organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(N1E,N2E)-N1,N2-Bis(4-hex­yl­oxy-3-meth­oxy­benzyl­­idene)ethane-1,2-di­amine

aDepartment of Chemistry, Stella Maris College, Chennai, TamilNadu, India, bPolymer Division, C.L.R.I. Adyar, Chennai, TamilNadu, India, and cDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: maryterry13@yahoo.co.in

(Received 26 April 2010; accepted 10 May 2010; online 19 May 2010)

The title compound, C30H44N2O4, was obtained from the dimerization of 4-hexyl­oxyvanillin with ethyl­enediamine in 95% methanol solution. It adopts a trans configuration with respect to the C=N bond and possesses a crystallographically imposed centre of symmetry.

Related literature

For Schiff bases derived from vanillin, see: Guo et al. (2008[Guo, H. M., Zhao, G. L. & Yu, Y. Y. (2008). Chin. J. Inorg. Chem. 24, 1393-1399.]); Li (2008[Li, Y. (2008). Chin. J. Struct. Chem. 27, 1089-1092.]). For its biological activity, see: Liang et al. (2009[Liang, J. A., Wu, S. L., Lo, H. Y., Hsiang, C. Y. & Ho, T. Y. (2009). Mol. Pharmacol. 75, 151-157.]); Lim et al. (2008[Lim, E. J., Kang, H. J., Jung, H. J., Song, S., Lim, C. J. & Park, E. H. (2008). Biomol. Ther. 16, 132-136.]). For the potential uses of mol­ecular materials with supra­molecular architectures in emerging technologies and medicine, see: Porta et al. (2008[Porta, B., Khamsi, J. & Noveron, J. C. (2008). Curr. Org. Chem. 12, 1298-1321.]). For details of the preparation of the title compound, see: Dholakiya & Patel (2002[Dholakiya, P. P. & Patel, M. N. (2002). Synth. React. Inorg. Met. Org. Chem. 32, 819-829]); Maurya et al. (2003[Maurya, R. C., Patel, P. & Rajput, S. (2003). Synth. React. Inorg. Met. Org. Chem. 33, 817-836.]); Doyle et al. (2007[Doyle, D. J., Gibson, V. C. & White, A. J. (2007). Dalton Trans. pp. 358-363.]).

[Scheme 1]

Experimental

Crystal data
  • C30H44N2O4

  • Mr = 496.67

  • Triclinic, [P \overline 1]

  • a = 5.3025 (6) Å

  • b = 10.3777 (14) Å

  • c = 13.0463 (17) Å

  • α = 84.667 (6)°

  • β = 84.659 (6)°

  • γ = 89.045 (6)°

  • V = 711.67 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.45 × 0.22 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.992

  • 9758 measured reflections

  • 3249 independent reflections

  • 1873 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.167

  • S = 1.03

  • 3249 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound C30H44N2O4 is a synthetic analogue with a long aliphatic side chain of vanillin. The Schiff base derived from vanillin (Guo et.al, 2008; Li et.al, 2008) exhibit potential antibacterial activity and a potent anti-proliferative effect on a broad spectrum of cancer cell lines (Liang. et.al, 2009; Lim et.al, 2008).

The design of synthetic molecules with self-organised behaviour is one of the fastest growing areas of research. Molecular materials that arise from the self organising properties of the molecules may afford supramolecular architectures (structures beyond the molecule) with chemical and physical properties that may become useful in emerging technologies and medicine (Porta et.al, 2008). Molecules that use non-covalent interactions to self-organise into supramolecular structures have the potential to generate functional materials with a broad range of applications. This unique combination of coordination bond and alkyl interdigitation provide exceptional control over intermolecular interactions and can generate nano scale molecular order as liquid crystalline states and Langmiur-Blodgett films on surfaces.

The crystal adopts a trans configuration with respect to the C=N bond and possesses a crystallographically imposed centre of symmetry.

Related literature top

For related literature, see: Guo et al., (2008); Liang et al., (2009); Lim et al., (2008); Porta et.al.,(2008);

Experimental top

1) Synthesis of 4-hexyloxy vanillin.

15.215g (0.1 mole) of vanillin was dissolved in 300ml of dimethylformamide in a round-bottom flask. 17.96g (0.13 mole) of potassium carbonate was also added. The resulting mixture was stirred by using a homogeniser maintaining the temperature at 90° C by using an oil bath. 14.03ml (0.1 mole) of bromohexane was added to the reaction mixture through a dropping funnel over a period of 30 minutes (Dholakiya et.al, 2002; Maurya et.al, 2003). The resulting mixture was stirred for 3 hours and cooled to room temperature, diluted with 600ml water. The contents were transferred to a separating funnel extracted with diethyl ether, washed with 5% KOH solution and water respectively. 4-hexyloxy vanillin was obtained and it was recrystallised from hot alcoholic solution.

2) Dimerisation of 4-hexyloxy vanillin with ethylenediamine.

3g (0.05 mole) of ethylenediamine was dissolved in 10ml of ethanol in a round-bottom flask. 23.6g (0.1 mole) of 4-hexyloxy vanillin and 5 drops of acetic acid were added into it. It was fitted to a water condenser and heated for 2 hours (Doyle et.al, 2007). It was allowed to cool, washed with methanol and dried in an oven. Recrystallisation of the compound from methanol gave X-ray diffraction quality crystals of the title compound.

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C-H = 0.93 Å, aliphatic C-H = 0.98 Å and methyl C-H = 0.96 Å. The displacement parameters were set for phenyl and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms at Uiso(H) = 1.5Ueq(C)

Structure description top

The title compound C30H44N2O4 is a synthetic analogue with a long aliphatic side chain of vanillin. The Schiff base derived from vanillin (Guo et.al, 2008; Li et.al, 2008) exhibit potential antibacterial activity and a potent anti-proliferative effect on a broad spectrum of cancer cell lines (Liang. et.al, 2009; Lim et.al, 2008).

The design of synthetic molecules with self-organised behaviour is one of the fastest growing areas of research. Molecular materials that arise from the self organising properties of the molecules may afford supramolecular architectures (structures beyond the molecule) with chemical and physical properties that may become useful in emerging technologies and medicine (Porta et.al, 2008). Molecules that use non-covalent interactions to self-organise into supramolecular structures have the potential to generate functional materials with a broad range of applications. This unique combination of coordination bond and alkyl interdigitation provide exceptional control over intermolecular interactions and can generate nano scale molecular order as liquid crystalline states and Langmiur-Blodgett films on surfaces.

The crystal adopts a trans configuration with respect to the C=N bond and possesses a crystallographically imposed centre of symmetry.

For related literature, see: Guo et al., (2008); Liang et al., (2009); Lim et al., (2008); Porta et.al.,(2008);

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
(N1E,N2E)-N1,N2-Bis(4- hexyloxy-3-methoxybenzylidene)ethane-1,2-diamine top
Crystal data top
C30H44N2O4Z = 1
Mr = 496.67F(000) = 270
Triclinic, P1Dx = 1.159 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3025 (6) ÅCell parameters from 2606 reflections
b = 10.3777 (14) Åθ = 2.5–24.8°
c = 13.0463 (17) ŵ = 0.08 mm1
α = 84.667 (6)°T = 298 K
β = 84.659 (6)°Rectangular, colourless
γ = 89.045 (6)°0.45 × 0.22 × 0.10 mm
V = 711.67 (16) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3249 independent reflections
Radiation source: fine-focus sealed tube1873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 75
Tmin = 0.967, Tmax = 0.992k = 1313
9758 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0813P)2 + 0.0648P]
where P = (Fo2 + 2Fc2)/3
3249 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C30H44N2O4γ = 89.045 (6)°
Mr = 496.67V = 711.67 (16) Å3
Triclinic, P1Z = 1
a = 5.3025 (6) ÅMo Kα radiation
b = 10.3777 (14) ŵ = 0.08 mm1
c = 13.0463 (17) ÅT = 298 K
α = 84.667 (6)°0.45 × 0.22 × 0.10 mm
β = 84.659 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3249 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1873 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.992Rint = 0.023
9758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
3249 reflectionsΔρmin = 0.23 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3152 (4)0.4143 (2)0.8601 (2)0.0941 (7)
H1A1.41090.46220.90250.141*
H1B1.42800.36150.81960.141*
H1C1.19580.36020.90340.141*
C21.1755 (4)0.50694 (19)0.78939 (16)0.0719 (6)
H2A1.29850.55680.74280.086*
H2B1.07800.45740.74770.086*
C30.9998 (3)0.59913 (17)0.84379 (14)0.0583 (5)
H3A1.09650.64840.88600.070*
H3B0.87480.54970.88960.070*
C40.8650 (3)0.69171 (18)0.77122 (14)0.0581 (5)
H4A0.77610.64180.72680.070*
H4B0.99110.74300.72740.070*
C50.6765 (3)0.78325 (16)0.82227 (13)0.0521 (4)
H5A0.54920.73360.86670.063*
H5B0.76350.83660.86480.063*
C60.5513 (3)0.86768 (16)0.74259 (13)0.0515 (4)
H6A0.67690.92180.70110.062*
H6B0.47360.81440.69710.062*
C70.2265 (3)1.02721 (15)0.72825 (12)0.0446 (4)
C80.2641 (3)1.03991 (17)0.62159 (12)0.0555 (5)
H80.39230.99280.58820.067*
C90.1123 (3)1.12212 (18)0.56439 (13)0.0591 (5)
H90.13881.12900.49260.071*
C100.0761 (3)1.19360 (15)0.61098 (12)0.0487 (4)
C110.1152 (3)1.18130 (15)0.71918 (12)0.0494 (4)
H110.24321.22930.75200.059*
C120.0324 (3)1.09964 (14)0.77722 (11)0.0447 (4)
C130.2366 (4)1.27834 (18)0.54763 (14)0.0602 (5)
H130.22001.27270.47660.072*
C140.5432 (4)1.43145 (18)0.50776 (15)0.0694 (6)
H14A0.72111.42860.53310.083*
H14B0.52361.39330.44240.083*
C150.2111 (4)1.13500 (19)0.93525 (13)0.0670 (5)
H15A0.19831.22760.92600.101*
H15B0.21811.10661.00760.101*
H15C0.36211.10880.90780.101*
N10.3933 (3)1.35719 (15)0.58257 (12)0.0671 (5)
O10.3626 (2)0.94721 (10)0.79130 (8)0.0519 (3)
O20.0049 (2)1.07846 (12)0.88225 (8)0.0605 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0811 (16)0.0828 (16)0.1147 (19)0.0396 (13)0.0043 (14)0.0015 (14)
C20.0653 (12)0.0674 (12)0.0814 (13)0.0241 (10)0.0002 (10)0.0095 (10)
C30.0479 (10)0.0593 (11)0.0672 (11)0.0142 (8)0.0050 (8)0.0067 (9)
C40.0467 (10)0.0634 (11)0.0629 (11)0.0134 (9)0.0027 (8)0.0038 (9)
C50.0451 (9)0.0534 (10)0.0577 (10)0.0132 (8)0.0068 (7)0.0043 (8)
C60.0430 (9)0.0546 (10)0.0564 (10)0.0115 (8)0.0023 (7)0.0076 (8)
C70.0454 (9)0.0438 (9)0.0441 (9)0.0079 (7)0.0086 (7)0.0017 (7)
C80.0561 (10)0.0636 (11)0.0444 (9)0.0144 (9)0.0013 (8)0.0004 (8)
C90.0700 (12)0.0654 (11)0.0395 (9)0.0083 (10)0.0055 (8)0.0058 (8)
C100.0595 (11)0.0427 (9)0.0442 (9)0.0042 (8)0.0163 (7)0.0047 (7)
C110.0590 (10)0.0427 (9)0.0472 (9)0.0153 (8)0.0132 (8)0.0016 (7)
C120.0539 (10)0.0414 (8)0.0388 (8)0.0091 (8)0.0094 (7)0.0007 (6)
C130.0760 (13)0.0563 (11)0.0489 (10)0.0035 (10)0.0167 (9)0.0026 (8)
C140.0782 (14)0.0599 (11)0.0704 (12)0.0094 (10)0.0297 (10)0.0136 (9)
C150.0789 (13)0.0752 (13)0.0447 (9)0.0331 (10)0.0010 (9)0.0037 (8)
N10.0792 (11)0.0629 (10)0.0585 (9)0.0163 (9)0.0208 (8)0.0088 (8)
O10.0519 (7)0.0569 (7)0.0461 (6)0.0233 (6)0.0072 (5)0.0009 (5)
O20.0727 (8)0.0701 (8)0.0373 (6)0.0373 (6)0.0073 (5)0.0017 (5)
Geometric parameters (Å, º) top
C1—C21.504 (3)C7—C121.405 (2)
C1—H1A0.9600C8—C91.380 (2)
C1—H1B0.9600C8—H80.9300
C1—H1C0.9600C9—C101.365 (2)
C2—C31.503 (2)C9—H90.9300
C2—H2A0.9700C10—C111.402 (2)
C2—H2B0.9700C10—C131.467 (2)
C3—C41.505 (3)C11—C121.369 (2)
C3—H3A0.9700C11—H110.9300
C3—H3B0.9700C12—O21.3620 (18)
C4—C51.519 (2)C13—N11.243 (2)
C4—H4A0.9700C13—H130.9300
C4—H4B0.9700C14—N11.470 (2)
C5—C61.493 (2)C14—C14i1.492 (4)
C5—H5A0.9700C14—H14A0.9700
C5—H5B0.9700C14—H14B0.9700
C6—O11.4274 (18)C15—O21.428 (2)
C6—H6A0.9700C15—H15A0.9600
C6—H6B0.9700C15—H15B0.9600
C7—O11.3602 (18)C15—H15C0.9600
C7—C81.382 (2)
C2—C1—H1A109.5O1—C7—C8124.79 (15)
C2—C1—H1B109.5O1—C7—C12116.27 (13)
H1A—C1—H1B109.5C8—C7—C12118.93 (14)
C2—C1—H1C109.5C9—C8—C7120.33 (16)
H1A—C1—H1C109.5C9—C8—H8119.8
H1B—C1—H1C109.5C7—C8—H8119.8
C3—C2—C1114.57 (19)C10—C9—C8121.35 (15)
C3—C2—H2A108.6C10—C9—H9119.3
C1—C2—H2A108.6C8—C9—H9119.3
C3—C2—H2B108.6C9—C10—C11118.64 (15)
C1—C2—H2B108.6C9—C10—C13119.84 (15)
H2A—C2—H2B107.6C11—C10—C13121.51 (16)
C2—C3—C4113.47 (16)C12—C11—C10120.86 (15)
C2—C3—H3A108.9C12—C11—H11119.6
C4—C3—H3A108.9C10—C11—H11119.6
C2—C3—H3B108.9O2—C12—C11125.23 (14)
C4—C3—H3B108.9O2—C12—C7114.87 (13)
H3A—C3—H3B107.7C11—C12—C7119.88 (14)
C3—C4—C5115.64 (15)N1—C13—C10124.35 (17)
C3—C4—H4A108.4N1—C13—H13117.8
C5—C4—H4A108.4C10—C13—H13117.8
C3—C4—H4B108.4N1—C14—C14i109.91 (19)
C5—C4—H4B108.4N1—C14—H14A109.7
H4A—C4—H4B107.4C14i—C14—H14A109.7
C6—C5—C4110.57 (14)N1—C14—H14B109.7
C6—C5—H5A109.5C14i—C14—H14B109.7
C4—C5—H5A109.5H14A—C14—H14B108.2
C6—C5—H5B109.5O2—C15—H15A109.5
C4—C5—H5B109.5O2—C15—H15B109.5
H5A—C5—H5B108.1H15A—C15—H15B109.5
O1—C6—C5110.11 (13)O2—C15—H15C109.5
O1—C6—H6A109.6H15A—C15—H15C109.5
C5—C6—H6A109.6H15B—C15—H15C109.5
O1—C6—H6B109.6C13—N1—C14116.83 (17)
C5—C6—H6B109.6C7—O1—C6116.96 (12)
H6A—C6—H6B108.2C12—O2—C15117.33 (12)
C1—C2—C3—C4179.30 (18)O1—C7—C12—O20.7 (2)
C2—C3—C4—C5177.47 (15)C8—C7—C12—O2178.37 (15)
C3—C4—C5—C6178.66 (15)O1—C7—C12—C11179.24 (14)
C4—C5—C6—O1176.14 (13)C8—C7—C12—C110.2 (2)
O1—C7—C8—C9178.75 (15)C9—C10—C13—N1171.75 (17)
C12—C7—C8—C90.2 (3)C11—C10—C13—N19.9 (3)
C7—C8—C9—C100.6 (3)C10—C13—N1—C14178.23 (15)
C8—C9—C10—C110.6 (3)C14i—C14—N1—C13107.7 (3)
C8—C9—C10—C13178.96 (16)C8—C7—O1—C62.4 (2)
C9—C10—C11—C120.1 (2)C12—C7—O1—C6176.64 (13)
C13—C10—C11—C12178.52 (15)C5—C6—O1—C7178.19 (13)
C10—C11—C12—O2178.15 (15)C11—C12—O2—C157.1 (2)
C10—C11—C12—C70.2 (2)C7—C12—O2—C15171.33 (15)
Symmetry code: (i) x1, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC30H44N2O4
Mr496.67
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.3025 (6), 10.3777 (14), 13.0463 (17)
α, β, γ (°)84.667 (6), 84.659 (6), 89.045 (6)
V3)711.67 (16)
Z1
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.22 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.967, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
9758, 3249, 1873
Rint0.023
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.167, 1.03
No. of reflections3249
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The authors thank the UGC for a project grant. Special thanks go to the Principal, Dr Sr Jasintha Quadras, fmm, and the Head, Department of Chemistry, Stella Maris College, Chennai. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (2004). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDholakiya, P. P. & Patel, M. N. (2002). Synth. React. Inorg. Met. Org. Chem. 32, 819–829  Web of Science CrossRef CAS Google Scholar
First citationDoyle, D. J., Gibson, V. C. & White, A. J. (2007). Dalton Trans. pp. 358–363.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGuo, H. M., Zhao, G. L. & Yu, Y. Y. (2008). Chin. J. Inorg. Chem. 24, 1393–1399.  CAS Google Scholar
First citationLi, Y. (2008). Chin. J. Struct. Chem. 27, 1089–1092.  CAS Google Scholar
First citationLiang, J. A., Wu, S. L., Lo, H. Y., Hsiang, C. Y. & Ho, T. Y. (2009). Mol. Pharmacol. 75, 151–157.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLim, E. J., Kang, H. J., Jung, H. J., Song, S., Lim, C. J. & Park, E. H. (2008). Biomol. Ther. 16, 132–136.  CrossRef CAS Google Scholar
First citationMaurya, R. C., Patel, P. & Rajput, S. (2003). Synth. React. Inorg. Met. Org. Chem. 33, 817–836.  Web of Science CrossRef CAS Google Scholar
First citationPorta, B., Khamsi, J. & Noveron, J. C. (2008). Curr. Org. Chem. 12, 1298–1321.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds