6—H6 | 109.7 | H10B—C10—H10C | 109.5 |
C7—C6—H6 | 109.7 | C9—C11—H11A | 109.5 |
C5—C6—H6 | 109.7 | C9—C11—H11B | 109.5 |
C1—C2—F1 | 121.20 (18) | H11A—C11—H11B | 109.5 |
C1—C2—C3 | 122.28 (19) | C9—C11—H11C | 109.5 |
F1—C2—C3 | 116.51 (17) | H11A—C11—H11C | 109.5 |
O2—C3—N2 | 121.46 (18) | H11B—C11—H11C | 109.5 |
O2—C3—C2 | 126.3 (2) | ||
C1—N1—C5—O3 | −82.0 (2) | N1—C5—C6—C7 | 141.06 (16) |
C4—N1—C5—O3 | 96.83 (19) | N1—C1—C2—F1 | 179.91 (19) |
C1—N1—C5—C6 | 36.5 (2) | N1—C1—C2—C3 | 1.0 (3) |
C4—N1—C5—C6 | −144.63 (16) | C4—N2—C3—O2 | 173.9 (2) |
C4—N1—C1—C2 | −3.0 (3) | C4—N2—C3—C2 | −6.5 (3) |
C5—N1—C1—C2 | 175.8 (2) | C1—C2—C3—O2 | −177.1 (2) |
N1—C5—O3—C9 | 107.78 (18) | F1—C2—C3—O2 | 4.0 (3) |
C6—C5—O3—C9 | −16.1 (2) | C1—C2—C3—N2 | 3.3 (3) |
C1—N1—C4—O1 | −179.53 (18) | F1—C2—C3—N2 | −175.64 (18) |
C5—N1—C4—O1 | 1.6 (3) | O5—C8—C7—C6 | 67.2 (2) |
C1—N1—C4—N2 | 0.4 (3) | O4—C6—C7—C8 | 65.3 (2) |
C5—N1—C4—N2 | −178.50 (15) | C5—C6—C7—C8 | −179.47 (16) |
C3—N2—C4—O1 | −175.3 (2) | C6—O4—C9—O3 | 15.2 (2) |
C3—N2—C4—N1 | 4.8 (3) | C6—O4—C9—C11 | 134.1 (2) |
C9—O4—C6—C7 | 96.42 (19) | C6—O4—C9—C10 | −101.1 (2) |
C9—O4—C6—C5 | −24.21 (19) | C5—O3—C9—O4 | 1.4 (2) |
O3—C5—C6—O4 | 24.16 (19) | C5—O3—C9—C11 | −115.3 (2) |
N1—C5—C6—O4 | −97.61 (16) | C5—O3—C9—C10 | 121.8 (2) |
O3—C5—C6—C7 | −97.17 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N···O5i | 0.83 (2) | 2.01 (2) | 2.828 (2) | 167 (3) |
O5—H1O···O2ii | 0.75 (3) | 2.16 (3) | 2.876 (2) | 160 (3) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+2; (ii) x+1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C11H15FN2O5 |
Mr | 274.25 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 298 |
a, b, c (Å) | 20.8905 (8), 5.5751 (1), 13.5639 (5) |
β (°) | 126.297 (6) |
V (Å3) | 1273.21 (12) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.06 |
Crystal size (mm) | 0.40 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini Atlas CCD diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.885, 0.964 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4606, 1786, 1732 |
Rint | 0.013 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.071, 1.04 |
No. of reflections | 1786 |
No. of parameters | 181 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.20 |
Absolute structure | Flack (1983), 498 Friedel pairs |
Absolute structure parameter | 0.0 (2) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N···O5i | 0.83 (2) | 2.01 (2) | 2.828 (2) | 167 (3) |
O5—H1O···O2ii | 0.75 (3) | 2.16 (3) | 2.876 (2) | 160 (3) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+2; (ii) x+1/2, y+1/2, z. |
Acknowledgements
Special thanks to BUAP for financial support.
References
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Huryn, D. M. & Okabe, M. (1992). Chem. Rev. 92, 1745–1768. CrossRef CAS Web of Science Google Scholar
Korba, B. E. & Boyd, M. R. (1996). Antimicrob. Agents Chemother. 40, 1282–1284. CAS PubMed Web of Science Google Scholar
Luscombe, C., Pedersen, J., Uren, E. & Locarnini, S. (1996). Hepatology 24, 766–773. CAS PubMed Web of Science Google Scholar
Minuk, G. Y., German, G. B., Bernstein, C., Benarroch, A., Gauthiar, T. & Sekla, L. (1992). Clin. Invest. Med. 15, 506–512. PubMed CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Valdivia, V., Hernández, A., Rivera, A., Sartillo-Piscil, F., Loukaci, A., Fourrey, J.-L. & Quintero, L. (2005). Tetrahedron Lett. 46, 6511–6514. Web of Science CrossRef CAS Google Scholar
Xie, M., Berges, D. A. & Robins, M. (1996). J. Org. Chem. 61, 5178–5179. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
For many years, design of modified nucleosides has been a focal point of research in medicinal chemistry (Huryn & Okabe, 1992). Modified nucleosides have acquired an important role as therapeutic agents for the treatment of patients with devastating infections with viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), and herpes viruses. A class of nucleoside analogues for antiviral chemotherapy is that where cyclic carbohydrate moiety is replaced with open-chain "acyclic" sugar moieties. Among purine acyclic nucleosides, are Acyclovir, Ganciclovir and Penciclovir (Minuk et al., 1992; Luscombe et al., 1996; Korba & Boyd, 1996).
In this context and as result of our continuing investigations on the synthesis of nucleoside analogues, we report a new compound 1 (Scheme 1). This new analogue might present a similarity with a number of acyclic nucleosides, which showed remarkable antiviral properties.
In the present paper, we report the structure of title compound 1. In the [(1'S, 2'R)-(1', 2'-O-isopropylidene-4'-hydroxy-1-butyl)], the five member ring (C5/C6/O3/O4/C9) shows an envelope conformation on atom C6 with puckering parameters (Cremer & Pople, 1975) q2 = 0.238 (2) Å and φ2 = 69.8 (6)°. For the six member ring uracil, shows a planar configuration with torsion angle (N1—C4—N2—C3) of 4.8 (3)°, and C1—C2 = 1.325 (3) Å and N2—C4 = 1.384 (2) Å (double bond). The crystal packing is stabilized by two intermolecular hydrogen bonds [O5···O2 = 2.828 (2) Å and N2···O5 = 2.876 (2) Å], generating a layer parallel to the (001) plane.