organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Meth­­oxy-2-methyl­propan-2-aminium 2,2,2-tri­fluoro­acetate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 4 May 2010; accepted 21 May 2010; online 29 May 2010)

In the title salt, C5H14NO+·C2F3O2, the cation and anion are linked by N—H⋯O and O—H⋯N hydrogen bonds, generating a three-dimensional network.

Related literature

The title compound is an inter­mediate in the synthesis of 1-meth­oxy-N,2-dimethyl­propan-2-amine. For the synthesis of the title compound, see: Maeda et al. (2004[Maeda, K., Morino, K., Okampto, Y., Sato, T. & Yashima, E. (2004). J. Am. Chem. Soc. 126, 4329-4342.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C5H14NO+·C2F3O2

  • Mr = 217.19

  • Orthorhombic, P 21 21 21

  • a = 6.6680 (13) Å

  • b = 8.9900 (18) Å

  • c = 17.862 (4) Å

  • V = 1070.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.961, Tmax = 0.987

  • 1861 measured reflections

  • 1150 independent reflections

  • 784 reflections with I > 2σ(I)

  • Rint = 0.038

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.183

  • S = 1.01

  • 1150 reflections

  • 121 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O2 0.89 1.99 2.854 (5) 163
N—H0B⋯O2i 0.89 2.00 2.859 (5) 161
N—H0C⋯O3ii 0.89 1.92 2.802 (6) 169
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 1-methoxy-2-methylpropan-2-aminium 2,2,2-trifluoroacetate is an important intermediate for the synthesis of 1-methoxy-N,2-dimethylpropan-2-amine. We herein report its crystal structure.

The molecular structure of (I) is shown in Fig. 1, and the selected geometric parameters are given in Table 1. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987).

In the molecule of (I), (Fig.1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The crystal of this compound was connected together via C—H···O, and N—H···O inter- and intramolecular hydrogen bonds to form a three dimensional network, which seems to be very effective in the stabilization of the crystal structure.

As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the a axis.

Related literature top

The title compound is an important intermediate for the synthesis of 1-methoxy-N,2-dimethylpropan-2-amine. For the synthesis of the title compound, see: Maeda et al. (2004); For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was synthesized according to the literature (Maeda et al., 2004). The crystals were obtained by dissolving (I) (0.52 g, 2.4 mmol) in 25 ml me thanol and evaporating the solvent slowly at room temperature for about 4 d.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of O—H = 0.85 (2) and N—H = 0.90 (2) Å, and with Uiso(H) = 1.2Ueq(N,O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96–0.97 (2) Å, Uiso(H) = 1.5Ueq(C). Friedel pairs were merged.

Structure description top

The title compound, 1-methoxy-2-methylpropan-2-aminium 2,2,2-trifluoroacetate is an important intermediate for the synthesis of 1-methoxy-N,2-dimethylpropan-2-amine. We herein report its crystal structure.

The molecular structure of (I) is shown in Fig. 1, and the selected geometric parameters are given in Table 1. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987).

In the molecule of (I), (Fig.1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The crystal of this compound was connected together via C—H···O, and N—H···O inter- and intramolecular hydrogen bonds to form a three dimensional network, which seems to be very effective in the stabilization of the crystal structure.

As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the a axis.

The title compound is an important intermediate for the synthesis of 1-methoxy-N,2-dimethylpropan-2-amine. For the synthesis of the title compound, see: Maeda et al. (2004); For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
1-Methoxy-2-methylpropan-2-aminium 2,2,2-trifluoroacetate top
Crystal data top
C5H14NO+·C2F3O2F(000) = 456
Mr = 217.19Dx = 1.347 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 6.6680 (13) Åθ = 9–12°
b = 8.9900 (18) ŵ = 0.14 mm1
c = 17.862 (4) ÅT = 293 K
V = 1070.7 (4) Å3Block, colourless
Z = 40.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
784 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 78
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.961, Tmax = 0.987l = 021
1861 measured reflections3 standard reflections every 200 reflections
1150 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.350P]
where P = (Fo2 + 2Fc2)/3
1150 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.39 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C5H14NO+·C2F3O2V = 1070.7 (4) Å3
Mr = 217.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6680 (13) ŵ = 0.14 mm1
b = 8.9900 (18) ÅT = 293 K
c = 17.862 (4) Å0.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
784 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.038
Tmin = 0.961, Tmax = 0.9873 standard reflections every 200 reflections
1861 measured reflections intensity decay: 1%
1150 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0602 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
1150 reflectionsΔρmin = 0.27 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.4436 (6)0.2188 (5)0.4225 (2)0.0507 (10)
H0A0.45540.19190.47020.076*
H0B0.32810.26670.41590.076*
H0C0.54500.27840.41020.076*
O10.2833 (6)0.0471 (5)0.4723 (2)0.0789 (13)
C10.1216 (11)0.1286 (9)0.5000 (4)0.093 (2)
H1A0.14190.14860.55220.139*
H1B0.11120.22090.47320.139*
H1C0.00030.07250.49350.139*
C20.2708 (9)0.0130 (8)0.3959 (3)0.0674 (16)
H2A0.14650.03920.38570.081*
H2B0.27190.10400.36670.081*
C30.4477 (8)0.0837 (6)0.3739 (3)0.0557 (12)
C40.4273 (10)0.1332 (8)0.2930 (3)0.0755 (18)
H4A0.29980.18080.28610.113*
H4B0.43650.04820.26070.113*
H4C0.53280.20200.28120.113*
C50.6472 (9)0.0065 (9)0.3891 (4)0.084 (2)
H5A0.65330.02300.44070.126*
H5B0.75540.07370.37840.126*
H5C0.65860.07990.35780.126*
F10.5540 (9)0.0216 (7)0.7374 (2)0.139 (2)
F20.7402 (6)0.0271 (7)0.6453 (4)0.159 (3)
F30.4744 (7)0.1451 (5)0.6637 (3)0.1188 (17)
O20.5367 (5)0.1809 (4)0.5773 (2)0.0642 (10)
O30.2549 (5)0.1057 (5)0.6350 (2)0.0685 (11)
C60.5543 (12)0.0119 (9)0.6655 (4)0.088
C70.4376 (8)0.1040 (6)0.6208 (3)0.0526 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0321 (18)0.067 (2)0.053 (2)0.004 (2)0.0039 (18)0.008 (2)
O10.058 (2)0.095 (3)0.084 (3)0.028 (2)0.0068 (19)0.018 (2)
C10.068 (4)0.104 (5)0.106 (4)0.029 (4)0.003 (4)0.024 (5)
C20.053 (3)0.069 (4)0.080 (4)0.011 (3)0.006 (3)0.009 (3)
C30.039 (2)0.067 (3)0.062 (3)0.001 (3)0.004 (2)0.004 (3)
C40.069 (4)0.105 (4)0.053 (3)0.001 (4)0.008 (3)0.011 (3)
C50.052 (3)0.086 (5)0.114 (5)0.018 (4)0.017 (3)0.004 (4)
F10.149 (4)0.191 (5)0.078 (3)0.032 (5)0.040 (3)0.025 (3)
F20.048 (2)0.199 (6)0.230 (6)0.051 (3)0.044 (3)0.126 (5)
F30.112 (4)0.077 (2)0.167 (4)0.017 (3)0.007 (3)0.035 (3)
O20.0486 (19)0.088 (3)0.056 (2)0.018 (2)0.0095 (17)0.021 (2)
O30.0305 (18)0.090 (3)0.085 (3)0.0088 (19)0.0031 (16)0.021 (2)
C60.0880.0880.0880.0000.0000.000
C70.049 (3)0.060 (3)0.049 (3)0.002 (3)0.003 (2)0.010 (3)
Geometric parameters (Å, º) top
N—C31.493 (7)C3—C51.525 (8)
N—H0A0.8900C4—H4A0.9600
N—H0B0.8900C4—H4B0.9600
N—H0C0.8900C4—H4C0.9600
O1—C11.394 (7)C5—H5A0.9600
O1—C21.402 (7)C5—H5B0.9600
C1—H1A0.9600C5—H5C0.9600
C1—H1B0.9600F1—C61.319 (8)
C1—H1C0.9600F2—C61.298 (9)
C2—C31.517 (8)F3—C61.311 (9)
C2—H2A0.9700O2—C71.232 (6)
C2—H2B0.9700O3—C71.244 (6)
C3—C41.518 (8)C6—C71.526 (9)
C3—N—H0A109.5C2—C3—C5111.8 (4)
C3—N—H0B109.5C4—C3—C5112.4 (5)
H0A—N—H0B109.5C3—C4—H4A109.5
C3—N—H0C109.5C3—C4—H4B109.5
H0A—N—H0C109.5H4A—C4—H4B109.5
H0B—N—H0C109.5C3—C4—H4C109.5
C1—O1—C2114.4 (5)H4A—C4—H4C109.5
O1—C1—H1A109.5H4B—C4—H4C109.5
O1—C1—H1B109.5C3—C5—H5A109.5
H1A—C1—H1B109.5C3—C5—H5B109.5
O1—C1—H1C109.5H5A—C5—H5B109.5
H1A—C1—H1C109.5C3—C5—H5C109.5
H1B—C1—H1C109.5H5A—C5—H5C109.5
O1—C2—C3109.3 (4)H5B—C5—H5C109.5
O1—C2—H2A109.8F2—C6—F3106.6 (7)
C3—C2—H2A109.8F2—C6—F1107.2 (7)
O1—C2—H2B109.8F3—C6—F1103.4 (7)
C3—C2—H2B109.8F2—C6—C7114.4 (6)
H2A—C2—H2B108.3F3—C6—C7113.8 (6)
N—C3—C2107.6 (4)F1—C6—C7110.6 (6)
N—C3—C4108.2 (5)O2—C7—O3130.3 (5)
C2—C3—C4110.2 (5)O2—C7—C6116.1 (5)
N—C3—C5106.4 (5)O3—C7—C6113.6 (5)
C1—O1—C2—C3176.4 (5)F3—C6—C7—O2130.9 (6)
O1—C2—C3—N57.2 (6)F1—C6—C7—O2113.3 (7)
O1—C2—C3—C4175.0 (5)F2—C6—C7—O3172.5 (7)
O1—C2—C3—C559.3 (6)F3—C6—C7—O349.6 (8)
F2—C6—C7—O28.0 (9)F1—C6—C7—O366.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O10.892.442.766 (6)102
N—H0A···O20.891.992.854 (5)163
N—H0B···O2i0.892.002.859 (5)161
N—H0C···O3ii0.891.922.802 (6)169
C5—H5A···O10.962.542.886 (8)101
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC5H14NO+·C2F3O2
Mr217.19
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.6680 (13), 8.9900 (18), 17.862 (4)
V3)1070.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.961, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
1861, 1150, 784
Rint0.038
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.183, 1.01
No. of reflections1150
No. of parameters121
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.27

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O10.89002.44002.766 (6)102.00
N—H0A···O20.89001.99002.854 (5)163.00
N—H0B···O2i0.89002.00002.859 (5)161.00
N—H0C···O3ii0.89001.92002.802 (6)169.00
C5—H5A···O10.96002.54002.886 (8)101.00
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMaeda, K., Morino, K., Okampto, Y., Sato, T. & Yashima, E. (2004). J. Am. Chem. Soc. 126, 4329–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds