organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[Morpholino(phen­yl)meth­yl]-2-naphthol

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zmmzyahfdzg@126.com

(Received 12 May 2010; accepted 16 May 2010; online 22 May 2010)

There are two independent mol­ecules in the asymmetric unit of the title compound, C21H21NO2, which was synthesized by the one-pot reaction of 2-naphthol, morpholine and benzaldehyde. The dihedral angles between the naphthalene ring systems and the benzene rings are 84.03 (7) and 75.76 (8)° in the two mol­ecules and an intra­molecular O—H⋯N hydrogen bond occurs in each independent mol­ecule.

Related literature

This backgroud to dielectric ferroelectric phase transition materials, see: Ye et al. (2009[Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42-43.]); Zhang et al. (2009[Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.]). For related structures, see: Qu et al. (2007[Qu, Z.-R. (2007). Acta Cryst. E63, o3429.]); Li et al. (2008[Li, Y. H., Zhao, M. M. & Zhang, Y. (2008). Acta Cryst. E64, o2005.]); Wang et al. (2009[Wang, W. X. & Zhao, H. (2009). Acta Cryst. E65, o1277.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21NO2

  • Mr = 319.39

  • Monoclinic, C c

  • a = 10.698 (2) Å

  • b = 19.052 (4) Å

  • c = 16.810 (3) Å

  • β = 101.13 (3)°

  • V = 3361.5 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.971, Tmax = 0.984

  • 17285 measured reflections

  • 3849 independent reflections

  • 3058 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.118

  • S = 1.08

  • 3849 reflections

  • 433 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.82 1.92 2.616 (2) 142
O3—H3A⋯N2 0.82 1.90 2.603 (3) 143

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Betti-type reaction is an important method to synthesize chiral ligands and by this method many unnatural compounds derived from naphthalen-2-ol have been obtained (Qu et al., 2007; Li et al., 2008; Wang et al., 2009). Here we report the synthesis and crystal structure of the title compound (Fig. 1), obtained by a three-component condensation reaction of 2-naphthol, benzaldehyde and morpholine under solvent-free condition.

This study is a part of our systematic investigation of dielectric ferroelectric, phase transitions materials (Ye et al., 2009; Zhang et al., 2009) that include metal-organic coordination compounds with organic ligands or are related to the structures with both organic and inorganic building fragments. Below the melting point (m.p. 443 K) of the 1-(morpholino(phenyl)methyl)naphthalen-2-ol, the dielectric constant as a function of temperature goes smoothly, and there is no dielectric anomaly observed (dielectric constant equaling to 3.6 to 5.3, measured temperature ranges: 80 K to 430 K).

In the molecule of the title compound (Fig. 1), the bond lengths and angles are within their normal ranges. There are two molecules which have the same relative conformation in one asymmetric unit. The dihedral angle between the naphthylene ring A (C1–C10) and benzene ring B (C11–C16) is A/B =84.05 °. The dihedral angle between the naphthylene ring C (C18–C27) and benzene ring D (C28–C33) is C/D =75.80 °. The morpholine ring in two molecules both adopt chair conformation. The two molecules are both stabilized by strong intramolecular O—H···N hydrogen bonding(Table 1). The intermolecular attractions are only on the order of Van der Waals forces.

Related literature top

This study is a part of our systematic investigation of dielectric ferroelectric phase transitions materials, see: Ye et al. (2009); Zhang et al. (2009). For related structures, see: Qu et al. (2007); Li et al. (2008); Wang et al. (2009).

Experimental top

Benzaldehyde (1.06 g, 0.010 mol) was added to 2-naphthol (1.44 g, 0.010 mol) without solvent. Then morpholine (0.87 g, 0.010 mol) was added dropwise with cooling to 0°C to the above mixture. The temperature was raised to 120°C in one hour gradually and the mixture was stirred at this temperature for 10 hours. Then 15 ml of ethanol 95% was added, after heating under reflux for 30 min, the precipitate was filtered off and washed 3 times with a small amount of ethanol 95% to give the title compound. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of chloroform solution.

Refinement top

All H atoms were calculated geometrically, with C—H = 0.93–0.97 Å, O—H= 0.82 Å, and refined as riding with Uiso(H)= 1.2Ueq(C) or 1.2Ueq(O) for hydroxy hydrogen atoms.

Structure description top

Betti-type reaction is an important method to synthesize chiral ligands and by this method many unnatural compounds derived from naphthalen-2-ol have been obtained (Qu et al., 2007; Li et al., 2008; Wang et al., 2009). Here we report the synthesis and crystal structure of the title compound (Fig. 1), obtained by a three-component condensation reaction of 2-naphthol, benzaldehyde and morpholine under solvent-free condition.

This study is a part of our systematic investigation of dielectric ferroelectric, phase transitions materials (Ye et al., 2009; Zhang et al., 2009) that include metal-organic coordination compounds with organic ligands or are related to the structures with both organic and inorganic building fragments. Below the melting point (m.p. 443 K) of the 1-(morpholino(phenyl)methyl)naphthalen-2-ol, the dielectric constant as a function of temperature goes smoothly, and there is no dielectric anomaly observed (dielectric constant equaling to 3.6 to 5.3, measured temperature ranges: 80 K to 430 K).

In the molecule of the title compound (Fig. 1), the bond lengths and angles are within their normal ranges. There are two molecules which have the same relative conformation in one asymmetric unit. The dihedral angle between the naphthylene ring A (C1–C10) and benzene ring B (C11–C16) is A/B =84.05 °. The dihedral angle between the naphthylene ring C (C18–C27) and benzene ring D (C28–C33) is C/D =75.80 °. The morpholine ring in two molecules both adopt chair conformation. The two molecules are both stabilized by strong intramolecular O—H···N hydrogen bonding(Table 1). The intermolecular attractions are only on the order of Van der Waals forces.

This study is a part of our systematic investigation of dielectric ferroelectric phase transitions materials, see: Ye et al. (2009); Zhang et al. (2009). For related structures, see: Qu et al. (2007); Li et al. (2008); Wang et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
1-[Morpholino(phenyl)methyl]-2-naphthol top
Crystal data top
C21H21NO2F(000) = 1360
Mr = 319.39Dx = 1.262 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 15031 reflections
a = 10.698 (2) Åθ = 3.0–27.7°
b = 19.052 (4) ŵ = 0.08 mm1
c = 16.810 (3) ÅT = 293 K
β = 101.13 (3)°Prism, colorless
V = 3361.5 (12) Å30.40 × 0.30 × 0.20 mm
Z = 8
Data collection top
Rigaku SCXmini
diffractometer
3849 independent reflections
Radiation source: fine-focus sealed tube3058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2424
Tmin = 0.971, Tmax = 0.984l = 2121
17285 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0632P)2]
where P = (Fo2 + 2Fc2)/3
3849 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.16 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C21H21NO2V = 3361.5 (12) Å3
Mr = 319.39Z = 8
Monoclinic, CcMo Kα radiation
a = 10.698 (2) ŵ = 0.08 mm1
b = 19.052 (4) ÅT = 293 K
c = 16.810 (3) Å0.40 × 0.30 × 0.20 mm
β = 101.13 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3849 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3058 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.984Rint = 0.054
17285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0492 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.08Δρmax = 0.16 e Å3
3849 reflectionsΔρmin = 0.17 e Å3
433 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.53090 (16)0.19838 (9)0.19756 (11)0.0335 (4)
C170.5490 (2)0.12943 (11)0.24134 (13)0.0328 (5)
H5A0.57420.13950.29940.039*
C100.42262 (19)0.08974 (11)0.22848 (13)0.0336 (5)
O40.53666 (18)0.34790 (9)0.18615 (13)0.0604 (5)
C10.3388 (2)0.09325 (12)0.15454 (15)0.0412 (6)
O30.35751 (19)0.13448 (9)0.09251 (11)0.0565 (5)
H3A0.42350.15700.10630.085*
C110.6534 (2)0.08461 (11)0.21689 (13)0.0351 (5)
C90.3940 (2)0.04394 (11)0.28937 (14)0.0363 (5)
C40.2814 (2)0.00276 (12)0.27362 (17)0.0473 (6)
C20.2279 (2)0.05124 (14)0.13943 (18)0.0544 (7)
H18A0.17290.05400.08940.065*
C160.7790 (2)0.09322 (13)0.25646 (16)0.0456 (6)
H20A0.79910.12630.29760.055*
C80.4750 (3)0.03519 (13)0.36612 (15)0.0456 (6)
H23A0.55110.06010.37820.055*
C60.3308 (3)0.04833 (14)0.4069 (2)0.0664 (8)
H26A0.31000.07790.44640.080*
C380.6490 (2)0.23667 (12)0.19652 (15)0.0431 (6)
H28A0.70490.20840.17050.052*
H28B0.69240.24620.25160.052*
C30.2011 (2)0.00725 (15)0.1967 (2)0.0567 (8)
H29A0.12840.02060.18530.068*
C350.4481 (2)0.24405 (13)0.23544 (16)0.0443 (6)
H31A0.48920.25450.29080.053*
H31B0.36840.22020.23680.053*
C50.2527 (3)0.04283 (13)0.3339 (2)0.0614 (8)
H32A0.17850.06950.32310.074*
C360.4222 (2)0.31094 (13)0.18800 (19)0.0534 (7)
H34A0.37970.30020.13300.064*
H34B0.36590.34040.21240.064*
C70.4425 (3)0.00951 (14)0.42262 (18)0.0606 (8)
H38A0.49660.01390.47280.073*
C150.8748 (2)0.05256 (15)0.23472 (18)0.0556 (7)
H40A0.95900.05920.26060.067*
C120.6263 (2)0.03396 (12)0.15697 (16)0.0463 (6)
H41A0.54260.02720.13010.056*
C130.7221 (3)0.00653 (15)0.13678 (19)0.0610 (8)
H42A0.70230.04040.09650.073*
C140.8455 (3)0.00233 (15)0.17493 (19)0.0578 (8)
H45A0.90950.02530.16080.069*
C370.6193 (3)0.30486 (13)0.15105 (19)0.0556 (7)
H47A0.69800.33000.15080.067*
H47B0.58000.29480.09530.067*
C190.0234 (2)0.20900 (12)0.42768 (14)0.0375 (5)
O20.31221 (16)0.20204 (9)0.40339 (11)0.0526 (5)
H2A0.31180.24290.38810.079*
C180.0949 (2)0.23186 (11)0.40893 (14)0.0370 (5)
C340.1067 (2)0.30540 (11)0.37516 (14)0.0371 (5)
H10A0.04800.33620.39690.045*
C200.0342 (2)0.13894 (12)0.45550 (14)0.0437 (6)
N10.23850 (18)0.33300 (9)0.40308 (11)0.0377 (5)
C220.1834 (3)0.11606 (13)0.44640 (17)0.0514 (7)
H15A0.25250.08560.45260.062*
C280.0683 (2)0.30619 (12)0.28318 (14)0.0381 (6)
C230.1955 (2)0.18532 (12)0.41921 (15)0.0428 (6)
C210.0716 (3)0.09399 (12)0.46337 (16)0.0512 (7)
H21A0.06440.04800.48060.061*
C290.0073 (3)0.35994 (14)0.24450 (17)0.0505 (7)
H22A0.03580.39490.27530.061*
C250.2415 (3)0.22877 (16)0.44269 (17)0.0551 (7)
H24A0.31090.25880.43910.066*
C240.1317 (2)0.25283 (14)0.42093 (15)0.0461 (6)
H25A0.12860.29840.40160.055*
C400.2622 (2)0.39992 (13)0.36510 (16)0.0455 (6)
H27A0.20400.43540.37770.055*
H27B0.24760.39440.30670.055*
O10.4239 (2)0.43231 (10)0.48085 (12)0.0670 (6)
C420.2647 (3)0.34414 (14)0.49149 (15)0.0498 (7)
H33A0.25160.30070.51880.060*
H33B0.20650.37900.50550.060*
C270.1502 (3)0.11634 (15)0.47600 (16)0.0538 (7)
H35A0.15720.07060.49390.065*
C390.3979 (3)0.42304 (16)0.39600 (18)0.0603 (8)
H36A0.45560.38810.38150.072*
H36B0.41300.46690.37010.072*
C330.1083 (2)0.25492 (15)0.23553 (16)0.0496 (7)
H37A0.15740.21780.26010.060*
C260.2507 (3)0.16011 (17)0.47003 (17)0.0600 (8)
H39A0.32600.14460.48410.072*
C410.3999 (3)0.36858 (14)0.51903 (18)0.0577 (8)
H43A0.41660.37530.57730.069*
H43B0.45760.33260.50680.069*
C300.0413 (3)0.36241 (16)0.16068 (19)0.0608 (8)
H44A0.09280.39860.13580.073*
C310.0009 (3)0.31159 (18)0.11421 (18)0.0652 (9)
H46A0.02130.31340.05800.078*
C320.0764 (3)0.25798 (19)0.15184 (18)0.0637 (8)
H48A0.10600.22370.12080.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0333 (9)0.0309 (9)0.0367 (9)0.0003 (7)0.0080 (7)0.0016 (7)
C170.0354 (11)0.0343 (11)0.0281 (11)0.0001 (9)0.0049 (9)0.0003 (9)
C100.0316 (10)0.0290 (10)0.0413 (12)0.0003 (8)0.0096 (9)0.0005 (9)
O40.0618 (11)0.0321 (9)0.0881 (14)0.0042 (8)0.0169 (10)0.0034 (9)
C10.0413 (12)0.0350 (12)0.0452 (13)0.0030 (10)0.0029 (10)0.0010 (10)
O30.0657 (11)0.0534 (10)0.0429 (10)0.0086 (9)0.0084 (8)0.0078 (8)
C110.0351 (11)0.0335 (11)0.0370 (11)0.0012 (9)0.0081 (9)0.0086 (9)
C90.0354 (11)0.0282 (10)0.0487 (13)0.0073 (9)0.0165 (9)0.0023 (9)
C40.0394 (12)0.0289 (11)0.0798 (18)0.0037 (9)0.0272 (12)0.0002 (11)
C20.0378 (13)0.0491 (14)0.0688 (18)0.0004 (11)0.0082 (12)0.0069 (13)
C160.0369 (12)0.0508 (14)0.0464 (14)0.0043 (10)0.0016 (11)0.0067 (11)
C80.0546 (14)0.0371 (12)0.0476 (14)0.0076 (11)0.0162 (11)0.0051 (11)
C60.0960 (19)0.0336 (13)0.0870 (19)0.0074 (14)0.0614 (16)0.0133 (13)
C380.0396 (12)0.0420 (13)0.0488 (14)0.0011 (10)0.0113 (10)0.0094 (11)
C30.0312 (12)0.0477 (14)0.091 (2)0.0051 (11)0.0111 (13)0.0089 (15)
C350.0429 (12)0.0393 (12)0.0549 (14)0.0017 (10)0.0194 (11)0.0008 (11)
C50.0633 (15)0.0359 (13)0.098 (2)0.0014 (12)0.0475 (15)0.0031 (14)
C360.0483 (14)0.0377 (13)0.0762 (18)0.0068 (11)0.0171 (13)0.0037 (13)
C70.0897 (19)0.0450 (15)0.0536 (16)0.0192 (15)0.0303 (14)0.0110 (12)
C150.0308 (12)0.0669 (17)0.0662 (17)0.0072 (12)0.0018 (12)0.0141 (14)
C120.0381 (12)0.0464 (14)0.0553 (15)0.0008 (10)0.0114 (11)0.0073 (12)
C130.0588 (16)0.0544 (16)0.0750 (19)0.0010 (13)0.0261 (14)0.0199 (14)
C140.0439 (14)0.0540 (16)0.0796 (19)0.0138 (12)0.0221 (13)0.0076 (14)
C370.0542 (15)0.0443 (14)0.0711 (18)0.0077 (12)0.0192 (13)0.0130 (13)
C190.0454 (12)0.0327 (11)0.0341 (11)0.0067 (9)0.0070 (9)0.0050 (9)
O20.0488 (9)0.0396 (9)0.0720 (12)0.0057 (8)0.0184 (9)0.0030 (9)
C180.0441 (12)0.0278 (11)0.0399 (12)0.0003 (9)0.0103 (10)0.0026 (9)
C340.0419 (12)0.0285 (11)0.0443 (13)0.0007 (9)0.0168 (10)0.0001 (9)
C200.0594 (15)0.0375 (12)0.0332 (12)0.0132 (11)0.0068 (11)0.0048 (10)
N10.0466 (11)0.0290 (9)0.0372 (10)0.0056 (8)0.0069 (8)0.0016 (8)
C220.0602 (16)0.0291 (12)0.0616 (17)0.0050 (11)0.0040 (13)0.0047 (11)
C280.0325 (11)0.0403 (12)0.0425 (13)0.0050 (9)0.0096 (10)0.0017 (10)
C230.0494 (14)0.0325 (12)0.0471 (14)0.0001 (10)0.0112 (11)0.0056 (10)
C210.0739 (18)0.0259 (11)0.0515 (15)0.0061 (11)0.0060 (13)0.0006 (11)
C290.0495 (14)0.0477 (14)0.0553 (16)0.0022 (11)0.0123 (12)0.0063 (12)
C250.0458 (14)0.0672 (17)0.0542 (15)0.0057 (13)0.0146 (12)0.0098 (14)
C240.0451 (13)0.0447 (13)0.0491 (14)0.0023 (11)0.0105 (11)0.0039 (11)
C400.0554 (14)0.0362 (12)0.0452 (14)0.0058 (11)0.0108 (11)0.0046 (10)
O10.0881 (14)0.0447 (10)0.0589 (12)0.0257 (10)0.0086 (10)0.0034 (9)
C420.0725 (17)0.0361 (13)0.0408 (14)0.0059 (12)0.0112 (12)0.0002 (11)
C270.0680 (17)0.0514 (15)0.0442 (14)0.0234 (13)0.0164 (13)0.0028 (12)
C390.0656 (17)0.0520 (16)0.0589 (18)0.0195 (14)0.0008 (14)0.0107 (13)
C330.0402 (13)0.0583 (16)0.0480 (15)0.0033 (12)0.0027 (11)0.0083 (12)
C260.0582 (16)0.0734 (19)0.0533 (16)0.0282 (14)0.0233 (13)0.0129 (14)
C410.0773 (19)0.0415 (14)0.0468 (15)0.0146 (13)0.0064 (14)0.0013 (12)
C300.0532 (16)0.0658 (18)0.0595 (18)0.0066 (14)0.0012 (13)0.0185 (15)
C310.0532 (17)0.094 (2)0.0445 (16)0.0167 (16)0.0007 (13)0.0018 (16)
C320.0526 (16)0.086 (2)0.0529 (17)0.0050 (15)0.0097 (13)0.0204 (15)
Geometric parameters (Å, º) top
N2—C381.462 (3)C19—C241.415 (3)
N2—C351.471 (3)C19—C201.426 (3)
N2—C171.500 (3)C19—C181.430 (3)
C17—C111.524 (3)O2—C231.363 (3)
C17—C101.528 (3)O2—H2A0.8200
C17—H5A0.9800C18—C231.380 (3)
C10—C11.387 (3)C18—C341.526 (3)
C10—C91.422 (3)C34—N11.493 (3)
O4—C371.415 (3)C34—C281.521 (3)
O4—C361.418 (3)C34—H10A0.9800
C1—O31.351 (3)C20—C211.405 (4)
C1—C21.413 (3)C20—C271.418 (4)
O3—H3A0.8200N1—C401.470 (3)
C11—C121.384 (3)N1—C421.474 (3)
C11—C161.390 (3)C22—C211.349 (4)
C9—C81.418 (3)C22—C231.411 (3)
C9—C41.419 (3)C22—H15A0.9300
C4—C31.410 (4)C28—C331.382 (4)
C4—C51.413 (4)C28—C291.386 (3)
C2—C31.348 (4)C21—H21A0.9300
C2—H18A0.9300C29—C301.386 (4)
C16—C151.388 (4)C29—H22A0.9300
C16—H20A0.9300C25—C241.374 (4)
C8—C71.370 (4)C25—C261.396 (4)
C8—H23A0.9300C25—H24A0.9300
C6—C51.348 (4)C24—H25A0.9300
C6—C71.386 (4)C40—C391.510 (4)
C6—H26A0.9300C40—H27A0.9700
C38—C371.510 (3)C40—H27B0.9700
C38—H28A0.9700O1—C391.410 (4)
C38—H28B0.9700O1—C411.420 (3)
C3—H29A0.9300C42—C411.505 (4)
C35—C361.500 (4)C42—H33A0.9700
C35—H31A0.9700C42—H33B0.9700
C35—H31B0.9700C27—C261.349 (4)
C5—H32A0.9300C27—H35A0.9300
C36—H34A0.9700C39—H36A0.9700
C36—H34B0.9700C39—H36B0.9700
C7—H38A0.9300C33—C321.383 (4)
C15—C141.379 (4)C33—H37A0.9300
C15—H40A0.9300C26—H39A0.9300
C12—C131.377 (4)C41—H43A0.9700
C12—H41A0.9300C41—H43B0.9700
C13—C141.363 (4)C30—C311.374 (4)
C13—H42A0.9300C30—H44A0.9300
C14—H45A0.9300C31—C321.378 (5)
C37—H47A0.9700C31—H46A0.9300
C37—H47B0.9700C32—H48A0.9300
C38—N2—C35107.70 (17)C24—C19—C20117.5 (2)
C38—N2—C17114.36 (16)C24—C19—C18123.3 (2)
C35—N2—C17109.70 (17)C20—C19—C18119.2 (2)
N2—C17—C11112.99 (17)C23—O2—H2A109.5
N2—C17—C10109.69 (16)C23—C18—C19118.6 (2)
C11—C17—C10111.03 (17)C23—C18—C34121.2 (2)
N2—C17—H5A107.6C19—C18—C34120.13 (19)
C11—C17—H5A107.6N1—C34—C28111.68 (18)
C10—C17—H5A107.6N1—C34—C18110.33 (17)
C1—C10—C9118.9 (2)C28—C34—C18111.19 (18)
C1—C10—C17120.3 (2)N1—C34—H10A107.8
C9—C10—C17120.61 (19)C28—C34—H10A107.8
C37—O4—C36109.43 (19)C18—C34—H10A107.8
O3—C1—C10123.6 (2)C21—C20—C27121.3 (2)
O3—C1—C2115.8 (2)C21—C20—C19119.1 (2)
C10—C1—C2120.6 (2)C27—C20—C19119.6 (2)
C1—O3—H3A109.5C40—N1—C42107.33 (18)
C12—C11—C16118.5 (2)C40—N1—C34113.63 (17)
C12—C11—C17121.7 (2)C42—N1—C34110.61 (18)
C16—C11—C17119.7 (2)C21—C22—C23120.1 (2)
C8—C9—C4116.9 (2)C21—C22—H15A120.0
C8—C9—C10123.3 (2)C23—C22—H15A120.0
C4—C9—C10119.8 (2)C33—C28—C29117.9 (2)
C3—C4—C5121.1 (2)C33—C28—C34121.9 (2)
C3—C4—C9118.9 (2)C29—C28—C34120.2 (2)
C5—C4—C9120.0 (2)O2—C23—C18123.2 (2)
C3—C2—C1120.7 (2)O2—C23—C22115.3 (2)
C3—C2—H18A119.6C18—C23—C22121.5 (2)
C1—C2—H18A119.6C22—C21—C20121.4 (2)
C15—C16—C11120.2 (2)C22—C21—H21A119.3
C15—C16—H20A119.9C20—C21—H21A119.3
C11—C16—H20A119.9C30—C29—C28121.1 (3)
C7—C8—C9120.8 (2)C30—C29—H22A119.5
C7—C8—H23A119.6C28—C29—H22A119.5
C9—C8—H23A119.6C24—C25—C26121.2 (3)
C5—C6—C7119.5 (3)C24—C25—H24A119.4
C5—C6—H26A120.3C26—C25—H24A119.4
C7—C6—H26A120.3C25—C24—C19120.7 (2)
N2—C38—C37109.70 (19)C25—C24—H25A119.7
N2—C38—H28A109.7C19—C24—H25A119.7
C37—C38—H28A109.7N1—C40—C39109.8 (2)
N2—C38—H28B109.7N1—C40—H27A109.7
C37—C38—H28B109.7C39—C40—H27A109.7
H28A—C38—H28B108.2N1—C40—H27B109.7
C2—C3—C4121.1 (2)C39—C40—H27B109.7
C2—C3—H29A119.5H27A—C40—H27B108.2
C4—C3—H29A119.5C39—O1—C41109.4 (2)
N2—C35—C36109.7 (2)N1—C42—C41109.8 (2)
N2—C35—H31A109.7N1—C42—H33A109.7
C36—C35—H31A109.7C41—C42—H33A109.7
N2—C35—H31B109.7N1—C42—H33B109.7
C36—C35—H31B109.7C41—C42—H33B109.7
H31A—C35—H31B108.2H33A—C42—H33B108.2
C6—C5—C4121.2 (3)C26—C27—C20121.1 (3)
C6—C5—H32A119.4C26—C27—H35A119.4
C4—C5—H32A119.4C20—C27—H35A119.4
O4—C36—C35111.2 (2)O1—C39—C40111.9 (2)
O4—C36—H34A109.4O1—C39—H36A109.2
C35—C36—H34A109.4C40—C39—H36A109.2
O4—C36—H34B109.4O1—C39—H36B109.2
C35—C36—H34B109.4C40—C39—H36B109.2
H34A—C36—H34B108.0H36A—C39—H36B107.9
C8—C7—C6121.6 (3)C28—C33—C32121.1 (3)
C8—C7—H38A119.2C28—C33—H37A119.5
C6—C7—H38A119.2C32—C33—H37A119.5
C14—C15—C16120.3 (2)C27—C26—C25119.8 (3)
C14—C15—H40A119.9C27—C26—H39A120.1
C16—C15—H40A119.9C25—C26—H39A120.1
C13—C12—C11120.6 (2)O1—C41—C42111.9 (2)
C13—C12—H41A119.7O1—C41—H43A109.2
C11—C12—H41A119.7C42—C41—H43A109.2
C14—C13—C12121.0 (3)O1—C41—H43B109.2
C14—C13—H42A119.5C42—C41—H43B109.2
C12—C13—H42A119.5H43A—C41—H43B107.9
C13—C14—C15119.4 (3)C31—C30—C29120.2 (3)
C13—C14—H45A120.3C31—C30—H44A119.9
C15—C14—H45A120.3C29—C30—H44A119.9
O4—C37—C38112.0 (2)C30—C31—C32119.3 (3)
O4—C37—H47A109.2C30—C31—H46A120.4
C38—C37—H47A109.2C32—C31—H46A120.4
O4—C37—H47B109.2C31—C32—C33120.4 (3)
C38—C37—H47B109.2C31—C32—H48A119.8
H47A—C37—H47B107.9C33—C32—H48A119.8
C38—N2—C17—C1147.7 (2)C24—C19—C18—C23178.7 (2)
C35—N2—C17—C11168.80 (18)C20—C19—C18—C230.6 (3)
C38—N2—C17—C10172.15 (18)C24—C19—C18—C343.7 (3)
C35—N2—C17—C1066.7 (2)C20—C19—C18—C34177.0 (2)
N2—C17—C10—C136.7 (3)C23—C18—C34—N134.7 (3)
C11—C17—C10—C188.9 (2)C19—C18—C34—N1147.7 (2)
N2—C17—C10—C9148.84 (18)C23—C18—C34—C2889.8 (3)
C11—C17—C10—C985.6 (2)C19—C18—C34—C2887.8 (2)
C9—C10—C1—O3179.4 (2)C24—C19—C20—C21179.7 (2)
C17—C10—C1—O34.8 (3)C18—C19—C20—C210.3 (3)
C9—C10—C1—C21.0 (3)C24—C19—C20—C270.8 (3)
C17—C10—C1—C2173.6 (2)C18—C19—C20—C27178.6 (2)
N2—C17—C11—C1294.3 (2)C28—C34—N1—C4048.6 (3)
C10—C17—C11—C1229.4 (3)C18—C34—N1—C40172.83 (19)
N2—C17—C11—C1687.1 (2)C28—C34—N1—C42169.42 (19)
C10—C17—C11—C16149.2 (2)C18—C34—N1—C4266.4 (2)
C1—C10—C9—C8178.3 (2)N1—C34—C28—C3379.5 (3)
C17—C10—C9—C83.8 (3)C18—C34—C28—C3344.2 (3)
C1—C10—C9—C40.2 (3)N1—C34—C28—C2999.4 (2)
C17—C10—C9—C4174.4 (2)C18—C34—C28—C29136.8 (2)
C8—C9—C4—C3177.0 (2)C19—C18—C23—O2179.7 (2)
C10—C9—C4—C31.3 (3)C34—C18—C23—O22.6 (4)
C8—C9—C4—C51.7 (3)C19—C18—C23—C221.0 (4)
C10—C9—C4—C5180.0 (2)C34—C18—C23—C22176.7 (2)
O3—C1—C2—C3178.9 (2)C21—C22—C23—O2179.6 (2)
C10—C1—C2—C30.4 (4)C21—C22—C23—C180.3 (4)
C12—C11—C16—C151.2 (4)C23—C22—C21—C200.8 (4)
C17—C11—C16—C15179.9 (2)C27—C20—C21—C22177.8 (2)
C4—C9—C8—C72.0 (3)C19—C20—C21—C221.1 (4)
C10—C9—C8—C7179.8 (2)C33—C28—C29—C300.3 (4)
C35—N2—C38—C3757.8 (3)C34—C28—C29—C30178.7 (2)
C17—N2—C38—C37180.0 (2)C26—C25—C24—C191.7 (4)
C1—C2—C3—C41.1 (4)C20—C19—C24—C251.7 (3)
C5—C4—C3—C2179.4 (2)C18—C19—C24—C25177.6 (2)
C9—C4—C3—C21.9 (4)C42—N1—C40—C3958.2 (3)
C38—N2—C35—C3659.0 (2)C34—N1—C40—C39179.2 (2)
C17—N2—C35—C36175.91 (19)C40—N1—C42—C4158.3 (3)
C7—C6—C5—C41.1 (4)C34—N1—C42—C41177.25 (19)
C3—C4—C5—C6178.5 (3)C21—C20—C27—C26178.6 (3)
C9—C4—C5—C60.2 (4)C19—C20—C27—C260.3 (4)
C37—O4—C36—C3558.7 (3)C41—O1—C39—C4058.0 (3)
N2—C35—C36—O460.5 (3)N1—C40—C39—O159.7 (3)
C9—C8—C7—C60.8 (4)C29—C28—C33—C321.5 (4)
C5—C6—C7—C80.8 (4)C34—C28—C33—C32177.5 (2)
C11—C16—C15—C141.4 (4)C20—C27—C26—C250.5 (4)
C16—C11—C12—C130.5 (4)C24—C25—C26—C270.5 (4)
C17—C11—C12—C13179.1 (2)C39—O1—C41—C4258.0 (3)
C11—C12—C13—C140.2 (4)N1—C42—C41—O159.5 (3)
C12—C13—C14—C150.1 (5)C28—C29—C30—C310.6 (4)
C16—C15—C14—C130.7 (4)C29—C30—C31—C320.5 (4)
C36—O4—C37—C3857.9 (3)C30—C31—C32—C330.7 (5)
N2—C38—C37—O458.7 (3)C28—C33—C32—C311.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.922.616 (2)142
O3—H3A···N20.821.902.603 (3)143

Experimental details

Crystal data
Chemical formulaC21H21NO2
Mr319.39
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)10.698 (2), 19.052 (4), 16.810 (3)
β (°) 101.13 (3)
V3)3361.5 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.971, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
17285, 3849, 3058
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.118, 1.08
No. of reflections3849
No. of parameters433
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.922.616 (2)141.7
O3—H3A···N20.821.902.603 (3)142.9
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to enable the purchase a single crystal X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationLi, Y. H., Zhao, M. M. & Zhang, Y. (2008). Acta Cryst. E64, o2005.  Web of Science CrossRef IUCr Journals Google Scholar
First citationQu, Z.-R. (2007). Acta Cryst. E63, o3429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W. X. & Zhao, H. (2009). Acta Cryst. E65, o1277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds