metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-chlorido-bis­­(18-crown-6)platinum(II)dipotassium(I)

aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, India, bDepartment of Physics, Sethupathy Government Arts College, Ramanathapuram 623 502, Tamilnadu, India, cDepartment of Physics, Popes College, Sawyerpuram 628 251, India, dDepartment of Chemistry, T.D.M.N.S. College, T. Kallikulam, Tamilnadu, India, and eInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 29 April 2010; accepted 6 May 2010; online 19 May 2010)

In the title compound, [K2PtCl4(C12H24O6)2], the PtII ion is located on an inversion centre and is coordinated by four Cl atoms, forming a square-planar geometry. The KI ion is coordinated by six O atoms of the crown ether and two bridging Cl atoms. The KI ion is displaced by 0.756 (2) Å from the mean plane of the six O atoms of the crown ether. The mol­ecules are connected by weak C—H⋯O hydrogen bonds, forming an infinite two-dimensional network parallel to the (10[\overline{2}]) plane. Intra- and inter­molecular C—H⋯Cl hydrogen bonds are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the biological activity of metal platinum derivatives, see: Loehrer et al. (1988[Loehrer, P. J., Williams, S. D. & Einhorn, L. H. (1988). J. Natl Cancer Inst. 80, 1373-1376.]); Weiss & Christian (1993[Weiss, R. B. & Christian, M. C. (1993). Drugs, 46, 360-377.]).

[Scheme 1]

Experimental

Crystal data
  • [K2PtCl4(C12H24O6)2]

  • Mr = 943.71

  • Monoclinic, P 21 /c

  • a = 11.6307 (6) Å

  • b = 8.4715 (4) Å

  • c = 19.1586 (9) Å

  • β = 107.3248 (11)°

  • V = 1802.05 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.47 mm−1

  • T = 173 K

  • 0.39 × 0.37 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.409, Tmax = 0.699

  • 15436 measured reflections

  • 4252 independent reflections

  • 3659 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.053

  • S = 1.04

  • 4252 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯O10i 0.99 2.57 3.318 (3) 133
C11—H11A⋯Cl11ii 0.99 2.80 3.678 (3) 148
C17—H17A⋯Cl11 0.99 2.81 3.643 (3) 142
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The platinum complex, cis-diamminedichloroplatinum(II) (cisplatin), is one of the most widely used antitumour drugs in the world (Weiss & Christian, 1993; Loehrer et al., 1988). Due to the importance of the metal platinum, we report here the crystal structure of the title compound, (I).

The bond lengths and bond angles in (Fig. 1) are within normal ranges (Allen et al., 1987). The PtII ion exhibits a distorted square planar coordination geometry. The geometry is completed by four chorine atoms. The K+ ion is coordinated by six oxygen atoms of the crown ether and also by two terminal Cl atom attached to the metal platinum, forming a eight-fold coordination. The O atoms are oriented towards the centre of the crown ether cavity and O—C—C—O fragments have alternate +SC and –SC conformations. The K+ cation is displaced by 0.756 (2) Å from the mean plane of the six oxygen atoms of the crown ether.

The crystal packing is consolidated by C—H···Cl and weak C—H···O hydrogen bonds. The molecules form an infinite two dimensional network parallel to the (102) plane through the C—H···O hydrogen bonds.

Related literature top

For bond-length data, see: Allen et al. (1987). For the biological activity of metal platinum derivatives, see: Loehrer et al. (1988); Weiss & Christian (1993).

Experimental top

A mixture of potassium tetrachloroplatinate(II) (K2PtCl4; 0. 0208 g, 0.05 mmol) and 18-crown-6 ether (0.026 g, 0.1 mmol) in acetone and benzene (5/5 ml) was heated at 313 K with stirring for 30 min. The yellow colour solution was allowed to undergo slow evaporation. Fine orange crystals are formed after three days.

Refinement top

All H atoms were positioned geometrically (C—H = 0.99 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The highest peak in the difference Fourier map is located 1.07 Å from atom Pt1.

Structure description top

The platinum complex, cis-diamminedichloroplatinum(II) (cisplatin), is one of the most widely used antitumour drugs in the world (Weiss & Christian, 1993; Loehrer et al., 1988). Due to the importance of the metal platinum, we report here the crystal structure of the title compound, (I).

The bond lengths and bond angles in (Fig. 1) are within normal ranges (Allen et al., 1987). The PtII ion exhibits a distorted square planar coordination geometry. The geometry is completed by four chorine atoms. The K+ ion is coordinated by six oxygen atoms of the crown ether and also by two terminal Cl atom attached to the metal platinum, forming a eight-fold coordination. The O atoms are oriented towards the centre of the crown ether cavity and O—C—C—O fragments have alternate +SC and –SC conformations. The K+ cation is displaced by 0.756 (2) Å from the mean plane of the six oxygen atoms of the crown ether.

The crystal packing is consolidated by C—H···Cl and weak C—H···O hydrogen bonds. The molecules form an infinite two dimensional network parallel to the (102) plane through the C—H···O hydrogen bonds.

For bond-length data, see: Allen et al. (1987). For the biological activity of metal platinum derivatives, see: Loehrer et al. (1988); Weiss & Christian (1993).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: APEX2 (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. The suffix A corresponds to symmetry code (-x + 1, -y, -z + 1).
[Figure 2] Fig. 2. The crystal packing of the title compound, showing an infinite two dimensional network along the plane (102).
Tetra-µ-chlorido-bis(18-crown-6)platinum(II)dipotassium(I) top
Crystal data top
[K2PtCl4(C12H24O6)2]F(000) = 944
Mr = 943.71Dx = 1.739 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8198 reflections
a = 11.6307 (6) Åθ = 2.6–27.8°
b = 8.4715 (4) ŵ = 4.47 mm1
c = 19.1586 (9) ÅT = 173 K
β = 107.3248 (11)°Plate, orange
V = 1802.05 (15) Å30.39 × 0.37 × 0.08 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
4252 independent reflections
Radiation source: sealed Tube3659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scanθmax = 27.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1115
Tmin = 0.409, Tmax = 0.699k = 1110
15436 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.3938P]
where P = (Fo2 + 2Fc2)/3
4252 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[K2PtCl4(C12H24O6)2]V = 1802.05 (15) Å3
Mr = 943.71Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.6307 (6) ŵ = 4.47 mm1
b = 8.4715 (4) ÅT = 173 K
c = 19.1586 (9) Å0.39 × 0.37 × 0.08 mm
β = 107.3248 (11)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4252 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3659 reflections with I > 2σ(I)
Tmin = 0.409, Tmax = 0.699Rint = 0.036
15436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.04Δρmax = 1.36 e Å3
4252 reflectionsΔρmin = 0.84 e Å3
196 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.50000.00000.50000.01602 (5)
Cl110.54452 (6)0.02672 (7)0.39113 (3)0.02592 (13)
Cl120.41425 (5)0.24295 (6)0.46094 (3)0.02923 (14)
K10.26519 (5)0.03222 (6)0.32365 (3)0.02257 (11)
O10.30996 (16)0.0581 (2)0.19194 (9)0.0281 (4)
C20.2692 (3)0.0325 (3)0.12656 (15)0.0303 (6)
H2A0.32920.02800.09920.036*
H2B0.19220.01080.09500.036*
C30.2521 (2)0.1987 (3)0.14642 (15)0.0309 (6)
H3A0.22850.26480.10180.037*
H3B0.32850.24050.17940.037*
O40.16047 (14)0.20461 (18)0.18204 (9)0.0248 (4)
C50.1404 (2)0.3633 (3)0.20022 (14)0.0283 (5)
H5A0.21620.40910.23210.034*
H5B0.11350.42780.15520.034*
C60.0464 (2)0.3648 (3)0.23892 (14)0.0284 (5)
H6A0.02650.30840.20950.034*
H6B0.02370.47490.24610.034*
O70.09465 (14)0.28863 (19)0.30812 (9)0.0246 (4)
C80.0148 (2)0.2960 (3)0.35139 (14)0.0288 (5)
H8A0.00510.40730.35860.035*
H8B0.06090.23940.32670.035*
C90.0756 (2)0.2208 (3)0.42348 (14)0.0282 (5)
H9A0.02690.23670.45740.034*
H9B0.15570.26930.44540.034*
O100.08862 (15)0.0570 (2)0.41216 (9)0.0254 (4)
C110.1541 (2)0.0232 (3)0.47782 (14)0.0262 (5)
H11A0.23570.02290.49710.031*
H11B0.11200.01110.51540.031*
C120.1632 (2)0.1943 (3)0.46078 (13)0.0273 (5)
H12A0.08160.23890.43920.033*
H12B0.20290.25300.50630.033*
O130.23094 (14)0.21061 (18)0.41091 (9)0.0236 (3)
C140.2572 (2)0.3712 (3)0.39951 (14)0.0298 (6)
H14A0.28930.42530.44720.036*
H14B0.18260.42610.37140.036*
C150.3480 (2)0.3772 (3)0.35834 (13)0.0272 (5)
H15A0.36870.48830.35150.033*
H15B0.42250.32190.38630.033*
O160.29863 (14)0.30278 (19)0.28855 (8)0.0236 (3)
C170.3846 (2)0.3012 (3)0.24896 (13)0.0266 (5)
H17A0.45880.24670.27800.032*
H17B0.40610.41080.23990.032*
C180.3329 (2)0.2174 (3)0.17747 (13)0.0273 (5)
H18A0.25720.26930.14900.033*
H18B0.39050.22150.14850.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01708 (7)0.01474 (7)0.01610 (7)0.00102 (4)0.00471 (5)0.00062 (4)
Cl110.0269 (3)0.0326 (3)0.0206 (3)0.0012 (2)0.0107 (2)0.0011 (2)
Cl120.0358 (3)0.0177 (3)0.0297 (3)0.0051 (2)0.0027 (3)0.0029 (2)
K10.0248 (2)0.0219 (2)0.0211 (3)0.00083 (19)0.0071 (2)0.00075 (19)
O10.0399 (10)0.0250 (8)0.0213 (9)0.0081 (8)0.0118 (8)0.0018 (7)
C20.0367 (14)0.0370 (14)0.0213 (13)0.0061 (11)0.0147 (11)0.0064 (11)
C30.0316 (13)0.0306 (13)0.0328 (14)0.0011 (10)0.0132 (11)0.0107 (11)
O40.0261 (8)0.0193 (8)0.0309 (9)0.0000 (6)0.0112 (7)0.0024 (7)
C50.0355 (13)0.0200 (11)0.0265 (13)0.0018 (10)0.0044 (11)0.0054 (10)
C60.0291 (13)0.0220 (12)0.0290 (13)0.0086 (9)0.0010 (10)0.0006 (10)
O70.0228 (8)0.0271 (8)0.0241 (9)0.0059 (7)0.0075 (7)0.0039 (7)
C80.0262 (12)0.0230 (12)0.0408 (15)0.0018 (9)0.0155 (11)0.0009 (11)
C90.0323 (13)0.0245 (12)0.0325 (14)0.0018 (10)0.0168 (11)0.0076 (11)
O100.0289 (9)0.0223 (8)0.0227 (9)0.0011 (7)0.0041 (7)0.0031 (7)
C110.0274 (12)0.0347 (13)0.0170 (12)0.0018 (10)0.0072 (10)0.0020 (10)
C120.0320 (13)0.0310 (13)0.0212 (12)0.0010 (10)0.0113 (10)0.0065 (10)
O130.0309 (9)0.0193 (8)0.0234 (8)0.0004 (6)0.0123 (7)0.0019 (7)
C140.0446 (15)0.0185 (11)0.0271 (14)0.0013 (10)0.0117 (12)0.0030 (10)
C150.0358 (13)0.0193 (11)0.0251 (13)0.0070 (10)0.0068 (11)0.0024 (10)
O160.0256 (8)0.0266 (8)0.0187 (8)0.0045 (7)0.0069 (7)0.0010 (7)
C170.0290 (12)0.0272 (12)0.0249 (13)0.0063 (10)0.0103 (10)0.0025 (10)
C180.0350 (13)0.0274 (12)0.0225 (12)0.0037 (10)0.0130 (11)0.0037 (10)
Geometric parameters (Å, º) top
Pt1—Cl11i2.3050 (6)O7—C81.419 (3)
Pt1—Cl112.3050 (6)C8—C91.494 (3)
Pt1—Cl12i2.3121 (5)C8—H8A0.9900
Pt1—Cl122.3121 (5)C8—H8B0.9900
Cl11—K13.1581 (8)C9—O101.419 (3)
Cl12—K13.2242 (8)C9—H9A0.9900
K1—O132.7535 (16)C9—H9B0.9900
K1—O12.8296 (18)O10—C111.433 (3)
K1—O72.8965 (16)C11—C121.497 (3)
K1—O162.9687 (17)C11—H11A0.9900
K1—O43.0014 (17)C11—H11B0.9900
K1—O103.0351 (18)C12—O131.414 (3)
O1—C181.419 (3)C12—H12A0.9900
O1—C21.425 (3)C12—H12B0.9900
C2—C31.487 (4)O13—C141.425 (3)
C2—H2A0.9900C14—C151.496 (4)
C2—H2B0.9900C14—H14A0.9900
C3—O41.427 (3)C14—H14B0.9900
C3—H3A0.9900C15—O161.434 (3)
C3—H3B0.9900C15—H15A0.9900
O4—C51.426 (3)C15—H15B0.9900
C5—C61.493 (4)O16—C171.424 (3)
C5—H5A0.9900C17—C181.500 (3)
C5—H5B0.9900C17—H17A0.9900
C6—O71.431 (3)C17—H17B0.9900
C6—H6A0.9900C18—H18A0.9900
C6—H6B0.9900C18—H18B0.9900
Cl11i—Pt1—Cl11180.0O4—C5—H5A109.9
Cl11i—Pt1—Cl12i89.20 (2)C6—C5—H5A109.9
Cl11—Pt1—Cl12i90.80 (2)O4—C5—H5B109.9
Cl11i—Pt1—Cl1290.80 (2)C6—C5—H5B109.9
Cl11—Pt1—Cl1289.20 (2)H5A—C5—H5B108.3
Cl12i—Pt1—Cl12180.0O7—C6—C5108.24 (19)
Cl11i—Pt1—K1i58.669 (18)O7—C6—H6A110.0
Cl11—Pt1—K1i121.331 (18)C5—C6—H6A110.0
Cl12i—Pt1—K1i60.300 (17)O7—C6—H6B110.0
Cl12—Pt1—K1i119.700 (17)C5—C6—H6B110.0
Cl11i—Pt1—K1121.331 (18)H6A—C6—H6B108.4
Cl11—Pt1—K158.669 (18)C8—O7—C6112.15 (17)
Cl12i—Pt1—K1119.700 (17)C8—O7—K1121.37 (13)
Cl12—Pt1—K160.300 (17)C6—O7—K1120.09 (13)
K1i—Pt1—K1180.0O7—C8—C9108.00 (19)
Pt1—Cl11—K182.76 (2)O7—C8—H8A110.1
Pt1—Cl12—K181.170 (19)C9—C8—H8A110.1
O13—K1—O1115.95 (5)O7—C8—H8B110.1
O13—K1—O7113.84 (5)C9—C8—H8B110.1
O1—K1—O7114.43 (5)H8A—C8—H8B108.4
O13—K1—O1658.38 (5)O10—C9—C8108.6 (2)
O1—K1—O1657.87 (5)O10—C9—H9A110.0
O7—K1—O16145.64 (5)C8—C9—H9A110.0
O13—K1—O4145.00 (5)O10—C9—H9B110.0
O1—K1—O457.21 (5)C8—C9—H9B110.0
O7—K1—O457.39 (5)H9A—C9—H9B108.4
O16—K1—O4107.80 (4)C9—O10—C11112.47 (18)
O13—K1—O1057.87 (5)C9—O10—K1105.89 (13)
O1—K1—O10148.41 (5)C11—O10—K1100.74 (14)
O7—K1—O1056.55 (5)O10—C11—C12108.8 (2)
O16—K1—O10110.42 (5)O10—C11—H11A109.9
O4—K1—O10108.14 (5)C12—C11—H11A109.9
O13—K1—Cl1187.16 (4)O10—C11—H11B109.9
O1—K1—Cl1183.24 (4)C12—C11—H11B109.9
O7—K1—Cl11138.60 (4)H11A—C11—H11B108.3
O16—K1—Cl1175.72 (3)O13—C12—C11109.4 (2)
O4—K1—Cl11122.55 (4)O13—C12—H12A109.8
O10—K1—Cl11124.54 (4)C11—C12—H12A109.8
O13—K1—Cl1293.34 (4)O13—C12—H12B109.8
O1—K1—Cl12132.86 (4)C11—C12—H12B109.8
O7—K1—Cl1281.60 (4)H12A—C12—H12B108.2
O16—K1—Cl12129.73 (4)C12—O13—C14112.59 (18)
O4—K1—Cl12116.29 (4)C12—O13—K1123.21 (13)
O10—K1—Cl1278.16 (4)C14—O13—K1122.96 (13)
Cl11—K1—Cl1261.045 (18)O13—C14—C15109.26 (19)
O13—K1—Pt165.66 (4)O13—C14—H14A109.8
O1—K1—Pt1121.14 (4)C15—C14—H14A109.8
O7—K1—Pt1116.72 (4)O13—C14—H14B109.8
O16—K1—Pt191.47 (3)C15—C14—H14B109.8
O4—K1—Pt1149.24 (3)H14A—C14—H14B108.3
O10—K1—Pt186.13 (3)O16—C15—C14109.10 (19)
Cl11—K1—Pt138.567 (13)O16—C15—H15A109.9
Cl12—K1—Pt138.529 (12)C14—C15—H15A109.9
C18—O1—C2111.94 (19)O16—C15—H15B109.9
C18—O1—K1121.79 (14)C14—C15—H15B109.9
C2—O1—K1122.46 (15)H15A—C15—H15B108.3
O1—C2—C3108.7 (2)C17—O16—C15110.55 (17)
O1—C2—H2A110.0C17—O16—K1105.76 (13)
C3—C2—H2A110.0C15—O16—K1104.60 (12)
O1—C2—H2B110.0O16—C17—C18109.66 (19)
C3—C2—H2B110.0O16—C17—H17A109.7
H2A—C2—H2B108.3C18—C17—H17A109.7
O4—C3—C2109.4 (2)O16—C17—H17B109.7
O4—C3—H3A109.8C18—C17—H17B109.7
C2—C3—H3A109.8H17A—C17—H17B108.2
O4—C3—H3B109.8O1—C18—C17108.61 (19)
C2—C3—H3B109.8O1—C18—H18A110.0
H3A—C3—H3B108.2C17—C18—H18A110.0
C5—O4—C3110.48 (18)O1—C18—H18B110.0
C5—O4—K1106.86 (13)C17—C18—H18B110.0
C3—O4—K1104.80 (13)H18A—C18—H18B108.3
O4—C5—C6109.07 (19)
Cl12i—Pt1—Cl11—K1124.86 (2)K1—O4—C5—C665.2 (2)
Cl12—Pt1—Cl11—K155.14 (2)O4—C5—C6—O767.1 (2)
K1i—Pt1—Cl11—K1180.0C5—C6—O7—C8175.16 (19)
Cl11i—Pt1—Cl12—K1126.21 (2)C5—C6—O7—K132.5 (2)
Cl11—Pt1—Cl12—K153.79 (2)O13—K1—O7—C89.37 (17)
K1i—Pt1—Cl12—K1180.0O1—K1—O7—C8145.94 (15)
Pt1—Cl11—K1—O1353.14 (4)O16—K1—O7—C877.71 (18)
Pt1—Cl11—K1—O1169.70 (4)O4—K1—O7—C8150.68 (17)
Pt1—Cl11—K1—O770.62 (6)O10—K1—O7—C80.74 (15)
Pt1—Cl11—K1—O16111.20 (4)Cl11—K1—O7—C8105.42 (16)
Pt1—Cl11—K1—O4146.57 (4)Cl12—K1—O7—C880.57 (15)
Pt1—Cl11—K1—O106.02 (5)Pt1—K1—O7—C864.24 (16)
Pt1—Cl11—K1—Cl1242.255 (17)O13—K1—O7—C6140.35 (15)
Pt1—Cl12—K1—O1342.60 (4)O1—K1—O7—C63.78 (17)
Pt1—Cl12—K1—O188.11 (6)O16—K1—O7—C672.01 (18)
Pt1—Cl12—K1—O7156.22 (4)O4—K1—O7—C60.96 (14)
Pt1—Cl12—K1—O168.02 (5)O10—K1—O7—C6148.99 (17)
Pt1—Cl12—K1—O4156.66 (4)Cl11—K1—O7—C6104.86 (15)
Pt1—Cl12—K1—O1098.79 (4)Cl12—K1—O7—C6129.71 (15)
Pt1—Cl12—K1—Cl1142.298 (17)Pt1—K1—O7—C6146.04 (14)
Cl11i—Pt1—K1—O1361.30 (4)C6—O7—C8—C9177.23 (18)
Cl11—Pt1—K1—O13118.70 (4)K1—O7—C8—C930.9 (2)
Cl12i—Pt1—K1—O1347.88 (4)O7—C8—C9—O1067.2 (2)
Cl12—Pt1—K1—O13132.12 (4)C8—C9—O10—C11175.79 (19)
Cl11i—Pt1—K1—O1168.03 (5)C8—C9—O10—K166.67 (19)
Cl11—Pt1—K1—O111.97 (5)O13—K1—O10—C9155.60 (15)
Cl12i—Pt1—K1—O158.86 (5)O1—K1—O10—C9116.38 (15)
Cl12—Pt1—K1—O1121.14 (5)O7—K1—O10—C933.73 (13)
Cl11i—Pt1—K1—O744.30 (4)O16—K1—O10—C9177.81 (13)
Cl11—Pt1—K1—O7135.70 (4)O4—K1—O10—C960.09 (14)
Cl12i—Pt1—K1—O7153.47 (4)Cl11—K1—O10—C995.81 (14)
Cl12—Pt1—K1—O726.53 (4)Cl12—K1—O10—C953.96 (13)
Cl11i—Pt1—K1—O16115.33 (4)Pt1—K1—O10—C992.05 (14)
Cl11—Pt1—K1—O1664.67 (4)O13—K1—O10—C1138.31 (12)
Cl12i—Pt1—K1—O166.16 (4)O1—K1—O10—C11126.33 (14)
Cl12—Pt1—K1—O16173.84 (4)O7—K1—O10—C11151.03 (14)
Cl11i—Pt1—K1—O4114.81 (7)O16—K1—O10—C1164.89 (13)
Cl11—Pt1—K1—O465.19 (7)O4—K1—O10—C11177.39 (12)
Cl12i—Pt1—K1—O4136.02 (7)Cl11—K1—O10—C1121.48 (14)
Cl12—Pt1—K1—O443.98 (7)Cl12—K1—O10—C1163.34 (12)
Cl11i—Pt1—K1—O104.97 (4)Pt1—K1—O10—C1125.24 (12)
Cl11—Pt1—K1—O10175.03 (4)C9—O10—C11—C12179.93 (19)
Cl12i—Pt1—K1—O10104.20 (4)K1—O10—C11—C1267.74 (19)
Cl12—Pt1—K1—O1075.80 (4)O10—C11—C12—O1363.7 (3)
Cl11i—Pt1—K1—Cl11180.0C11—C12—O13—C14172.2 (2)
Cl12i—Pt1—K1—Cl1170.83 (3)C11—C12—O13—K120.3 (3)
Cl12—Pt1—K1—Cl11109.17 (3)O1—K1—O13—C12154.05 (15)
Cl11i—Pt1—K1—Cl1270.83 (3)O7—K1—O13—C1218.17 (17)
Cl11—Pt1—K1—Cl12109.17 (3)O16—K1—O13—C12160.16 (17)
Cl12i—Pt1—K1—Cl12180.0O4—K1—O13—C1284.84 (18)
O13—K1—O1—C189.94 (18)O10—K1—O13—C129.66 (15)
O7—K1—O1—C18145.56 (16)Cl11—K1—O13—C12124.88 (16)
O16—K1—O1—C183.80 (16)Cl12—K1—O13—C1264.12 (16)
O4—K1—O1—C18150.31 (19)Pt1—K1—O13—C1291.68 (16)
O10—K1—O1—C1880.21 (19)O1—K1—O13—C1412.20 (18)
Cl11—K1—O1—C1873.56 (17)O7—K1—O13—C14148.08 (16)
Cl12—K1—O1—C18112.74 (17)O16—K1—O13—C146.10 (16)
Pt1—K1—O1—C1866.08 (18)O4—K1—O13—C1481.41 (19)
O13—K1—O1—C2146.29 (18)O10—K1—O13—C14156.59 (18)
O7—K1—O1—C210.7 (2)Cl11—K1—O13—C1468.87 (17)
O16—K1—O1—C2152.4 (2)Cl12—K1—O13—C14129.63 (16)
O4—K1—O1—C25.93 (17)Pt1—K1—O13—C14102.06 (17)
O10—K1—O1—C276.0 (2)C12—O13—C14—C15169.0 (2)
Cl11—K1—O1—C2130.20 (18)K1—O13—C14—C1523.4 (3)
Cl12—K1—O1—C291.02 (19)O13—C14—C15—O1661.2 (3)
Pt1—K1—O1—C2137.69 (17)C14—C15—O16—C17177.82 (19)
C18—O1—C2—C3177.7 (2)C14—C15—O16—K164.41 (19)
K1—O1—C2—C324.0 (3)O13—K1—O16—C17152.14 (14)
O1—C2—C3—O462.9 (3)O1—K1—O16—C1734.35 (12)
C2—C3—O4—C5178.7 (2)O7—K1—O16—C17121.28 (14)
C2—C3—O4—K166.5 (2)O4—K1—O16—C1763.50 (13)
O13—K1—O4—C5117.68 (14)O10—K1—O16—C17178.56 (12)
O1—K1—O4—C5153.03 (15)Cl11—K1—O16—C1756.59 (12)
O7—K1—O4—C532.10 (13)Cl12—K1—O16—C1787.15 (13)
O16—K1—O4—C5177.58 (13)Pt1—K1—O16—C1792.14 (12)
O10—K1—O4—C558.19 (14)O13—K1—O16—C1535.36 (13)
Cl11—K1—O4—C598.30 (14)O1—K1—O16—C15151.12 (15)
Cl12—K1—O4—C527.28 (14)O7—K1—O16—C15121.95 (14)
Pt1—K1—O4—C556.12 (16)O4—K1—O16—C15179.72 (13)
O13—K1—O4—C3125.05 (14)O10—K1—O16—C1561.79 (14)
O1—K1—O4—C335.76 (13)Cl11—K1—O16—C1560.19 (13)
O7—K1—O4—C3149.37 (15)Cl12—K1—O16—C1529.62 (15)
O16—K1—O4—C365.15 (14)Pt1—K1—O16—C1524.63 (13)
O10—K1—O4—C3175.46 (13)C15—O16—C17—C18177.84 (19)
Cl11—K1—O4—C318.98 (15)K1—O16—C17—C1865.16 (19)
Cl12—K1—O4—C389.99 (14)C2—O1—C18—C17175.5 (2)
Pt1—K1—O4—C361.15 (16)K1—O1—C18—C1726.0 (3)
C3—O4—C5—C6178.7 (2)O16—C17—C18—O163.0 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O10ii0.992.573.318 (3)133
C11—H11A···Cl11i0.992.803.678 (3)148
C17—H17A···Cl110.992.813.643 (3)142
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[K2PtCl4(C12H24O6)2]
Mr943.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.6307 (6), 8.4715 (4), 19.1586 (9)
β (°) 107.3248 (11)
V3)1802.05 (15)
Z2
Radiation typeMo Kα
µ (mm1)4.47
Crystal size (mm)0.39 × 0.37 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.409, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
15436, 4252, 3659
Rint0.036
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.053, 1.04
No. of reflections4252
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 0.84

Computer programs: APEX2 (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O10i0.992.573.318 (3)133
C11—H11A···Cl11ii0.992.803.678 (3)148
C17—H17A···Cl110.992.813.643 (3)142
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLoehrer, P. J., Williams, S. D. & Einhorn, L. H. (1988). J. Natl Cancer Inst. 80, 1373–1376.  CrossRef PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeiss, R. B. & Christian, M. C. (1993). Drugs, 46, 360–377.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds