organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo­anilinium hexa­fluoro­phosphate monohydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fuxuequn222@163.com

(Received 13 May 2010; accepted 16 May 2010; online 22 May 2010)

In the title compound, C6H7BrN+·PF6·H2O, N—H⋯F, N—H⋯O and O—H⋯F hydrogen-bonding inter­actions stabilize the crystal structure and give rise to to chains running parallel to the c axis. In the anion, four of the F atoms are disordered over two sets of sites of equal occupancy.

Related literature

The title compound was synthesized as part of our group's search for ferroelectric compounds, which usually have a phase transition. For background to phase transition materials, see: Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962]); Zhang et al. (2009[Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545]).

[Scheme 1]

Experimental

Crystal data
  • C6H7BrN+·PF6·H2O

  • Mr = 336.02

  • Monoclinic, P 21 /c

  • a = 14.646 (8) Å

  • b = 5.075 (3) Å

  • c = 15.314 (8) Å

  • β = 94.697 (11)°

  • V = 1134.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.82 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.465, Tmax = 0.484

  • 11563 measured reflections

  • 2584 independent reflections

  • 1949 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.143

  • S = 1.05

  • 2584 reflections

  • 189 parameters

  • 24 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯F6 0.89 2.59 3.13 (3) 120
N1—H1C⋯O1W 0.89 2.24 2.891 (5) 130
N1—H1A⋯F2i 0.89 2.15 3.02 (2) 168
N1—H1B⋯O1Wii 0.89 2.42 2.905 (5) 115
N1—H1B⋯F4iii 0.89 2.45 3.252 (5) 149
N1—H1C⋯F5iv 0.89 2.51 3.04 (2) 119
O1W—H1WB⋯F6v 0.75 (7) 2.34 (8) 3.00 (3) 148 (6)
O1W—H1WB⋯F1v 0.75 (7) 2.48 (7) 3.062 (5) 136 (6)
O1W—H1WA⋯F5vi 0.62 (7) 2.36 (7) 2.92 (2) 151 (7)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) -x+1, -y, -z+2; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+2; (vi) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

As a continuation of our study of phase transition materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009 ), organic-inorganic hybrids, we studied the dielectric properties of the title compound, unfortunately, there was no distinct anomaly observed from 93 K to 350 K,suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. In this article, the crystal structure of (I) has been presented.

The asymmetric unit of the title compound is made up of a almost coplanar 4-bromoanilimium cation with the mean deviation from the plan of 0.013 Å, a hexafluorophosphate anion disordered intwo orientations with site-occupancy factors of 0.7365 and 0.2635, and a water molecule. The chains of the molecular arrangement in the crystal structure is mainly determined by relatively strong and directional N—H···F, N—H···O and O—H···F hydrogen bonds (Table 1), and to a lesser degree by a π-π packing interaction between the adjacent aromatic rings, where the interplanar spacing is 5.855 (4) Å.

Related literature top

For background to phase transition materials, see: Li et al. (2008); Zhang et al. (2009)

Experimental top

Single crystals of 4-bromoanilimium hexafluorophosphate monohydrate were prepared by slow evaporation at room temperature of an ethanol solution of equal molar 4-bromobenzenamine and hexafluorophosphoric acid.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C),

Uiso(H) = 1.2Ueq(N).

Structure description top

As a continuation of our study of phase transition materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009 ), organic-inorganic hybrids, we studied the dielectric properties of the title compound, unfortunately, there was no distinct anomaly observed from 93 K to 350 K,suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. In this article, the crystal structure of (I) has been presented.

The asymmetric unit of the title compound is made up of a almost coplanar 4-bromoanilimium cation with the mean deviation from the plan of 0.013 Å, a hexafluorophosphate anion disordered intwo orientations with site-occupancy factors of 0.7365 and 0.2635, and a water molecule. The chains of the molecular arrangement in the crystal structure is mainly determined by relatively strong and directional N—H···F, N—H···O and O—H···F hydrogen bonds (Table 1), and to a lesser degree by a π-π packing interaction between the adjacent aromatic rings, where the interplanar spacing is 5.855 (4) Å.

For background to phase transition materials, see: Li et al. (2008); Zhang et al. (2009)

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
4-Bromoanilinium hexafluorophosphate monohydrate top
Crystal data top
C6H7BrN+·PF6·H2OF(000) = 656
Mr = 336.02Dx = 1.967 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2551 reflections
a = 14.646 (8) Åθ = 3.7–27.5°
b = 5.075 (3) ŵ = 3.82 mm1
c = 15.314 (8) ÅT = 298 K
β = 94.697 (11)°Prism, colorless
V = 1134.5 (10) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2584 independent reflections
Radiation source: fine-focus sealed tube1949 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 66
Tmin = 0.465, Tmax = 0.484l = 1919
11563 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.7365P]
where P = (Fo2 + 2Fc2)/3
2584 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.48 e Å3
24 restraintsΔρmin = 0.54 e Å3
Crystal data top
C6H7BrN+·PF6·H2OV = 1134.5 (10) Å3
Mr = 336.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.646 (8) ŵ = 3.82 mm1
b = 5.075 (3) ÅT = 298 K
c = 15.314 (8) Å0.20 × 0.20 × 0.20 mm
β = 94.697 (11)°
Data collection top
Rigaku SCXmini
diffractometer
2584 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1949 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.484Rint = 0.043
11563 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05124 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.48 e Å3
2584 reflectionsΔρmin = 0.54 e Å3
189 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.07352 (3)0.12750 (14)0.89407 (4)0.0887 (3)
C10.2358 (2)0.1568 (7)0.8526 (2)0.0410 (8)
C20.2022 (3)0.3220 (9)0.9125 (3)0.0690 (13)
H2A0.24100.43720.94490.083*
C30.1092 (4)0.3161 (11)0.9246 (4)0.0780 (15)
H3A0.08500.42790.96500.094*
C40.0536 (3)0.1443 (9)0.8766 (3)0.0564 (10)
C50.0873 (3)0.0174 (13)0.8167 (4)0.0836 (16)
H5A0.04850.13170.78400.100*
C60.1802 (3)0.0121 (11)0.8043 (4)0.0770 (15)
H6A0.20410.12280.76340.092*
N10.3347 (2)0.1574 (6)0.8399 (2)0.0449 (7)
H1A0.34600.04030.79890.067*
H1B0.36640.11510.89000.067*
H1C0.35130.31710.82310.067*
O1W0.4090 (2)0.6558 (6)0.9035 (3)0.0497 (7)
H1WB0.407 (5)0.646 (12)0.952 (5)0.10 (3)*
H1WA0.445 (5)0.652 (12)0.885 (4)0.09 (3)*
P10.62950 (6)0.0473 (2)0.87429 (6)0.0426 (3)
F10.69905 (19)0.2001 (6)0.94031 (19)0.0747 (8)
F20.6508 (16)0.215 (4)0.7908 (13)0.069 (3)0.50
F30.706 (2)0.161 (5)0.852 (2)0.067 (4)0.50
F40.6103 (2)0.1569 (5)0.95004 (19)0.0753 (8)
F50.5602 (14)0.141 (7)0.8100 (14)0.066 (5)0.50
F60.541 (2)0.203 (7)0.908 (2)0.065 (5)0.50
F3'0.7131 (19)0.097 (5)0.8358 (18)0.071 (5)0.50
F6'0.554 (2)0.239 (7)0.900 (2)0.073 (6)0.50
F2'0.6400 (18)0.284 (4)0.8075 (12)0.073 (3)0.50
F5'0.5575 (14)0.078 (7)0.8065 (14)0.071 (6)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0451 (3)0.1472 (7)0.0747 (4)0.0010 (3)0.0107 (2)0.0271 (3)
C10.0418 (18)0.0409 (19)0.0404 (18)0.0011 (15)0.0029 (14)0.0040 (15)
C20.063 (3)0.069 (3)0.079 (3)0.017 (2)0.025 (2)0.029 (2)
C30.064 (3)0.087 (4)0.087 (4)0.001 (3)0.031 (3)0.026 (3)
C40.044 (2)0.079 (3)0.046 (2)0.004 (2)0.0037 (17)0.017 (2)
C50.047 (2)0.117 (4)0.086 (3)0.016 (3)0.000 (2)0.039 (3)
C60.054 (3)0.094 (4)0.082 (3)0.003 (3)0.001 (2)0.041 (3)
N10.0452 (16)0.0415 (16)0.0483 (17)0.0010 (13)0.0057 (13)0.0024 (14)
O1W0.0439 (16)0.0496 (17)0.056 (2)0.0011 (13)0.0094 (14)0.0043 (14)
P10.0394 (5)0.0469 (5)0.0426 (5)0.0052 (4)0.0087 (4)0.0044 (4)
F10.0653 (16)0.0864 (18)0.0714 (17)0.0209 (14)0.0014 (13)0.0273 (15)
F20.085 (6)0.075 (10)0.051 (6)0.017 (6)0.028 (4)0.002 (5)
F30.062 (8)0.063 (9)0.079 (8)0.011 (6)0.026 (5)0.006 (5)
F40.0805 (19)0.0728 (17)0.0732 (18)0.0039 (14)0.0106 (14)0.0252 (14)
F50.065 (5)0.073 (13)0.064 (5)0.030 (5)0.021 (5)0.023 (5)
F60.045 (5)0.077 (10)0.075 (7)0.008 (5)0.018 (5)0.005 (7)
F3'0.045 (4)0.086 (13)0.085 (11)0.005 (7)0.026 (6)0.027 (8)
F6'0.066 (11)0.064 (8)0.093 (9)0.026 (9)0.024 (7)0.007 (5)
F2'0.109 (8)0.059 (8)0.054 (7)0.013 (6)0.027 (5)0.007 (5)
F5'0.060 (5)0.077 (14)0.072 (5)0.024 (5)0.015 (5)0.017 (5)
Geometric parameters (Å, º) top
Br1—C41.904 (4)N1—H1C0.8900
C1—C61.359 (6)O1W—H1WB0.75 (7)
C1—C21.364 (6)O1W—H1WA0.62 (7)
C1—N11.477 (5)P1—F6'1.55 (3)
C2—C31.390 (7)P1—F5'1.55 (2)
C2—H2A0.9300P1—F3'1.58 (3)
C3—C41.366 (7)P1—F11.579 (3)
C3—H3A0.9300P1—F2'1.59 (2)
C4—C51.353 (7)P1—F21.59 (2)
C5—C61.390 (7)P1—F41.597 (3)
C5—H5A0.9300P1—F31.60 (3)
C6—H6A0.9300P1—F61.64 (3)
N1—H1A0.8900P1—F51.66 (2)
N1—H1B0.8900
C6—C1—C2121.4 (4)F6'—P1—F293.1 (15)
C6—C1—N1118.6 (4)F5'—P1—F281.3 (13)
C2—C1—N1120.0 (3)F3'—P1—F275.0 (10)
C1—C2—C3119.2 (4)F1—P1—F295.3 (8)
C1—C2—H2A120.4F2'—P1—F216.8 (8)
C3—C2—H2A120.4F6'—P1—F493.1 (14)
C4—C3—C2119.3 (4)F5'—P1—F494.1 (11)
C4—C3—H3A120.3F3'—P1—F499.0 (8)
C2—C3—H3A120.3F1—P1—F489.78 (17)
C5—C4—C3121.1 (4)F2'—P1—F4170.9 (5)
C5—C4—Br1118.9 (4)F2—P1—F4172.1 (5)
C3—C4—Br1119.9 (3)F6'—P1—F3177.2 (16)
C4—C5—C6119.8 (4)F5'—P1—F392.0 (16)
C4—C5—H5A120.1F3'—P1—F315.2 (13)
C6—C5—H5A120.1F1—P1—F392.0 (12)
C1—C6—C5119.1 (4)F2'—P1—F3104.6 (9)
C1—C6—H6A120.4F2—P1—F389.6 (10)
C5—C6—H6A120.4F4—P1—F384.1 (7)
C1—N1—H1A109.5F6'—P1—F610 (3)
C1—N1—H1B109.5F5'—P1—F684.2 (15)
H1A—N1—H1B109.5F3'—P1—F6176.7 (16)
C1—N1—H1C109.5F1—P1—F692.5 (11)
H1A—N1—H1C109.5F2'—P1—F687.8 (15)
H1B—N1—H1C109.5F2—P1—F6102.1 (15)
H1WB—O1W—H1WA124 (8)F4—P1—F683.7 (13)
F6'—P1—F5'87.9 (17)F3—P1—F6167.0 (15)
F6'—P1—F3'167.6 (15)F6'—P1—F595.4 (16)
F5'—P1—F3'93.7 (15)F5'—P1—F511 (2)
F6'—P1—F188.2 (14)F3'—P1—F588.1 (14)
F5'—P1—F1174.7 (13)F1—P1—F5174.3 (12)
F3'—P1—F189.3 (11)F2'—P1—F597.9 (13)
F6'—P1—F2'78.2 (15)F2—P1—F589.0 (12)
F5'—P1—F2'88.5 (15)F4—P1—F585.6 (10)
F3'—P1—F2'89.5 (10)F3—P1—F584.2 (15)
F1—P1—F2'87.2 (9)F6—P1—F590.3 (14)
C6—C1—C2—C30.3 (8)C3—C4—C5—C60.8 (9)
N1—C1—C2—C3179.0 (4)Br1—C4—C5—C6178.7 (5)
C1—C2—C3—C40.3 (8)C2—C1—C6—C50.4 (8)
C2—C3—C4—C50.9 (8)N1—C1—C6—C5179.0 (5)
C2—C3—C4—Br1178.6 (4)C4—C5—C6—C10.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···F60.892.593.13 (3)120
N1—H1C···O1W0.892.242.891 (5)130
N1—H1A···F2i0.892.153.02 (2)168
N1—H1B···O1Wii0.892.422.905 (5)115
N1—H1B···F4iii0.892.453.252 (5)149
N1—H1C···F5iv0.892.513.04 (2)119
O1W—H1WB···F6v0.75 (7)2.34 (8)3.00 (3)148 (6)
O1W—H1WB···F1v0.75 (7)2.48 (7)3.062 (5)136 (6)
O1W—H1WA···F5vi0.62 (7)2.36 (7)2.92 (2)151 (7)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1, z; (iii) x+1, y, z+2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H7BrN+·PF6·H2O
Mr336.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.646 (8), 5.075 (3), 15.314 (8)
β (°) 94.697 (11)
V3)1134.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)3.82
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.465, 0.484
No. of measured, independent and
observed [I > 2σ(I)] reflections
11563, 2584, 1949
Rint0.043
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 1.05
No. of reflections2584
No. of parameters189
No. of restraints24
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.54

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···F60.892.593.13 (3)119.5
N1—H1C···O1W0.892.242.891 (5)129.8
N1—H1A···F2i0.892.153.02 (2)168.1
N1—H1B···O1Wii0.892.422.905 (5)114.8
N1—H1B···F4iii0.892.453.252 (5)149.3
N1—H1C···F5iv0.892.513.04 (2)118.9
O1W—H1WB···F6v0.75 (7)2.34 (8)3.00 (3)148 (6)
O1W—H1WB···F1v0.75 (7)2.48 (7)3.062 (5)136 (6)
O1W—H1WA···F5vi0.62 (7)2.36 (7)2.92 (2)151 (7)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1, z; (iii) x+1, y, z+2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+2; (vi) x, y+1, z.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds