organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Cyano­meth­yl)anilinium chloride

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: linjinrui23@163.com

(Received 12 May 2010; accepted 16 May 2010; online 22 May 2010)

The crystal structure of the title compound, C8H9N2+·Cl, is stabilized by N—H⋯Cl hydrogen bonds.

Related literature

For background to phase transition materials, see: Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962]); Zhang et al. (2009[Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N2+·Cl

  • Mr = 168.62

  • Monoclinic, P 21 /n

  • a = 5.4348 (12) Å

  • b = 8.5630 (18) Å

  • c = 18.000 (4) Å

  • β = 93.734 (16)°

  • V = 835.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.45 × 0.28 × 0.25 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.5, Tmax = 0.5

  • 8241 measured reflections

  • 1890 independent reflections

  • 1593 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.139

  • S = 1.18

  • 1890 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Cl1 0.89 2.31 3.1638 (17) 162
N1—H1A⋯Cl1i 0.89 2.32 3.2061 (16) 177
N1—H1C⋯Cl1ii 0.89 2.29 3.1700 (17) 168
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Most non-hydrogen atoms of the 4-(cyanomethyl)anilinium were coplanar, with the mean deviation from plane of 0.0320 and N2—C8—C7—C4 torsion angle of 114 (37)°. The strong π-π packing interactions of benzene rings with Cg(1)···Cg(1) of 3.487 Å (Cg(1) is the centroid of benzene ring) stabilized the crystal structure. The N—H···Cl hydrogen bonding with the N···Cl distances from 3.1638 (17) Å to 3.2061 (17) Å link the molecules into infinite two-dimensional plane.

As a continuation of our study of phase transition materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009 ),the dielectric constant of 4-(cyanomethyl)anilinium chloride compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 5.3 to 21.1), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range.

Related literature top

For our study of phase transition materials, see: Li et al. (2008); Zhang et al. (2009).

Experimental top

Single crystals (average size: 0.7×0.8×1.0 mm) of 4-(cyanomethyl)anilinium chloride were prepared by slowevaporation at room temperature of an ethanol solution of equal molar for 4 days.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C),Uiso(H) = 1.5Ueq(N).

Structure description top

Most non-hydrogen atoms of the 4-(cyanomethyl)anilinium were coplanar, with the mean deviation from plane of 0.0320 and N2—C8—C7—C4 torsion angle of 114 (37)°. The strong π-π packing interactions of benzene rings with Cg(1)···Cg(1) of 3.487 Å (Cg(1) is the centroid of benzene ring) stabilized the crystal structure. The N—H···Cl hydrogen bonding with the N···Cl distances from 3.1638 (17) Å to 3.2061 (17) Å link the molecules into infinite two-dimensional plane.

As a continuation of our study of phase transition materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009 ),the dielectric constant of 4-(cyanomethyl)anilinium chloride compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 5.3 to 21.1), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range.

For our study of phase transition materials, see: Li et al. (2008); Zhang et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
4-(Cyanomethyl)anilinium chloride top
Crystal data top
C8H9N2+·ClF(000) = 352
Mr = 168.62Dx = 1.340 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2330 reflections
a = 5.4348 (12) Åθ = 3.2–27.6°
b = 8.5630 (18) ŵ = 0.39 mm1
c = 18.000 (4) ÅT = 293 K
β = 93.734 (16)°Prism, orange
V = 835.9 (3) Å30.45 × 0.28 × 0.25 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1890 independent reflections
Radiation source: fine-focus sealed tube1593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.3°
CCD_Profile_fitting scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.5, Tmax = 0.5l = 2323
8241 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0842P)2]
where P = (Fo2 + 2Fc2)/3
1890 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C8H9N2+·ClV = 835.9 (3) Å3
Mr = 168.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.4348 (12) ŵ = 0.39 mm1
b = 8.5630 (18) ÅT = 293 K
c = 18.000 (4) Å0.45 × 0.28 × 0.25 mm
β = 93.734 (16)°
Data collection top
Rigaku SCXmini
diffractometer
1890 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1593 reflections with I > 2σ(I)
Tmin = 0.5, Tmax = 0.5Rint = 0.036
8241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.18Δρmax = 0.50 e Å3
1890 reflectionsΔρmin = 0.54 e Å3
101 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4618 (3)0.31846 (19)0.11664 (9)0.0300 (4)
C20.2846 (3)0.3656 (2)0.06362 (11)0.0392 (4)
H20.15270.42660.07680.047*
C30.3045 (3)0.3213 (2)0.00980 (11)0.0399 (5)
H30.18460.35240.04600.048*
C40.5017 (3)0.2308 (2)0.02981 (9)0.0318 (4)
C50.6768 (3)0.1847 (2)0.02470 (10)0.0381 (4)
H50.80870.12330.01190.046*
C60.6587 (3)0.2288 (2)0.09839 (10)0.0375 (4)
H60.77800.19810.13480.045*
C70.5134 (4)0.1847 (3)0.11122 (11)0.0424 (5)
H7A0.37170.12010.12570.051*
H7B0.50310.27840.14160.051*
C80.7369 (4)0.1002 (2)0.12648 (10)0.0380 (4)
N10.4471 (3)0.36295 (19)0.19498 (8)0.0339 (4)
H1A0.30560.41260.20050.051*
H1B0.57270.42560.20870.051*
H1C0.45410.27760.22330.051*
N20.9120 (4)0.0349 (3)0.13867 (12)0.0593 (6)
Cl10.94611 (8)0.55382 (5)0.21151 (3)0.0395 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0310 (9)0.0303 (8)0.0290 (8)0.0016 (7)0.0037 (7)0.0014 (7)
C20.0324 (9)0.0462 (11)0.0391 (10)0.0129 (8)0.0023 (7)0.0008 (8)
C30.0344 (10)0.0505 (11)0.0339 (10)0.0123 (8)0.0045 (7)0.0023 (8)
C40.0309 (9)0.0335 (9)0.0310 (9)0.0017 (7)0.0011 (7)0.0010 (7)
C50.0318 (9)0.0460 (11)0.0362 (10)0.0116 (8)0.0005 (7)0.0027 (8)
C60.0324 (9)0.0471 (10)0.0322 (9)0.0095 (8)0.0030 (7)0.0022 (8)
C70.0409 (11)0.0528 (12)0.0327 (10)0.0119 (9)0.0024 (8)0.0024 (8)
C80.0395 (11)0.0464 (10)0.0279 (9)0.0031 (9)0.0011 (7)0.0002 (8)
N10.0347 (8)0.0367 (8)0.0305 (8)0.0031 (6)0.0034 (6)0.0007 (6)
N20.0484 (12)0.0836 (15)0.0463 (11)0.0210 (10)0.0059 (9)0.0014 (10)
Cl10.0360 (3)0.0418 (3)0.0404 (3)0.00352 (17)0.0006 (2)0.00759 (18)
Geometric parameters (Å, º) top
C1—C21.372 (3)C5—H50.9300
C1—C61.374 (2)C6—H60.9300
C1—N11.468 (2)C7—C81.455 (3)
C2—C31.386 (3)C7—H7A0.9700
C2—H20.9300C7—H7B0.9700
C3—C41.389 (2)C8—N21.137 (3)
C3—H30.9300N1—H1A0.8900
C4—C51.380 (3)N1—H1B0.8900
C4—C71.523 (3)N1—H1C0.8900
C5—C61.389 (3)
C2—C1—C6121.37 (16)C1—C6—H6120.5
C2—C1—N1120.80 (16)C5—C6—H6120.5
C6—C1—N1117.82 (16)C8—C7—C4113.47 (16)
C1—C2—C3119.20 (16)C8—C7—H7A108.9
C1—C2—H2120.4C4—C7—H7A108.9
C3—C2—H2120.4C8—C7—H7B108.9
C2—C3—C4120.63 (17)C4—C7—H7B108.9
C2—C3—H3119.7H7A—C7—H7B107.7
C4—C3—H3119.7N2—C8—C7179.6 (3)
C5—C4—C3118.92 (16)C1—N1—H1A109.5
C5—C4—C7122.68 (16)C1—N1—H1B109.5
C3—C4—C7118.39 (16)H1A—N1—H1B109.5
C4—C5—C6120.85 (17)C1—N1—H1C109.5
C4—C5—H5119.6H1A—N1—H1C109.5
C6—C5—H5119.6H1B—N1—H1C109.5
C1—C6—C5119.02 (17)
C6—C1—C2—C30.2 (3)C2—C1—C6—C50.3 (3)
N1—C1—C2—C3179.95 (17)N1—C1—C6—C5179.84 (17)
C1—C2—C3—C40.3 (3)C4—C5—C6—C10.5 (3)
C2—C3—C4—C50.5 (3)C5—C4—C7—C85.2 (3)
C2—C3—C4—C7179.66 (19)C3—C4—C7—C8175.67 (19)
C3—C4—C5—C60.6 (3)C4—C7—C8—N2114 (37)
C7—C4—C5—C6179.74 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl10.892.313.1638 (17)162
N1—H1A···Cl1i0.892.323.2061 (16)177
N1—H1C···Cl1ii0.892.293.1700 (17)168
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H9N2+·Cl
Mr168.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.4348 (12), 8.5630 (18), 18.000 (4)
β (°) 93.734 (16)
V3)835.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.45 × 0.28 × 0.25
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.5, 0.5
No. of measured, independent and
observed [I > 2σ(I)] reflections
8241, 1890, 1593
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.139, 1.18
No. of reflections1890
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.54

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl10.892.313.1638 (17)162.0
N1—H1A···Cl1i0.892.323.2061 (16)176.8
N1—H1C···Cl1ii0.892.293.1700 (17)168.1
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds