metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-aqua-(μ3-2,5-di­chloro­benzene­sulfonato)sodium]

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 11 May 2010; accepted 16 May 2010; online 22 May 2010)

In the title compound, [Na(C6H3Cl2O3S)(H2O)]n, the NaI ion is penta­coordinated by three dichloro­benzene­sulfonate anions and two water mol­ecules, forming a distorted trigonal-bipyramidal geometry. The NaI ions are bridged by the sulfonate groups and the water mol­ecules, leading to a polymeric layer structure parallel to the bc plane in which O—H⋯O hydrogen bonds are observed.

Related literature

For general background to organic sulfonyl chloride compounds, see: Adams & Marvel (1941[Adams, R. & Marvel, C. S. (1941). Org. Synth. Coll. 1, 504-512.]); D'Souza et al. (2008[D'Souza, M. J., Yaakoubd, S. L. & Kevill, D. N. (2008). Int. J. Mol. Sci. 9, 914-925.]); Henze & Artman (1957[Henze, H. R. & Artman, N. E. (1957). J. Org. Chem. 22, 1410-1413.]); Uchiro & Kobayashi (1999[Uchiro, H. & Kobayashi, S. (1999). Tetrahedron Lett. 40, 3179-3182.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C6H3Cl2O3S)(H2O)]

  • Mr = 267.05

  • Monoclinic, P 21 /c

  • a = 17.2461 (10) Å

  • b = 5.4568 (3) Å

  • c = 10.7178 (6) Å

  • β = 106.190 (2)°

  • V = 968.64 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 100 K

  • 0.34 × 0.34 × 0.05 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.749, Tmax = 0.955

  • 15240 measured reflections

  • 4266 independent reflections

  • 3594 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.100

  • S = 1.12

  • 4266 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3i 0.75 2.09 2.8409 (13) 172
O1W—H2W1⋯O2ii 0.78 2.12 2.8620 (14) 162
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organic sulfonyl chloride compounds can be used as fundamental starting material for the synthesis of a variety of useful agricultural and medical compounds. They are widespread in many natural products and widely used as various artificial chemicals. It can be used as precursors in the synthesis of sulfonamide-based drugs (Adams & Marvel, 1941; D'Souza et al., 2008; Henze & Artman, 1957; Uchiro & Kobayashi, 1999).

The asymmetric unit of the title compound contains one dichlorobenzenesulfonate anion, one sodium cation and one water molecule (Fig. 1). Each sodium cation is pentacoordinated with three dichlorobenzenesulfonate anions and two water molecules to form a distorted trigonal bipyramidal geometry (Fig. 2). In the crystal structure (Fig. 3), the molecules are linked into polymeric planes parallel to the bc plane. The polymeric structures are stabilized by the O1W—H1W1···O3 and O1W—H2W1···O2 hydrogen bonds (Table 1).

Related literature top

For general background to organic sulfonyl chloride compounds, see: Adams & Marvel (1941); D'Souza et al. (2008); Henze & Artman (1957); Uchiro & Kobayashi (1999). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

2,5-Dichlorobenzenesulfonyl chloride (0.02 mol, 4.86 g) was dissolved in 25 ml of 1,4-dioxane (C4H8O2) in round bottom flask with stirring. Sodium hydroxide (0.01 mol, 0.4 g) was added to the mixture and refluxed for 2 hours. The colour of the mixture was changed from colorless to light brown. After solvent evaporation, 50 ml of distilled water was added and mixed with 50 ml of butanol. After shaking the mixture for 15 min, butanol layer was isolated and brown precipitate was left after the butanol evaporation. The precipitate was dissolved in methanol at room temperature and left over night. The colourless plate crystals were formed, filtrated, washed with water and dried at 333 K.

Refinement top

Atoms H1W1 and H2W1 were located in a difference Fourier map and refined as riding on their parent atom, with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

Organic sulfonyl chloride compounds can be used as fundamental starting material for the synthesis of a variety of useful agricultural and medical compounds. They are widespread in many natural products and widely used as various artificial chemicals. It can be used as precursors in the synthesis of sulfonamide-based drugs (Adams & Marvel, 1941; D'Souza et al., 2008; Henze & Artman, 1957; Uchiro & Kobayashi, 1999).

The asymmetric unit of the title compound contains one dichlorobenzenesulfonate anion, one sodium cation and one water molecule (Fig. 1). Each sodium cation is pentacoordinated with three dichlorobenzenesulfonate anions and two water molecules to form a distorted trigonal bipyramidal geometry (Fig. 2). In the crystal structure (Fig. 3), the molecules are linked into polymeric planes parallel to the bc plane. The polymeric structures are stabilized by the O1W—H1W1···O3 and O1W—H2W1···O2 hydrogen bonds (Table 1).

For general background to organic sulfonyl chloride compounds, see: Adams & Marvel (1941); D'Souza et al. (2008); Henze & Artman (1957); Uchiro & Kobayashi (1999). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms, showing the coordination environment for the NaI ion.
[Figure 3] Fig. 3. The crystal packing of title compound, viewed down the b axis, showing a polymeric plane parallel to the bc plane.
Poly[µ2-aqua-(µ3-2,5-dichlorobenzenesulfonato)sodium] top
Crystal data top
[Na(C6H3Cl2O3S)(H2O)]F(000) = 536
Mr = 267.05Dx = 1.831 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5321 reflections
a = 17.2461 (10) Åθ = 3.7–34.9°
b = 5.4568 (3) ŵ = 0.91 mm1
c = 10.7178 (6) ÅT = 100 K
β = 106.190 (2)°Plate, colourless
V = 968.64 (9) Å30.34 × 0.34 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4266 independent reflections
Radiation source: fine-focus sealed tube3594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 35.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2726
Tmin = 0.749, Tmax = 0.955k = 87
15240 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.1259P]
where P = (Fo2 + 2Fc2)/3
4266 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Na(C6H3Cl2O3S)(H2O)]V = 968.64 (9) Å3
Mr = 267.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.2461 (10) ŵ = 0.91 mm1
b = 5.4568 (3) ÅT = 100 K
c = 10.7178 (6) Å0.34 × 0.34 × 0.05 mm
β = 106.190 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4266 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3594 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.955Rint = 0.034
15240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.12Δρmax = 0.77 e Å3
4266 reflectionsΔρmin = 0.68 e Å3
127 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.08149 (3)0.90539 (10)0.72118 (5)0.01189 (11)
S10.148184 (17)0.41852 (5)0.54858 (3)0.00956 (7)
Cl10.42170 (2)0.19246 (8)0.92304 (3)0.02371 (9)
Cl20.25118 (2)0.84404 (7)0.45028 (3)0.02048 (8)
O10.12791 (6)0.21059 (18)0.61606 (9)0.01572 (18)
O20.13814 (6)0.37277 (18)0.41079 (8)0.01294 (16)
O30.10928 (6)0.64583 (17)0.57044 (8)0.01330 (17)
C10.29337 (8)0.3214 (2)0.72508 (11)0.0135 (2)
H1A0.26670.19160.75140.016*
C20.37368 (8)0.3708 (3)0.78932 (12)0.0157 (2)
C30.41525 (8)0.5610 (3)0.75190 (13)0.0191 (3)
H3A0.46880.59210.79670.023*
C40.37588 (8)0.7047 (3)0.64672 (14)0.0191 (2)
H4A0.40320.83230.61990.023*
C50.29559 (8)0.6583 (2)0.58129 (12)0.0139 (2)
C60.25339 (7)0.4687 (2)0.62083 (11)0.01083 (19)
O1W0.04880 (6)0.57236 (17)0.84097 (9)0.01383 (17)
H1W10.06100.64200.90410.021*
H2W10.07710.46000.84670.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0144 (2)0.0106 (2)0.0110 (2)0.00028 (18)0.00418 (17)0.00018 (16)
S10.01175 (13)0.00815 (12)0.00837 (11)0.00060 (9)0.00211 (9)0.00033 (8)
Cl10.01946 (16)0.02930 (19)0.01790 (14)0.00684 (13)0.00218 (11)0.00674 (12)
Cl20.01613 (15)0.02089 (16)0.02309 (15)0.00208 (11)0.00327 (11)0.01191 (12)
O10.0187 (4)0.0124 (4)0.0152 (4)0.0036 (3)0.0034 (3)0.0044 (3)
O20.0173 (4)0.0120 (4)0.0083 (3)0.0001 (3)0.0017 (3)0.0012 (3)
O30.0148 (4)0.0117 (4)0.0137 (4)0.0018 (3)0.0045 (3)0.0010 (3)
C10.0146 (5)0.0136 (5)0.0118 (4)0.0021 (4)0.0025 (4)0.0005 (4)
C20.0143 (5)0.0184 (6)0.0127 (5)0.0052 (4)0.0009 (4)0.0007 (4)
C30.0112 (5)0.0232 (7)0.0209 (6)0.0010 (5)0.0010 (4)0.0002 (5)
C40.0128 (5)0.0203 (6)0.0233 (6)0.0025 (5)0.0038 (5)0.0029 (5)
C50.0131 (5)0.0136 (5)0.0148 (5)0.0000 (4)0.0037 (4)0.0025 (4)
C60.0113 (5)0.0104 (5)0.0105 (4)0.0004 (4)0.0027 (4)0.0003 (3)
O1W0.0159 (4)0.0109 (4)0.0133 (4)0.0000 (3)0.0019 (3)0.0002 (3)
Geometric parameters (Å, º) top
Na1—O1i2.2775 (10)C1—C21.3905 (18)
Na1—O32.2974 (10)C1—C61.3930 (17)
Na1—O2ii2.3329 (10)C1—H1A0.9300
Na1—O1Wiii2.3427 (11)C2—C31.383 (2)
Na1—O1W2.3816 (11)C3—C41.386 (2)
S1—O11.4400 (10)C3—H3A0.9300
S1—O21.4597 (9)C4—C51.3900 (19)
S1—O31.4599 (10)C4—H4A0.9300
S1—C61.7841 (12)C5—C61.3971 (17)
Cl1—C21.7393 (13)O1W—H1W10.7531
Cl2—C51.7279 (13)O1W—H2W10.7754
O1i—Na1—O386.09 (4)C2—C1—C6119.15 (12)
O1i—Na1—O2ii86.09 (4)C2—C1—H1A120.4
O3—Na1—O2ii144.45 (4)C6—C1—H1A120.4
O1i—Na1—O1Wiii90.95 (4)C3—C2—C1121.83 (12)
O3—Na1—O1Wiii114.30 (4)C3—C2—Cl1119.52 (10)
O2ii—Na1—O1Wiii100.45 (4)C1—C2—Cl1118.63 (11)
O1i—Na1—O1W173.38 (4)C2—C3—C4118.99 (12)
O3—Na1—O1W92.05 (4)C2—C3—H3A120.5
O2ii—Na1—O1W91.77 (4)C4—C3—H3A120.5
O1Wiii—Na1—O1W95.60 (3)C3—C4—C5120.04 (13)
O1i—Na1—H1W1160.3C3—C4—H4A120.0
O3—Na1—H1W1107.2C5—C4—H4A120.0
O2ii—Na1—H1W174.6C4—C5—C6120.79 (12)
O1Wiii—Na1—H1W196.4C4—C5—Cl2117.17 (10)
O1W—Na1—H1W117.3C6—C5—Cl2122.04 (10)
O1—S1—O2113.36 (6)C1—C6—C5119.18 (11)
O1—S1—O3113.71 (6)C1—C6—S1118.40 (9)
O2—S1—O3112.18 (5)C5—C6—S1122.32 (9)
O1—S1—C6105.24 (6)Na1vi—O1W—Na1119.73 (4)
O2—S1—C6106.54 (5)Na1vi—O1W—H1W1117.2
O3—S1—C6104.91 (6)Na1—O1W—H1W192.9
S1—O1—Na1iv173.06 (7)Na1vi—O1W—H2W1104.3
S1—O2—Na1v134.05 (6)Na1—O1W—H2W1114.1
S1—O3—Na1146.31 (6)H1W1—O1W—H2W1108.4
O1—S1—O2—Na1v135.33 (8)C3—C4—C5—Cl2179.44 (11)
O3—S1—O2—Na1v4.87 (10)C2—C1—C6—C51.66 (18)
C6—S1—O2—Na1v109.39 (8)C2—C1—C6—S1174.79 (9)
O1—S1—O3—Na149.56 (13)C4—C5—C6—C11.65 (19)
O2—S1—O3—Na1179.85 (10)Cl2—C5—C6—C1178.27 (10)
C6—S1—O3—Na164.89 (12)C4—C5—C6—S1174.65 (10)
O1i—Na1—O3—S1130.29 (11)Cl2—C5—C6—S15.43 (16)
O2ii—Na1—O3—S152.59 (14)O1—S1—C6—C13.24 (11)
O1Wiii—Na1—O3—S1140.43 (10)O2—S1—C6—C1123.88 (10)
O1W—Na1—O3—S143.34 (11)O3—S1—C6—C1117.01 (10)
C6—C1—C2—C30.5 (2)O1—S1—C6—C5179.57 (10)
C6—C1—C2—Cl1177.65 (9)O2—S1—C6—C559.79 (12)
C1—C2—C3—C40.6 (2)O3—S1—C6—C559.32 (11)
Cl1—C2—C3—C4178.80 (11)O3—Na1—O1W—Na1vi84.32 (5)
C2—C3—C4—C50.6 (2)O2ii—Na1—O1W—Na1vi131.02 (5)
C3—C4—C5—C60.5 (2)O1Wiii—Na1—O1W—Na1vi30.34 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+3/2; (iv) x, y1, z; (v) x, y+3/2, z1/2; (vi) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3ii0.752.092.8409 (13)172
O1W—H2W1···O2vii0.782.122.8620 (14)162
Symmetry codes: (ii) x, y+3/2, z+1/2; (vii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Na(C6H3Cl2O3S)(H2O)]
Mr267.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)17.2461 (10), 5.4568 (3), 10.7178 (6)
β (°) 106.190 (2)
V3)968.64 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.34 × 0.34 × 0.05
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.749, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
15240, 4266, 3594
Rint0.034
(sin θ/λ)max1)0.809
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.100, 1.12
No. of reflections4266
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.68

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3i0.75002.09002.8409 (13)172.00
O1W—H2W1···O2ii0.78002.12002.8620 (14)162.00
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, email: nornisah@usm.my.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NM gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815025). HKF thanks USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship.

References

First citationAdams, R. & Marvel, C. S. (1941). Org. Synth. Coll. 1, 504–512.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationD'Souza, M. J., Yaakoubd, S. L. & Kevill, D. N. (2008). Int. J. Mol. Sci. 9, 914–925.  Web of Science PubMed CAS Google Scholar
First citationHenze, H. R. & Artman, N. E. (1957). J. Org. Chem. 22, 1410–1413.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchiro, H. & Kobayashi, S. (1999). Tetrahedron Lett. 40, 3179–3182.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds