organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,4-Di­methyl-5,5-dioxo-2H,4H-pyrazolo[4,3-c][1,2]benzo­thia­zin-2-yl)-N′-(2-thienylmethyl­­idene)acetohydrazide

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 20 April 2010; accepted 24 April 2010; online 8 May 2010)

In the title mol­ecule, C18H17N5O3S2, the heterocyclic thia­zine ring adopts a twist boat conformation, with the S and N atoms displaced by 0.480 (7) and 0.205 (8) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The pyrazole and benzene rings are tilted at an angle of 10.9 (2)° with respect to one another. The crystal structure is stabilized by inter­molecular N—H⋯O and C—H⋯N hydrogen bonds, resulting in dimers forming nine-membered rings of graph-set motif R22(9). In addition, inter­molecular C—H⋯O inter­actions result in chains of mol­ecules along the c axis, further consolidating the crystal packing.

Related literature

For the use of 1,2-benzothia­zine derivatives as anti-inflammatory drugs, see: Lombardino et al. (1973[Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493-496.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]). For the synthesis of benzothia­zine derivatives, see: Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For related structures, see: Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For graph-set notation, see: Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431-507. New York: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N5O3S2

  • Mr = 415.49

  • Orthorhombic, P c a 21

  • a = 18.5474 (2) Å

  • b = 11.6670 (5) Å

  • c = 8.4783 (7) Å

  • V = 1834.64 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 173 K

  • 0.28 × 0.06 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.915, Tmax = 0.987

  • 3078 measured reflections

  • 1725 independent reflections

  • 1623 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 1.09

  • 1725 reflections

  • 255 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O3i 0.88 2.10 2.964 (4) 166
C12—H12A⋯N5i 0.99 2.52 3.488 (5) 164
C11—H11B⋯O1ii 0.98 2.40 3.243 (6) 143
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}]; (ii) [-x+2, -y, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzothiazines represent a class of heterocyclic compounds which exhibit a diverse range of biological activities like anti-inflammatory (Lombardino et al., 1973), antibacterial (Zia-ur-Rehman et al., 2006), etc. Continuing our research on the synthesis of potential biologically active derivatives of benzothiazines, we have fused a pyrazole ring with benzothiazine nucleus and the resulting compounds were found to be potent antioxidants (Ahmad et al., 2010). Herein we report the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the bond distances and angles agree with the cortresponding bond distances and angles reported in a closely related compound (Ahmad et al., 2010). The heterocyclic thiazine ring adopts a twist boat conformation with atoms S1 and N1 displaced by 0.480 (7) and 0.205 (8) Å on the opposite sides from the mean planes formed by the remaining ring atoms. The pyrazol and phenyl rings are tilted at 10.9 (2)° with respect to each other. The atoms (S2/O3/N4/N5/C12—C18) of the thiophenylmethylideneacetohydrazide moiety are almost planar with meaximum deviation being 0.070 (3) Å for N4.

The structure is stabilized by intermolecular hydrogen bonds N4—H4N···O3 and C12—H12A···N5, resulting in dimers forming nine membered rings in R22(9) graph set motif (Bernstein et al., 1994). In addition, intermolecular interactions C12—H12B···O1 leading to chains of molecules along the c-axis further consolidate the crystal packing; the details of hydrogen bonding geometry have been provided in Tab. 1 and Fig. 2.

Related literature top

For the use of 1,2-benzothiazine derivatives as anti-inflammatory drugs, see: Lombardino et al. (1973); Zia-ur-Rehman et al. (2006). For the synthesis of benzothiazine derivatives, see: Ahmad et al. (2010). For related structures, see: Ahmad et al. (2010). For graph-set notation, see: Bernstein et al. (1994).

Experimental top

A mixture of 2-(3,4-dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2]benzothiazin -2(4H)-yl)acetohydrazide (10 mmoles), 2-formyl thiophene (12 mmoles), methanol (50 ml) and 2 drops of o-phosphoric acid were subjected to reflux for 3 hours. The precipitates formed were collected and washed with methanol. Crystals suitable for XRD were grown in dimethylformamide. mp. 556-557 K, MS m/z: 415.0(M+).

Refinement top

The absolute structure parameter indicated the presence of racemic twinning. Therefore, a TWIN instruction with the default matrix R = (-1 0 0 , 0 -1 0, 0 0 -1) and a BASF with one parameter was used in the final round of least-squares refinement cycles. Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with N—H = 0.88 Å and C—H = 0.95, 0.98 and 0.99 Å for aryl, methy and methylene H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(N/C). The final difference map was essentially featurless. 1343 Friedel pairs were merged.

Structure description top

Benzothiazines represent a class of heterocyclic compounds which exhibit a diverse range of biological activities like anti-inflammatory (Lombardino et al., 1973), antibacterial (Zia-ur-Rehman et al., 2006), etc. Continuing our research on the synthesis of potential biologically active derivatives of benzothiazines, we have fused a pyrazole ring with benzothiazine nucleus and the resulting compounds were found to be potent antioxidants (Ahmad et al., 2010). Herein we report the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the bond distances and angles agree with the cortresponding bond distances and angles reported in a closely related compound (Ahmad et al., 2010). The heterocyclic thiazine ring adopts a twist boat conformation with atoms S1 and N1 displaced by 0.480 (7) and 0.205 (8) Å on the opposite sides from the mean planes formed by the remaining ring atoms. The pyrazol and phenyl rings are tilted at 10.9 (2)° with respect to each other. The atoms (S2/O3/N4/N5/C12—C18) of the thiophenylmethylideneacetohydrazide moiety are almost planar with meaximum deviation being 0.070 (3) Å for N4.

The structure is stabilized by intermolecular hydrogen bonds N4—H4N···O3 and C12—H12A···N5, resulting in dimers forming nine membered rings in R22(9) graph set motif (Bernstein et al., 1994). In addition, intermolecular interactions C12—H12B···O1 leading to chains of molecules along the c-axis further consolidate the crystal packing; the details of hydrogen bonding geometry have been provided in Tab. 1 and Fig. 2.

For the use of 1,2-benzothiazine derivatives as anti-inflammatory drugs, see: Lombardino et al. (1973); Zia-ur-Rehman et al. (2006). For the synthesis of benzothiazine derivatives, see: Ahmad et al. (2010). For related structures, see: Ahmad et al. (2010). For graph-set notation, see: Bernstein et al. (1994).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule plotted with the displacement ellipsoids at 30% probability level (Farrugia, 1997).
[Figure 2] Fig. 2. A part of the unit cell showing intermolecular hydrogen bonds by dashed lines; the H-atoms not involved in H-bonds have been excluded for clarity.
2-(3,4-Dimethyl-5,5-dioxo-2H,4H- pyrazolo[4,3-c][1,2]benzothiazin-2-yl)-N'-(2- thienylmethylidene)acetohydrazide top
Crystal data top
C18H17N5O3S2F(000) = 864
Mr = 415.49Dx = 1.504 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2348 reflections
a = 18.5474 (2) Åθ = 1.0–27.5°
b = 11.6670 (5) ŵ = 0.32 mm1
c = 8.4783 (7) ÅT = 173 K
V = 1834.64 (17) Å3Needle, colorless
Z = 40.28 × 0.06 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
1725 independent reflections
Radiation source: fine-focus sealed tube1623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 2221
Tmin = 0.915, Tmax = 0.987k = 1313
3078 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.087H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0336P)2 + 1.3682P]
where P = (Fo2 + 2Fc2)/3
1725 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C18H17N5O3S2V = 1834.64 (17) Å3
Mr = 415.49Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 18.5474 (2) ŵ = 0.32 mm1
b = 11.6670 (5) ÅT = 173 K
c = 8.4783 (7) Å0.28 × 0.06 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
1725 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1623 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.987Rint = 0.028
3078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.087H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
1725 reflectionsΔρmin = 0.20 e Å3
255 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.12931 (5)0.06283 (9)0.20843 (14)0.0366 (3)
S20.61859 (6)0.54119 (10)0.03840 (15)0.0429 (3)
O11.11825 (16)0.1277 (3)0.0679 (4)0.0451 (8)
O21.18427 (15)0.0233 (3)0.2123 (5)0.0547 (9)
O30.82031 (14)0.2742 (3)0.1289 (3)0.0375 (7)
N11.05269 (16)0.0005 (3)0.2551 (4)0.0344 (8)
N20.95284 (16)0.2366 (3)0.4250 (4)0.0277 (7)
N30.90015 (15)0.1669 (3)0.3686 (4)0.0270 (7)
N40.73543 (15)0.3288 (3)0.3100 (4)0.0312 (7)
H4N0.72090.32500.40870.037*
N50.69763 (15)0.3935 (3)0.2017 (4)0.0316 (7)
C11.1446 (2)0.1638 (3)0.3617 (5)0.0297 (9)
C21.2143 (2)0.1880 (4)0.4090 (5)0.0420 (11)
H21.25370.14510.36810.050*
C31.2262 (2)0.2749 (4)0.5164 (6)0.0469 (12)
H31.27380.29050.55140.056*
C41.1699 (3)0.3386 (4)0.5728 (6)0.0464 (11)
H41.17910.40120.64160.056*
C51.0993 (2)0.3125 (3)0.5303 (5)0.0338 (9)
H51.06030.35570.57240.041*
C61.08596 (19)0.2230 (3)0.4259 (5)0.0262 (8)
C71.01335 (19)0.1826 (3)0.3855 (5)0.0241 (8)
C80.99971 (19)0.0813 (3)0.3046 (5)0.0274 (8)
C90.92568 (19)0.0723 (3)0.2924 (5)0.0286 (8)
C101.0535 (2)0.1124 (3)0.3329 (6)0.0417 (10)
H10A1.00390.13740.35260.050*
H10B1.07950.10670.43320.050*
H10C1.07770.16810.26450.050*
C110.8794 (2)0.0162 (4)0.2176 (6)0.0392 (10)
H11A0.83620.02020.17370.047*
H11B0.86510.07300.29690.047*
H11C0.90620.05420.13290.047*
C120.8253 (2)0.1981 (3)0.3944 (5)0.0317 (9)
H12A0.82140.24050.49520.038*
H12B0.79610.12750.40360.038*
C130.79532 (19)0.2713 (3)0.2631 (5)0.0289 (8)
C140.6402 (2)0.4406 (3)0.2547 (5)0.0339 (9)
H140.62680.42950.36180.041*
C150.5956 (2)0.5102 (4)0.1539 (5)0.0363 (10)
C160.5327 (2)0.5660 (3)0.1956 (6)0.0383 (9)
H160.51120.55970.29680.046*
C170.5039 (3)0.6333 (4)0.0727 (6)0.0430 (11)
H170.46080.67710.08130.052*
C180.5445 (3)0.6279 (4)0.0572 (6)0.0487 (12)
H180.53330.66830.15130.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0265 (4)0.0410 (5)0.0423 (6)0.0017 (4)0.0109 (5)0.0047 (6)
S20.0460 (6)0.0429 (6)0.0398 (6)0.0039 (5)0.0011 (6)0.0019 (5)
O10.0430 (17)0.058 (2)0.0343 (16)0.0118 (15)0.0114 (15)0.0049 (16)
O20.0324 (14)0.0526 (18)0.079 (3)0.0093 (13)0.0159 (19)0.014 (2)
O30.0276 (14)0.0575 (19)0.0273 (16)0.0057 (13)0.0015 (13)0.0031 (14)
N10.0298 (16)0.0280 (16)0.045 (2)0.0026 (13)0.0101 (16)0.0056 (16)
N20.0242 (15)0.0309 (16)0.0280 (18)0.0007 (13)0.0002 (14)0.0015 (14)
N30.0185 (14)0.0359 (18)0.0265 (17)0.0010 (13)0.0034 (13)0.0011 (15)
N40.0256 (16)0.0452 (18)0.0229 (16)0.0053 (14)0.0010 (14)0.0038 (16)
N50.0274 (14)0.0374 (17)0.0299 (16)0.0013 (13)0.0050 (16)0.0003 (17)
C10.0237 (18)0.032 (2)0.033 (2)0.0018 (16)0.0024 (17)0.0068 (18)
C20.031 (2)0.051 (3)0.045 (3)0.0018 (19)0.004 (2)0.011 (2)
C30.032 (2)0.064 (3)0.045 (3)0.010 (2)0.010 (2)0.008 (3)
C40.051 (3)0.049 (3)0.039 (2)0.012 (2)0.011 (2)0.002 (2)
C50.033 (2)0.034 (2)0.034 (2)0.0001 (17)0.0053 (19)0.0015 (19)
C60.0256 (17)0.0259 (17)0.027 (2)0.0033 (15)0.0010 (16)0.0076 (16)
C70.0228 (17)0.0236 (17)0.0259 (19)0.0010 (14)0.0008 (15)0.0002 (16)
C80.0234 (17)0.0306 (19)0.028 (2)0.0011 (14)0.0084 (17)0.0001 (17)
C90.0262 (18)0.033 (2)0.026 (2)0.0047 (16)0.0031 (17)0.0005 (17)
C100.049 (2)0.029 (2)0.047 (3)0.0031 (19)0.006 (2)0.001 (2)
C110.035 (2)0.048 (2)0.034 (2)0.0156 (18)0.001 (2)0.008 (2)
C120.0240 (18)0.046 (2)0.0252 (19)0.0005 (17)0.0027 (16)0.0000 (19)
C130.0200 (17)0.038 (2)0.029 (2)0.0025 (16)0.0028 (17)0.0026 (17)
C140.0309 (19)0.037 (2)0.034 (2)0.0050 (17)0.0031 (18)0.0022 (18)
C150.031 (2)0.033 (2)0.045 (3)0.0012 (17)0.0037 (19)0.0070 (19)
C160.0341 (19)0.038 (2)0.043 (2)0.0047 (17)0.003 (2)0.005 (2)
C170.046 (2)0.037 (2)0.046 (3)0.0079 (19)0.011 (2)0.006 (2)
C180.062 (3)0.038 (2)0.046 (3)0.016 (2)0.012 (3)0.003 (2)
Geometric parameters (Å, º) top
S1—O11.426 (4)C4—H40.9500
S1—O21.432 (3)C5—C61.391 (5)
S1—N11.645 (3)C5—H50.9500
S1—C11.777 (4)C6—C71.467 (5)
S2—C181.714 (4)C7—C81.390 (5)
S2—C151.724 (5)C8—C91.381 (5)
O3—C131.229 (5)C9—C111.485 (5)
N1—C81.425 (5)C10—H10A0.9800
N1—C101.472 (5)C10—H10B0.9800
N2—C71.329 (5)C10—H10C0.9800
N2—N31.358 (4)C11—H11A0.9800
N3—C91.364 (5)C11—H11B0.9800
N3—C121.451 (5)C11—H11C0.9800
N4—C131.358 (5)C12—C131.509 (6)
N4—N51.380 (4)C12—H12A0.9900
N4—H4N0.8800C12—H12B0.9900
N5—C141.280 (5)C14—C151.441 (6)
C1—C21.384 (6)C14—H140.9500
C1—C61.398 (5)C15—C161.381 (5)
C2—C31.380 (6)C16—C171.410 (6)
C2—H20.9500C16—H160.9500
C3—C41.367 (6)C17—C181.336 (7)
C3—H30.9500C17—H170.9500
C4—C51.394 (6)C18—H180.9500
O1—S1—O2119.6 (2)C7—C8—N1125.6 (3)
O1—S1—N1108.15 (18)N3—C9—C8104.4 (3)
O2—S1—N1107.40 (18)N3—C9—C11124.3 (3)
O1—S1—C1106.36 (18)C8—C9—C11131.3 (4)
O2—S1—C1109.6 (2)N1—C10—H10A109.5
N1—S1—C1104.78 (18)N1—C10—H10B109.5
C18—S2—C1590.7 (2)H10A—C10—H10B109.5
C8—N1—C10117.9 (3)N1—C10—H10C109.5
C8—N1—S1111.9 (2)H10A—C10—H10C109.5
C10—N1—S1119.6 (3)H10B—C10—H10C109.5
C7—N2—N3103.6 (3)C9—C11—H11A109.5
N2—N3—C9113.7 (3)C9—C11—H11B109.5
N2—N3—C12119.0 (3)H11A—C11—H11B109.5
C9—N3—C12127.4 (3)C9—C11—H11C109.5
C13—N4—N5119.4 (3)H11A—C11—H11C109.5
C13—N4—H4N120.3H11B—C11—H11C109.5
N5—N4—H4N120.3N3—C12—C13112.5 (3)
C14—N5—N4115.1 (4)N3—C12—H12A109.1
C2—C1—C6120.9 (4)C13—C12—H12A109.1
C2—C1—S1119.7 (3)N3—C12—H12B109.1
C6—C1—S1119.2 (3)C13—C12—H12B109.1
C3—C2—C1119.3 (4)H12A—C12—H12B107.8
C3—C2—H2120.3O3—C13—N4124.5 (4)
C1—C2—H2120.3O3—C13—C12124.0 (4)
C4—C3—C2120.6 (4)N4—C13—C12111.4 (3)
C4—C3—H3119.7N5—C14—C15120.8 (4)
C2—C3—H3119.7N5—C14—H14119.6
C3—C4—C5120.5 (4)C15—C14—H14119.6
C3—C4—H4119.7C16—C15—C14126.8 (4)
C5—C4—H4119.7C16—C15—S2110.6 (3)
C6—C5—C4119.7 (4)C14—C15—S2122.5 (3)
C6—C5—H5120.1C15—C16—C17113.2 (4)
C4—C5—H5120.1C15—C16—H16123.4
C5—C6—C1118.7 (3)C17—C16—H16123.4
C5—C6—C7123.5 (3)C18—C17—C16111.6 (4)
C1—C6—C7117.7 (3)C18—C17—H17124.2
N2—C7—C8111.9 (3)C16—C17—H17124.2
N2—C7—C6124.4 (3)C17—C18—S2113.8 (4)
C8—C7—C6123.7 (3)C17—C18—H18123.1
C9—C8—C7106.4 (3)S2—C18—H18123.1
C9—C8—N1127.8 (3)
O1—S1—N1—C868.6 (3)N2—C7—C8—C90.3 (5)
O2—S1—N1—C8161.0 (3)C6—C7—C8—C9178.8 (3)
C1—S1—N1—C844.5 (3)N2—C7—C8—N1175.7 (4)
O1—S1—N1—C10147.4 (3)C6—C7—C8—N12.7 (6)
O2—S1—N1—C1017.0 (4)C10—N1—C8—C963.6 (6)
C1—S1—N1—C1099.4 (3)S1—N1—C8—C9151.8 (4)
C7—N2—N3—C91.2 (4)C10—N1—C8—C7111.6 (4)
C7—N2—N3—C12178.5 (3)S1—N1—C8—C733.0 (5)
C13—N4—N5—C14177.0 (3)N2—N3—C9—C81.4 (4)
O1—S1—C1—C298.9 (3)C12—N3—C9—C8178.2 (3)
O2—S1—C1—C231.7 (4)N2—N3—C9—C11178.9 (4)
N1—S1—C1—C2146.7 (3)C12—N3—C9—C111.4 (6)
O1—S1—C1—C677.1 (3)C7—C8—C9—N31.0 (4)
O2—S1—C1—C6152.2 (3)N1—C8—C9—N3174.9 (4)
N1—S1—C1—C637.3 (3)C7—C8—C9—C11179.3 (4)
C6—C1—C2—C32.7 (6)N1—C8—C9—C114.7 (7)
S1—C1—C2—C3173.3 (3)N2—N3—C12—C1390.1 (4)
C1—C2—C3—C41.6 (6)C9—N3—C12—C1390.3 (5)
C2—C3—C4—C53.9 (7)N5—N4—C13—O31.8 (6)
C3—C4—C5—C61.9 (7)N5—N4—C13—C12175.2 (3)
C4—C5—C6—C12.3 (6)N3—C12—C13—O322.4 (6)
C4—C5—C6—C7174.3 (4)N3—C12—C13—N4160.5 (3)
C2—C1—C6—C54.6 (6)N4—N5—C14—C15179.9 (3)
S1—C1—C6—C5171.5 (3)N5—C14—C15—C16179.7 (4)
C2—C1—C6—C7172.2 (4)N5—C14—C15—S23.7 (6)
S1—C1—C6—C711.8 (5)C18—S2—C15—C160.3 (3)
N3—N2—C7—C80.5 (4)C18—S2—C15—C14176.3 (4)
N3—N2—C7—C6177.9 (3)C14—C15—C16—C17176.3 (4)
C5—C6—C7—N210.2 (6)S2—C15—C16—C170.1 (5)
C1—C6—C7—N2173.2 (4)C15—C16—C17—C180.2 (6)
C5—C6—C7—C8168.0 (4)C16—C17—C18—S20.5 (6)
C1—C6—C7—C88.6 (5)C15—S2—C18—C170.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O3i0.882.102.964 (4)166
C12—H12A···N5i0.992.523.488 (5)164
C11—H11B···O1ii0.982.403.243 (6)143
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H17N5O3S2
Mr415.49
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)18.5474 (2), 11.6670 (5), 8.4783 (7)
V3)1834.64 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.28 × 0.06 × 0.04
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.915, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
3078, 1725, 1623
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.09
No. of reflections1725
No. of parameters255
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O3i0.882.102.964 (4)165.9
C12—H12A···N5i0.992.523.488 (5)164.1
C11—H11B···O1ii0.982.403.243 (6)143.1
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+2, y, z+1/2.
 

Acknowledgements

HLS is grateful to the Higher Education Commission, Islamabad, and the University of the Punjab, Lahore, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.  Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493–496.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds