organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydr­­oxy-16-[(E)-4-hydr­­oxy-3-meth­oxy­benzyl­­idene]-13-(4-hydr­­oxy-3-meth­oxy­phen­yl)-11-methyl-1,11-di­aza­penta­cyclo­[12.3.1.02,10.03,8.010,14]octa­deca-3(8),4,6-triene-9,15-dione

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 7 May 2010; accepted 11 May 2010; online 15 May 2010)

In the title compound, C32H30N2O7, the piperidone ring adopts a chair conformation and the five-membered ring of the dihydro­indenone ring system adopts an envelope conformation. Intra­molecular O—H⋯N and C—H⋯O hydrogen bonds occur. The dihedral angle between the two hydr­oxy-subsituted methoxy­phenyl rings is 71.12 (5)°. In the crystal structure, mol­ecules are connected by inter­molecular O—H⋯O hydrogen bonds, forming layers parallel to (001). These layers are further connected by C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For details of 1,3-dipolar cyclo­addition, see: Padwa (1984[Padwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry. New York: Wiley.]). For applications of pyrrolidines, see: Dalko & Moisan (2004[Dalko, P. I. & Moisan, L. (2004). Angew. Chem. Int. Ed. 43, 5138-5175.]); Seayad & List (2005[Seayad, J. & List, B. (2005). Org. Biomol. Chem. 3, 719-724.]); Natarajan et al. (2006[Natarajan, S. R., Liu, L., Levorse, M., Thompson, J. E., OŃeill, E. A., O'Keefe, S. J., Vora, K. A., Cvetovich, R., Chung, J. Y., Carballo-Jane, E. & Visco, D. M. (2006). Bioorg. Med. Chem. Lett. 16, 5468-5471.]); O'Hagan (2000[O'Hagan, D. (2000). Nat. Prod. Rep. 17, 435-446.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C32H30N2O7

  • Mr = 554.58

  • Orthorhombic, P b c a

  • a = 14.7989 (11) Å

  • b = 15.4918 (11) Å

  • c = 22.9079 (17) Å

  • V = 5251.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.39 × 0.39 × 0.31 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.969

  • 130228 measured reflections

  • 9672 independent reflections

  • 7897 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.145

  • S = 1.09

  • 9672 reflections

  • 385 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O2i 0.89 (2) 1.77 (2) 2.6554 (14) 173 (2)
O7—H1O7⋯O4ii 0.88 (3) 2.13 (3) 2.8720 (13) 143 (2)
O2—H1O2⋯N2 0.92 (3) 1.91 (2) 2.5987 (13) 131 (2)
C1—H1A⋯O7iii 0.97 2.49 3.3771 (16) 151
C13—H13A⋯O7iv 0.93 2.57 3.3237 (17) 138
C27—H27A⋯O1 0.93 2.52 3.0998 (15) 121
C32—H32A⋯O3v 0.96 2.40 3.1819 (17) 139
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,3-Dipolar cycloadditions represent one of the most versatile tools for the construction of five-membered heterocycles (Padwa, 1984). A diverse array of biologically active molecules contain substituted pyrrolidine cores (O'Hagan, 2000). Pyrrolidines are important building blocks in organic synthesis, and in the past years have emerged as privileged organocatalysts (Dalko & Moisan, 2004; Seayad & List, 2005). Compounds containing the piperidine subunit act as excellent inhibitors of p38 activity and TNF–α release (Natarajan et al., 2006) and consequently, the efficient preparation of these heterocycles has received significant attention.

The molecular structure of the title compound is shown in Fig. 1. The piperidone (N1/C1–C5) ring adopts a chair conformation [Q = 0.6146 (12) Å, Θ = 145.39 (11)°, φ = 120.0 (2)° ; Cremer & Pople, 1975]. The pyrrolidine ring (N2/C4/C6–C8) adopts an envelope conformation [puckering parameters Q = 0.3365 (12) Å, φ = 84.3 (2)°]. The five membered ring of the ninhydrin system adopts an envelope conformation and its flap atom C8 deviates from the mean plane formed by other atoms, C9–C16, by 0.0702 (12) Å. The dihedral angle between the two hydroxy subsituted methoxyphenyl rings (C18–C23 and C26–C31) is 71.12 (5)°.

In the crystal packing (Fig. 2), molecules are connected by intermolecular O2—H1O5···O2, O7—H1O7···O4, C1—H1A···O7, C13—H13A···O7 and C32—H32A···O3 hydrogen bonds to form a three–dimensional network.

Related literature top

For details of 1,3-dipolar cycloaddition, see: Padwa (1984). For applications of pyrrolidines, see: Dalko & Moisan (2004); Seayad & List (2005); Natarajan et al. (2006); O'Hagan (2000). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3,5-bis[(E)–(4-hydroxy-3-methoxyphenyl)methylidene] tetrahydro–4(1H)–pyridinone (0.100 g, 0.272 mmol), ninhydrin (0.049 g, 0.272 mmol), and sarcosine (0.024 g, 0.272 mmol) were dissolved in methanol (10 mL) and refluxed for 1 hour. After completion of the reaction as evident from TLC, the mixture was poured into water (50 mL). The precipitated solid was filtered and washed with water to afford the product which was recrystallized from petrolium ether-ethyl acetate mixture (1:1) to reveal the title compound as yellow crystals.

Refinement top

Atoms H1O2, H1O5 and H1O7 were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

1,3-Dipolar cycloadditions represent one of the most versatile tools for the construction of five-membered heterocycles (Padwa, 1984). A diverse array of biologically active molecules contain substituted pyrrolidine cores (O'Hagan, 2000). Pyrrolidines are important building blocks in organic synthesis, and in the past years have emerged as privileged organocatalysts (Dalko & Moisan, 2004; Seayad & List, 2005). Compounds containing the piperidine subunit act as excellent inhibitors of p38 activity and TNF–α release (Natarajan et al., 2006) and consequently, the efficient preparation of these heterocycles has received significant attention.

The molecular structure of the title compound is shown in Fig. 1. The piperidone (N1/C1–C5) ring adopts a chair conformation [Q = 0.6146 (12) Å, Θ = 145.39 (11)°, φ = 120.0 (2)° ; Cremer & Pople, 1975]. The pyrrolidine ring (N2/C4/C6–C8) adopts an envelope conformation [puckering parameters Q = 0.3365 (12) Å, φ = 84.3 (2)°]. The five membered ring of the ninhydrin system adopts an envelope conformation and its flap atom C8 deviates from the mean plane formed by other atoms, C9–C16, by 0.0702 (12) Å. The dihedral angle between the two hydroxy subsituted methoxyphenyl rings (C18–C23 and C26–C31) is 71.12 (5)°.

In the crystal packing (Fig. 2), molecules are connected by intermolecular O2—H1O5···O2, O7—H1O7···O4, C1—H1A···O7, C13—H13A···O7 and C32—H32A···O3 hydrogen bonds to form a three–dimensional network.

For details of 1,3-dipolar cycloaddition, see: Padwa (1984). For applications of pyrrolidines, see: Dalko & Moisan (2004); Seayad & List (2005); Natarajan et al. (2006); O'Hagan (2000). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme (H atoms are omitted for clarity).
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network. H atoms are not involving the hydrogen bond interactions are omitted for clarity.
2-Hydroxy-16-[(E)-4-hydroxy-3-methoxybenzylidene]-13-(4-hydroxy- 3-methoxyphenyl)-11-methyl-1,11-diazapentacyclo[12.3.1.02,10.03,8.010,14]octadeca-3(8),4,6-triene- 9,15-dione top
Crystal data top
C32H30N2O7F(000) = 2336
Mr = 554.58Dx = 1.403 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9860 reflections
a = 14.7989 (11) Åθ = 2.3–32.6°
b = 15.4918 (11) ŵ = 0.10 mm1
c = 22.9079 (17) ÅT = 100 K
V = 5251.9 (7) Å3Block, yellow
Z = 80.39 × 0.39 × 0.31 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
9672 independent reflections
Radiation source: fine-focus sealed tube7897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 32.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2219
Tmin = 0.962, Tmax = 0.969k = 2323
130228 measured reflectionsl = 3334
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0657P)2 + 3.1726P]
where P = (Fo2 + 2Fc2)/3
9672 reflections(Δ/σ)max = 0.001
385 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C32H30N2O7V = 5251.9 (7) Å3
Mr = 554.58Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.7989 (11) ŵ = 0.10 mm1
b = 15.4918 (11) ÅT = 100 K
c = 22.9079 (17) Å0.39 × 0.39 × 0.31 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
9672 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7897 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.969Rint = 0.048
130228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.59 e Å3
9672 reflectionsΔρmin = 0.25 e Å3
385 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30327 (6)0.18897 (6)0.41100 (4)0.02184 (18)
O20.19750 (6)0.13975 (5)0.33372 (4)0.01979 (17)
O30.16366 (7)0.05592 (6)0.48344 (4)0.02408 (19)
O40.17817 (6)0.29718 (6)0.38154 (4)0.02209 (18)
O50.21109 (7)0.28735 (7)0.27082 (5)0.0265 (2)
O60.62083 (6)0.24385 (6)0.41434 (5)0.02473 (19)
O70.72935 (6)0.13939 (6)0.35393 (4)0.02204 (18)
N10.22581 (7)0.00074 (6)0.29585 (4)0.01670 (18)
N20.27389 (7)0.09389 (6)0.43104 (4)0.01600 (17)
C10.18714 (8)0.08658 (7)0.28648 (5)0.0184 (2)
H1A0.21670.11270.25310.022*
H1B0.12350.08070.27710.022*
C20.19647 (8)0.14690 (7)0.33836 (5)0.0168 (2)
C30.27292 (8)0.13242 (7)0.37943 (5)0.01594 (19)
C40.30624 (7)0.03950 (7)0.38134 (5)0.01382 (18)
C50.31885 (8)0.00938 (8)0.31723 (5)0.0174 (2)
H5A0.35140.04490.31550.021*
H5B0.35130.05230.29460.021*
C60.38290 (8)0.02131 (7)0.42424 (5)0.01551 (19)
H6A0.36930.05260.46040.019*
C70.37136 (8)0.07523 (8)0.43694 (6)0.0204 (2)
H7A0.39190.08860.47610.025*
H7B0.40600.10940.40940.025*
C80.22873 (7)0.02205 (7)0.40137 (5)0.01406 (18)
C90.18191 (8)0.05074 (7)0.34284 (5)0.01539 (19)
C100.08268 (8)0.03156 (7)0.35136 (5)0.0175 (2)
C110.01111 (9)0.04857 (9)0.31373 (6)0.0237 (2)
H11A0.02070.07610.27820.028*
C120.07522 (9)0.02326 (10)0.33061 (7)0.0294 (3)
H12A0.12390.03490.30620.035*
C130.09026 (9)0.01932 (10)0.38355 (7)0.0281 (3)
H13A0.14840.03660.39350.034*
C140.01931 (9)0.03585 (8)0.42110 (6)0.0223 (2)
H14A0.02890.06380.45650.027*
C150.06727 (8)0.00943 (7)0.40453 (5)0.0174 (2)
C160.15262 (8)0.02051 (7)0.43663 (5)0.0167 (2)
C170.13529 (8)0.20654 (7)0.35528 (5)0.0180 (2)
H17A0.15080.23830.38820.022*
C180.04812 (8)0.22830 (7)0.32917 (5)0.0180 (2)
C190.02938 (9)0.22466 (8)0.26938 (6)0.0216 (2)
H19A0.07460.20940.24320.026*
C200.05737 (9)0.24393 (8)0.24901 (6)0.0228 (2)
H20A0.06950.24080.20920.027*
C210.12563 (8)0.26768 (8)0.28732 (5)0.0197 (2)
C220.10679 (8)0.27274 (7)0.34744 (5)0.0173 (2)
C230.02099 (8)0.25368 (7)0.36762 (5)0.0173 (2)
H23A0.00880.25770.40730.021*
C240.15933 (9)0.31881 (9)0.44084 (6)0.0241 (2)
H24A0.21370.33840.45940.036*
H24B0.13690.26880.46090.036*
H24C0.11470.36380.44210.036*
C250.23206 (9)0.12884 (9)0.48352 (6)0.0251 (3)
H25A0.16920.13970.47620.038*
H25B0.26150.18180.49410.038*
H25C0.23790.08800.51480.038*
C260.47590 (7)0.04947 (7)0.40435 (5)0.01503 (19)
C270.50398 (8)0.13305 (7)0.41924 (5)0.0173 (2)
H27A0.46590.16840.44090.021*
C280.58767 (8)0.16339 (7)0.40201 (5)0.0175 (2)
C290.64600 (8)0.11047 (8)0.36990 (5)0.0172 (2)
C300.61868 (8)0.02804 (8)0.35443 (5)0.0192 (2)
H30A0.65690.00720.33280.023*
C310.53351 (8)0.00208 (7)0.37139 (5)0.0182 (2)
H31A0.51520.05720.36050.022*
C320.55997 (10)0.30334 (9)0.44075 (7)0.0302 (3)
H32A0.58860.35870.44410.045*
H32B0.50670.30850.41710.045*
H32C0.54360.28290.47890.045*
H1O50.2099 (15)0.3091 (16)0.2347 (10)0.044 (6)*
H1O70.7311 (17)0.1945 (17)0.3626 (11)0.052 (7)*
H1O20.2281 (16)0.1577 (16)0.3664 (11)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0183 (4)0.0159 (4)0.0313 (5)0.0002 (3)0.0017 (3)0.0062 (3)
O20.0250 (4)0.0128 (3)0.0216 (4)0.0027 (3)0.0060 (3)0.0032 (3)
O30.0225 (4)0.0266 (4)0.0231 (4)0.0019 (3)0.0039 (3)0.0080 (3)
O40.0167 (4)0.0276 (4)0.0219 (4)0.0001 (3)0.0013 (3)0.0012 (3)
O50.0192 (4)0.0359 (5)0.0242 (4)0.0008 (4)0.0032 (3)0.0094 (4)
O60.0202 (4)0.0180 (4)0.0360 (5)0.0060 (3)0.0009 (4)0.0064 (4)
O70.0148 (4)0.0233 (4)0.0280 (4)0.0034 (3)0.0026 (3)0.0001 (3)
N10.0174 (4)0.0166 (4)0.0160 (4)0.0023 (3)0.0005 (3)0.0009 (3)
N20.0147 (4)0.0148 (4)0.0185 (4)0.0008 (3)0.0015 (3)0.0027 (3)
C10.0207 (5)0.0166 (5)0.0178 (5)0.0025 (4)0.0009 (4)0.0010 (4)
C20.0172 (5)0.0135 (4)0.0198 (5)0.0001 (4)0.0010 (4)0.0012 (4)
C30.0148 (5)0.0136 (4)0.0194 (5)0.0003 (3)0.0020 (4)0.0006 (4)
C40.0131 (4)0.0125 (4)0.0159 (4)0.0000 (3)0.0006 (3)0.0009 (3)
C50.0164 (5)0.0189 (5)0.0170 (5)0.0018 (4)0.0014 (4)0.0023 (4)
C60.0137 (4)0.0149 (4)0.0179 (4)0.0011 (3)0.0007 (4)0.0003 (4)
C70.0152 (5)0.0171 (5)0.0290 (6)0.0006 (4)0.0022 (4)0.0055 (4)
C80.0132 (4)0.0128 (4)0.0161 (4)0.0003 (3)0.0005 (3)0.0009 (3)
C90.0162 (5)0.0123 (4)0.0177 (4)0.0015 (3)0.0017 (4)0.0021 (3)
C100.0158 (5)0.0159 (5)0.0208 (5)0.0000 (4)0.0023 (4)0.0021 (4)
C110.0196 (5)0.0277 (6)0.0238 (5)0.0008 (4)0.0056 (4)0.0026 (5)
C120.0182 (6)0.0388 (7)0.0310 (7)0.0002 (5)0.0062 (5)0.0086 (6)
C130.0165 (5)0.0340 (7)0.0337 (7)0.0048 (5)0.0012 (5)0.0092 (5)
C140.0178 (5)0.0221 (5)0.0271 (6)0.0030 (4)0.0045 (4)0.0041 (4)
C150.0150 (5)0.0153 (4)0.0221 (5)0.0003 (4)0.0015 (4)0.0018 (4)
C160.0157 (5)0.0147 (4)0.0197 (5)0.0008 (4)0.0029 (4)0.0005 (4)
C170.0177 (5)0.0129 (4)0.0235 (5)0.0007 (4)0.0000 (4)0.0009 (4)
C180.0181 (5)0.0135 (4)0.0224 (5)0.0010 (4)0.0006 (4)0.0011 (4)
C190.0229 (6)0.0205 (5)0.0212 (5)0.0046 (4)0.0016 (4)0.0039 (4)
C200.0263 (6)0.0234 (5)0.0186 (5)0.0029 (5)0.0009 (4)0.0037 (4)
C210.0187 (5)0.0190 (5)0.0215 (5)0.0009 (4)0.0025 (4)0.0052 (4)
C220.0160 (5)0.0148 (4)0.0211 (5)0.0016 (4)0.0013 (4)0.0010 (4)
C230.0174 (5)0.0144 (4)0.0201 (5)0.0009 (4)0.0011 (4)0.0001 (4)
C240.0236 (6)0.0276 (6)0.0209 (5)0.0023 (5)0.0024 (4)0.0006 (5)
C250.0214 (6)0.0282 (6)0.0258 (6)0.0013 (5)0.0021 (5)0.0103 (5)
C260.0130 (4)0.0142 (4)0.0178 (4)0.0004 (3)0.0005 (4)0.0003 (3)
C270.0144 (5)0.0158 (4)0.0217 (5)0.0007 (4)0.0006 (4)0.0034 (4)
C280.0160 (5)0.0152 (4)0.0212 (5)0.0024 (4)0.0024 (4)0.0013 (4)
C290.0127 (4)0.0189 (5)0.0201 (5)0.0006 (4)0.0007 (4)0.0018 (4)
C300.0170 (5)0.0170 (5)0.0235 (5)0.0020 (4)0.0028 (4)0.0002 (4)
C310.0172 (5)0.0136 (4)0.0237 (5)0.0002 (4)0.0012 (4)0.0007 (4)
C320.0312 (7)0.0188 (5)0.0406 (7)0.0033 (5)0.0011 (6)0.0099 (5)
Geometric parameters (Å, º) top
O1—C31.2216 (14)C11—C121.391 (2)
O2—C91.4137 (13)C11—H11A0.9300
O2—H1O20.92 (2)C12—C131.398 (2)
O3—C161.2154 (15)C12—H12A0.9300
O4—C221.3674 (15)C13—C141.381 (2)
O4—C241.4266 (16)C13—H13A0.9300
O5—C211.3547 (15)C14—C151.3975 (17)
O5—H1O50.89 (2)C14—H14A0.9300
O6—C281.3690 (14)C15—C161.4717 (17)
O6—C321.4235 (17)C17—C181.4613 (16)
O7—C291.3624 (14)C17—H17A0.9300
O7—H1O70.88 (3)C18—C191.3987 (17)
N1—C51.4699 (15)C18—C231.4059 (17)
N1—C91.4768 (15)C19—C201.3982 (18)
N1—C11.4844 (15)C19—H19A0.9300
N2—C251.4567 (16)C20—C211.3879 (18)
N2—C81.4653 (14)C20—H20A0.9300
N2—C71.4773 (15)C21—C221.4072 (17)
C1—C21.5181 (17)C22—C231.3831 (16)
C1—H1A0.9700C23—H23A0.9300
C1—H1B0.9700C24—H24A0.9600
C2—C171.3504 (16)C24—H24B0.9600
C2—C31.4885 (16)C24—H24C0.9600
C3—C41.5222 (15)C25—H25A0.9600
C4—C61.5271 (16)C25—H25B0.9600
C4—C51.5522 (16)C25—H25C0.9600
C4—C81.5606 (15)C26—C311.3909 (16)
C5—H5A0.9700C26—C271.4020 (15)
C5—H5B0.9700C27—C281.3822 (16)
C6—C261.5141 (15)C27—H27A0.9300
C6—C71.5331 (16)C28—C291.3995 (17)
C6—H6A0.9800C29—C301.3854 (17)
C7—H7A0.9700C30—C311.3992 (16)
C7—H7B0.9700C30—H30A0.9300
C8—C161.5349 (16)C31—H31A0.9300
C8—C91.5734 (15)C32—H32A0.9600
C9—C101.5109 (16)C32—H32B0.9600
C10—C111.3908 (17)C32—H32C0.9600
C10—C151.3924 (17)
C9—O2—H1O2104.8 (15)C14—C13—H13A119.8
C22—O4—C24117.27 (10)C12—C13—H13A119.8
C21—O5—H1O5109.0 (14)C13—C14—C15118.26 (13)
C28—O6—C32116.76 (10)C13—C14—H14A120.9
C29—O7—H1O7106.6 (16)C15—C14—H14A120.9
C5—N1—C9103.00 (9)C10—C15—C14121.42 (11)
C5—N1—C1108.19 (9)C10—C15—C16110.47 (10)
C9—N1—C1114.44 (9)C14—C15—C16128.10 (11)
C25—N2—C8118.12 (10)O3—C16—C15127.50 (11)
C25—N2—C7114.33 (10)O3—C16—C8124.03 (11)
C8—N2—C7109.82 (9)C15—C16—C8108.47 (9)
N1—C1—C2114.38 (9)C2—C17—C18129.21 (11)
N1—C1—H1A108.7C2—C17—H17A115.4
C2—C1—H1A108.7C18—C17—H17A115.4
N1—C1—H1B108.7C19—C18—C23118.72 (11)
C2—C1—H1B108.7C19—C18—C17124.51 (11)
H1A—C1—H1B107.6C23—C18—C17116.77 (11)
C17—C2—C3115.55 (10)C20—C19—C18120.02 (12)
C17—C2—C1125.79 (11)C20—C19—H19A120.0
C3—C2—C1118.11 (10)C18—C19—H19A120.0
O1—C3—C2123.06 (10)C21—C20—C19120.93 (12)
O1—C3—C4122.82 (10)C21—C20—H20A119.5
C2—C3—C4114.01 (9)C19—C20—H20A119.5
C3—C4—C6115.70 (9)O5—C21—C20124.24 (11)
C3—C4—C5107.22 (9)O5—C21—C22116.47 (11)
C6—C4—C5117.65 (9)C20—C21—C22119.29 (11)
C3—C4—C8110.37 (9)O4—C22—C23125.26 (11)
C6—C4—C8104.12 (9)O4—C22—C21114.93 (11)
C5—C4—C8100.54 (9)C23—C22—C21119.82 (11)
N1—C5—C4103.58 (9)C22—C23—C18121.21 (11)
N1—C5—H5A111.0C22—C23—H23A119.4
C4—C5—H5A111.0C18—C23—H23A119.4
N1—C5—H5B111.0O4—C24—H24A109.5
C4—C5—H5B111.0O4—C24—H24B109.5
H5A—C5—H5B109.0H24A—C24—H24B109.5
C26—C6—C4115.37 (9)O4—C24—H24C109.5
C26—C6—C7116.08 (9)H24A—C24—H24C109.5
C4—C6—C7102.67 (9)H24B—C24—H24C109.5
C26—C6—H6A107.4N2—C25—H25A109.5
C4—C6—H6A107.4N2—C25—H25B109.5
C7—C6—H6A107.4H25A—C25—H25B109.5
N2—C7—C6106.40 (9)N2—C25—H25C109.5
N2—C7—H7A110.4H25A—C25—H25C109.5
C6—C7—H7A110.4H25B—C25—H25C109.5
N2—C7—H7B110.4C31—C26—C27118.73 (10)
C6—C7—H7B110.4C31—C26—C6123.71 (10)
H7A—C7—H7B108.6C27—C26—C6117.54 (10)
N2—C8—C16114.64 (9)C28—C27—C26120.67 (11)
N2—C8—C4105.38 (9)C28—C27—H27A119.7
C16—C8—C4115.57 (9)C26—C27—H27A119.7
N2—C8—C9112.43 (9)O6—C28—C27124.88 (11)
C16—C8—C9104.28 (9)O6—C28—C29114.88 (10)
C4—C8—C9104.23 (9)C27—C28—C29120.23 (10)
O2—C9—N1109.40 (9)O7—C29—C30119.90 (11)
O2—C9—C10111.68 (9)O7—C29—C28120.46 (10)
N1—C9—C10114.75 (9)C30—C29—C28119.64 (11)
O2—C9—C8109.24 (9)C29—C30—C31119.95 (11)
N1—C9—C8106.22 (9)C29—C30—H30A120.0
C10—C9—C8105.21 (9)C31—C30—H30A120.0
C11—C10—C15120.26 (11)C26—C31—C30120.76 (11)
C11—C10—C9128.52 (11)C26—C31—H31A119.6
C15—C10—C9111.22 (10)C30—C31—H31A119.6
C10—C11—C12118.26 (13)O6—C32—H32A109.5
C10—C11—H11A120.9O6—C32—H32B109.5
C12—C11—H11A120.9H32A—C32—H32B109.5
C11—C12—C13121.34 (13)O6—C32—H32C109.5
C11—C12—H12A119.3H32A—C32—H32C109.5
C13—C12—H12A119.3H32B—C32—H32C109.5
C14—C13—C12120.43 (13)
C5—N1—C1—C251.33 (13)O2—C9—C10—C15122.63 (10)
C9—N1—C1—C262.84 (13)N1—C9—C10—C15112.13 (11)
N1—C1—C2—C17144.18 (12)C8—C9—C10—C154.23 (12)
N1—C1—C2—C326.93 (15)C15—C10—C11—C120.28 (19)
C17—C2—C3—O130.82 (17)C9—C10—C11—C12178.73 (12)
C1—C2—C3—O1157.16 (11)C10—C11—C12—C130.9 (2)
C17—C2—C3—C4145.65 (10)C11—C12—C13—C141.3 (2)
C1—C2—C3—C426.36 (14)C12—C13—C14—C150.4 (2)
O1—C3—C4—C61.84 (16)C11—C10—C15—C141.15 (18)
C2—C3—C4—C6178.33 (9)C9—C10—C15—C14178.02 (11)
O1—C3—C4—C5135.34 (12)C11—C10—C15—C16179.93 (11)
C2—C3—C4—C548.17 (12)C9—C10—C15—C160.77 (13)
O1—C3—C4—C8116.04 (12)C13—C14—C15—C100.79 (18)
C2—C3—C4—C860.45 (12)C13—C14—C15—C16179.35 (12)
C9—N1—C5—C447.67 (10)C10—C15—C16—O3177.64 (12)
C1—N1—C5—C473.85 (11)C14—C15—C16—O31.0 (2)
C3—C4—C5—N172.33 (11)C10—C15—C16—C83.18 (13)
C6—C4—C5—N1155.22 (9)C14—C15—C16—C8178.14 (11)
C8—C4—C5—N143.03 (10)N2—C8—C16—O361.39 (15)
C3—C4—C6—C2677.77 (12)C4—C8—C16—O361.50 (15)
C5—C4—C6—C2650.77 (13)C9—C8—C16—O3175.26 (11)
C8—C4—C6—C26160.93 (9)N2—C8—C16—C15117.83 (10)
C3—C4—C6—C7154.99 (10)C4—C8—C16—C15119.28 (10)
C5—C4—C6—C776.47 (12)C9—C8—C16—C155.52 (11)
C8—C4—C6—C733.69 (11)C3—C2—C17—C18171.74 (11)
C25—N2—C7—C6121.00 (11)C1—C2—C17—C180.4 (2)
C8—N2—C7—C614.46 (13)C2—C17—C18—C1933.3 (2)
C26—C6—C7—N2156.85 (10)C2—C17—C18—C23146.11 (13)
C4—C6—C7—N230.06 (12)C23—C18—C19—C201.62 (18)
C25—N2—C8—C1612.37 (14)C17—C18—C19—C20177.73 (11)
C7—N2—C8—C16121.19 (10)C18—C19—C20—C210.68 (19)
C25—N2—C8—C4140.60 (10)C19—C20—C21—O5179.90 (12)
C7—N2—C8—C47.03 (12)C19—C20—C21—C220.30 (19)
C25—N2—C8—C9106.50 (12)C24—O4—C22—C2311.19 (17)
C7—N2—C8—C9119.94 (10)C24—O4—C22—C21168.71 (11)
C3—C4—C8—N2150.54 (9)O5—C21—C22—O40.03 (16)
C6—C4—C8—N225.76 (11)C20—C21—C22—O4179.60 (11)
C5—C4—C8—N296.49 (9)O5—C21—C22—C23179.94 (11)
C3—C4—C8—C1622.88 (13)C20—C21—C22—C230.30 (17)
C6—C4—C8—C16101.90 (10)O4—C22—C23—C18179.43 (11)
C5—C4—C8—C16135.85 (10)C21—C22—C23—C180.67 (17)
C3—C4—C8—C990.91 (10)C19—C18—C23—C221.63 (17)
C6—C4—C8—C9144.31 (8)C17—C18—C23—C22177.77 (10)
C5—C4—C8—C922.07 (10)C4—C6—C26—C3188.03 (13)
C5—N1—C9—O285.36 (10)C7—C6—C26—C3132.12 (16)
C1—N1—C9—O2157.46 (9)C4—C6—C26—C2790.59 (12)
C5—N1—C9—C10148.22 (9)C7—C6—C26—C27149.25 (11)
C1—N1—C9—C1031.04 (13)C31—C26—C27—C280.63 (17)
C5—N1—C9—C832.44 (10)C6—C26—C27—C28179.32 (11)
C1—N1—C9—C884.75 (11)C32—O6—C28—C277.83 (19)
N2—C8—C9—O21.02 (13)C32—O6—C28—C29172.71 (12)
C16—C8—C9—O2125.80 (10)C26—C27—C28—O6179.88 (11)
C4—C8—C9—O2112.59 (10)C26—C27—C28—C290.70 (18)
N2—C8—C9—N1118.92 (10)O6—C28—C29—O70.94 (16)
C16—C8—C9—N1116.30 (9)C27—C28—C29—O7178.54 (11)
C4—C8—C9—N15.30 (11)O6—C28—C29—C30179.21 (11)
N2—C8—C9—C10119.01 (10)C27—C28—C29—C301.31 (18)
C16—C8—C9—C105.77 (11)O7—C29—C30—C31179.27 (11)
C4—C8—C9—C10127.37 (9)C28—C29—C30—C310.59 (18)
O2—C9—C10—C1158.29 (16)C27—C26—C31—C301.36 (18)
N1—C9—C10—C1166.94 (16)C6—C26—C31—C30179.97 (11)
C8—C9—C10—C11176.69 (12)C29—C30—C31—C260.76 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O2i0.89 (2)1.77 (2)2.6554 (14)173 (2)
O7—H1O7···O4ii0.88 (3)2.13 (3)2.8720 (13)143 (2)
O2—H1O2···N20.92 (3)1.91 (2)2.5987 (13)131 (2)
C1—H1A···O7iii0.972.493.3771 (16)151
C13—H13A···O7iv0.932.573.3237 (17)138
C27—H27A···O10.932.523.0998 (15)121
C32—H32A···O3v0.962.403.1819 (17)139
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y, z+1/2; (iv) x1, y, z; (v) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC32H30N2O7
Mr554.58
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)14.7989 (11), 15.4918 (11), 22.9079 (17)
V3)5251.9 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.39 × 0.39 × 0.31
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.962, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
130228, 9672, 7897
Rint0.048
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.145, 1.09
No. of reflections9672
No. of parameters385
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O2i0.89 (2)1.77 (2)2.6554 (14)173 (2)
O7—H1O7···O4ii0.88 (3)2.13 (3)2.8720 (13)143 (2)
O2—H1O2···N20.92 (3)1.91 (2)2.5987 (13)131 (2)
C1—H1A···O7iii0.97002.49003.3771 (16)151.00
C13—H13A···O7iv0.93002.57003.3237 (17)138.00
C27—H27A···O10.93002.52003.0998 (15)121.00
C32—H32A···O3v0.96002.40003.1819 (17)138.90
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y, z+1/2; (iv) x1, y, z; (v) x+1/2, y1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research grant No. 1001/PKIMIA/8111016. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. RSK and MH also thank Universiti Sains Malaysia for post-doctoral research fellowships.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDalko, P. I. & Moisan, L. (2004). Angew. Chem. Int. Ed. 43, 5138–5175.  Web of Science CrossRef CAS Google Scholar
First citationNatarajan, S. R., Liu, L., Levorse, M., Thompson, J. E., OŃeill, E. A., O'Keefe, S. J., Vora, K. A., Cvetovich, R., Chung, J. Y., Carballo-Jane, E. & Visco, D. M. (2006). Bioorg. Med. Chem. Lett. 16, 5468–5471.  Web of Science CrossRef PubMed CAS Google Scholar
First citationO'Hagan, D. (2000). Nat. Prod. Rep. 17, 435–446.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPadwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry. New York: Wiley.  Google Scholar
First citationSeayad, J. & List, B. (2005). Org. Biomol. Chem. 3, 719–724.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds